Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.125
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(18): 3793-3809.e26, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37562401

RESUMO

Hepatocytes, the major metabolic hub of the body, execute functions that are human-specific, altered in human disease, and currently thought to be regulated through endocrine and cell-autonomous mechanisms. Here, we show that key metabolic functions of human hepatocytes are controlled by non-parenchymal cells (NPCs) in their microenvironment. We developed mice bearing human hepatic tissue composed of human hepatocytes and NPCs, including human immune, endothelial, and stellate cells. Humanized livers reproduce human liver architecture, perform vital human-specific metabolic/homeostatic processes, and model human pathologies, including fibrosis and non-alcoholic fatty liver disease (NAFLD). Leveraging species mismatch and lipidomics, we demonstrate that human NPCs control metabolic functions of human hepatocytes in a paracrine manner. Mechanistically, we uncover a species-specific interaction whereby WNT2 secreted by sinusoidal endothelial cells controls cholesterol uptake and bile acid conjugation in hepatocytes through receptor FZD5. These results reveal the essential microenvironmental regulation of hepatic metabolism and its human-specific aspects.


Assuntos
Células Endoteliais , Fígado , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Hepatócitos/metabolismo , Células de Kupffer/metabolismo , Fígado/citologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fibrose/metabolismo
2.
Cell ; 185(20): 3753-3769.e18, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179668

RESUMO

Interactions between angiogenesis and neurogenesis regulate embryonic brain development. However, a comprehensive understanding of the stages of vascular cell maturation is lacking, especially in the prenatal human brain. Using fluorescence-activated cell sorting, single-cell transcriptomics, and histological and ultrastructural analyses, we show that an ensemble of endothelial and mural cell subtypes tile the brain vasculature during the second trimester. These vascular cells follow distinct developmental trajectories and utilize diverse signaling mechanisms, including collagen, laminin, and midkine, to facilitate cell-cell communication and maturation. Interestingly, our results reveal that tip cells, a subtype of endothelial cells, are highly enriched near the ventricular zone, the site of active neurogenesis. Consistent with these observations, prenatal vascular cells transplanted into cortical organoids exhibit restricted lineage potential that favors tip cells, promotes neurogenesis, and reduces cellular stress. Together, our results uncover important mechanisms into vascular maturation during this critical period of human brain development.


Assuntos
Células Endoteliais , Neovascularização Fisiológica , Encéfalo , Colágeno , Humanos , Laminina , Midkina , Neovascularização Patológica/patologia , Neovascularização Fisiológica/fisiologia , Pericitos
3.
Cell ; 185(14): 2523-2541.e30, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35738284

RESUMO

Stem cell research endeavors to generate specific subtypes of classically defined "cell types." Here, we generate >90% pure human artery or vein endothelial cells from pluripotent stem cells within 3-4 days. We specified artery cells by inhibiting vein-specifying signals and vice versa. These cells modeled viral infection of human vasculature by Nipah and Hendra viruses, which are extraordinarily deadly (∼57%-59% fatality rate) and require biosafety-level-4 containment. Generating pure populations of artery and vein cells highlighted that Nipah and Hendra viruses preferentially infected arteries; arteries expressed higher levels of their viral-entry receptor. Virally infected artery cells fused into syncytia containing up to 23 nuclei, which rapidly died. Despite infecting arteries and occupying ∼6%-17% of their transcriptome, Nipah and Hendra largely eluded innate immune detection, minimally eliciting interferon signaling. We thus efficiently generate artery and vein cells, introduce stem-cell-based toolkits for biosafety-level-4 virology, and explore the arterial tropism and cellular effects of Nipah and Hendra viruses.


Assuntos
Vírus Hendra , Vírus Nipah , Células-Tronco Pluripotentes , Artérias , Células Endoteliais , Vírus Hendra/genética , Humanos , Tropismo
4.
Cell ; 183(2): 377-394.e21, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32976798

RESUMO

We employed scRNA sequencing to extensively characterize the cellular landscape of human liver from development to disease. Analysis of ∼212,000 cells representing human fetal, hepatocellular carcinoma (HCC), and mouse liver revealed remarkable fetal-like reprogramming of the tumor microenvironment. Specifically, the HCC ecosystem displayed features reminiscent of fetal development, including re-emergence of fetal-associated endothelial cells (PLVAP/VEGFR2) and fetal-like (FOLR2) tumor-associated macrophages. In a cross-species comparative analysis, we discovered remarkable similarity between mouse embryonic, fetal-liver, and tumor macrophages. Spatial transcriptomics further revealed a shared onco-fetal ecosystem between fetal liver and HCC. Furthermore, gene regulatory analysis, spatial transcriptomics, and in vitro functional assays implicated VEGF and NOTCH signaling in maintaining onco-fetal ecosystem. Taken together, we report a shared immunosuppressive onco-fetal ecosystem in fetal liver and HCC. Our results unravel a previously unexplored onco-fetal reprogramming of the tumor ecosystem, provide novel targets for therapeutic interventions in HCC, and open avenues for identifying similar paradigms in other cancers and disease.


Assuntos
Carcinoma Hepatocelular/patologia , Células Endoteliais/metabolismo , Microambiente Tumoral/genética , Adulto , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Receptor 2 de Folato/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Fígado/patologia , Neoplasias Hepáticas/genética , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/genética , Transcriptoma/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Cell ; 176(5): 1128-1142.e18, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30686582

RESUMO

Collateral arteries are an uncommon vessel subtype that can provide alternate blood flow to preserve tissue following vascular occlusion. Some patients with heart disease develop collateral coronary arteries, and this correlates with increased survival. However, it is not known how these collaterals develop or how to stimulate them. We demonstrate that neonatal mouse hearts use a novel mechanism to build collateral arteries in response to injury. Arterial endothelial cells (ECs) migrated away from arteries along existing capillaries and reassembled into collateral arteries, which we termed "artery reassembly". Artery ECs expressed CXCR4, and following injury, capillary ECs induced its ligand, CXCL12. CXCL12 or CXCR4 deletion impaired collateral artery formation and neonatal heart regeneration. Artery reassembly was nearly absent in adults but was induced by exogenous CXCL12. Thus, understanding neonatal regenerative mechanisms can identify pathways that restore these processes in adults and identify potentially translatable therapeutic strategies for ischemic heart disease.


Assuntos
Circulação Colateral/fisiologia , Coração/crescimento & desenvolvimento , Regeneração/fisiologia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Quimiocina CXCL12/metabolismo , Vasos Coronários/crescimento & desenvolvimento , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/fisiologia , Receptores CXCR4/metabolismo , Transdução de Sinais
6.
Cell ; 175(3): 695-708.e13, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30293865

RESUMO

We have uncovered the existence of extracellular vesicle (EV)-mediated signaling between cell types within the adipose tissue (AT) proper. This phenomenon became evident in our attempts at generating an adipocyte-specific knockout of caveolin 1 (cav1) protein. Although we effectively ablated the CAV1 gene in adipocytes, cav1 protein remained abundant. With the use of newly generated mouse models, we show that neighboring endothelial cells (ECs) transfer cav1-containing EVs to adipocytes in vivo, which reciprocate by releasing EVs to ECs. AT-derived EVs contain proteins and lipids capable of modulating cellular signaling pathways. Furthermore, this mechanism facilitates transfer of plasma constituents from ECs to the adipocyte. The transfer event is physiologically regulated by fasting/refeeding and obesity, suggesting EVs participate in the tissue response to changes in the systemic nutrient state. This work offers new insights into the complex signaling mechanisms that exist among adipocytes, stromal vascular cells, and, potentially, distal organs.


Assuntos
Adipócitos/metabolismo , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Jejum/metabolismo , Transdução de Sinais , Animais , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular , Células Cultivadas , Endotélio Vascular/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Annu Rev Cell Dev Biol ; 35: 591-613, 2019 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-31299172

RESUMO

The vertebrate vasculature displays high organotypic specialization, with the structure and function of blood vessels catering to the specific needs of each tissue. A unique feature of the central nervous system (CNS) vasculature is the blood-brain barrier (BBB). The BBB regulates substance influx and efflux to maintain a homeostatic environment for proper brain function. Here, we review the development and cell biology of the BBB, focusing on the cellular and molecular regulation of barrier formation and the maintenance of the BBB through adulthood. We summarize unique features of CNS endothelial cells and highlight recent progress in and general principles of barrier regulation. Finally, we illustrate why a mechanistic understanding of the development and maintenance of the BBB could provide novel therapeutic opportunities for CNS drug delivery.


Assuntos
Transporte Biológico/fisiologia , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/crescimento & desenvolvimento , Sistema Nervoso Central/citologia , Células Endoteliais/citologia , Animais , Astrócitos/citologia , Membrana Basal/citologia , Membrana Basal/metabolismo , Transporte Biológico/genética , Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Encéfalo/fisiologia , Sistema Nervoso Central/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Homeostase , Humanos , Leucócitos , Acoplamento Neurovascular/fisiologia , Pericitos/citologia , Junções Íntimas , Transcitose/fisiologia , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia
8.
Immunity ; 56(10): 2342-2357.e10, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37625409

RESUMO

The heart is an autoimmune-prone organ. It is crucial for the heart to keep injury-induced autoimmunity in check to avoid autoimmune-mediated inflammatory disease. However, little is known about how injury-induced autoimmunity is constrained in hearts. Here, we reveal an unknown intramyocardial immunosuppressive program driven by Tbx1, a DiGeorge syndrome disease gene that encodes a T-box transcription factor (TF). We found induced profound lymphangiogenic and immunomodulatory gene expression changes in lymphatic endothelial cells (LECs) after myocardial infarction (MI). The activated LECs penetrated the infarcted area and functioned as intramyocardial immune hubs to increase the numbers of tolerogenic dendritic cells (tDCs) and regulatory T (Treg) cells through the chemokine Ccl21 and integrin Icam1, thereby inhibiting the expansion of autoreactive CD8+ T cells and promoting reparative macrophage expansion to facilitate post-MI repair. Mimicking its timing and implementation may be an additional approach to treating autoimmunity-mediated cardiac diseases.

9.
Immunity ; 56(1): 125-142.e12, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36630911

RESUMO

During metastasis, cancer cells invade, intravasate, enter the circulation, extravasate, and colonize target organs. Here, we examined the role of interleukin (IL)-22 in metastasis. Immune cell-derived IL-22 acts on epithelial tissues, promoting regeneration and healing upon tissue damage, but it is also associated with malignancy. Il22-deficient mice and mice treated with an IL-22 antibody were protected from colon-cancer-derived liver and lung metastasis formation, while overexpression of IL-22 promoted metastasis. Mechanistically, IL-22 acted on endothelial cells, promoting endothelial permeability and cancer cell transmigration via induction of endothelial aminopeptidase N. Multi-parameter flow cytometry and single-cell sequencing of immune cells isolated during cancer cell extravasation into the liver revealed iNKT17 cells as source of IL-22. iNKT-cell-deficient mice exhibited reduced metastases, which was reversed by injection of wild type, but not Il22-deficient, invariant natural killer T (iNKT) cells. IL-22-producing iNKT cells promoting metastasis were tissue resident, as demonstrated by parabiosis. Thus, IL-22 may present a therapeutic target for prevention of metastasis.


Assuntos
Interleucinas , Neoplasias Hepáticas , Células T Matadoras Naturais , Animais , Camundongos , Células Endoteliais/metabolismo , Interleucinas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Camundongos Endogâmicos C57BL , Células T Matadoras Naturais/metabolismo , Neoplasias Colorretais/metabolismo , Interleucina 22
10.
Immunity ; 56(5): 979-997.e11, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37100060

RESUMO

Immune cell trafficking constitutes a fundamental component of immunological response to tissue injury, but the contribution of intrinsic RNA nucleotide modifications to this response remains elusive. We report that RNA editor ADAR2 exerts a tissue- and stress-specific regulation of endothelial responses to interleukin-6 (IL-6), which tightly controls leukocyte trafficking in IL-6-inflamed and ischemic tissues. Genetic ablation of ADAR2 from vascular endothelial cells diminished myeloid cell rolling and adhesion on vascular walls and reduced immune cell infiltration within ischemic tissues. ADAR2 was required in the endothelium for the expression of the IL-6 receptor subunit, IL-6 signal transducer (IL6ST; gp130), and subsequently, for IL-6 trans-signaling responses. ADAR2-induced adenosine-to-inosine RNA editing suppressed the Drosha-dependent primary microRNA processing, thereby overwriting the default endothelial transcriptional program to safeguard gp130 expression. This work demonstrates a role for ADAR2 epitranscriptional activity as a checkpoint in IL-6 trans-signaling and immune cell trafficking to sites of tissue injury.


Assuntos
Interleucina-6 , RNA , Células Endoteliais/metabolismo , Receptor gp130 de Citocina , Endotélio/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo
11.
Cell ; 170(3): 522-533.e15, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28753427

RESUMO

Genome-wide association studies (GWASs) implicate the PHACTR1 locus (6p24) in risk for five vascular diseases, including coronary artery disease, migraine headache, cervical artery dissection, fibromuscular dysplasia, and hypertension. Through genetic fine mapping, we prioritized rs9349379, a common SNP in the third intron of the PHACTR1 gene, as the putative causal variant. Epigenomic data from human tissue revealed an enhancer signature at rs9349379 exclusively in aorta, suggesting a regulatory function for this SNP in the vasculature. CRISPR-edited stem cell-derived endothelial cells demonstrate rs9349379 regulates expression of endothelin 1 (EDN1), a gene located 600 kb upstream of PHACTR1. The known physiologic effects of EDN1 on the vasculature may explain the pattern of risk for the five associated diseases. Overall, these data illustrate the integration of genetic, phenotypic, and epigenetic analysis to identify the biologic mechanism by which a common, non-coding variant can distally regulate a gene and contribute to the pathogenesis of multiple vascular diseases.


Assuntos
Doença da Artéria Coronariana/genética , Endotelina-1/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Doenças Vasculares/genética , Acetilação , Células Cultivadas , Cromatina/metabolismo , Mapeamento Cromossômico , Cromossomos Humanos Par 6 , Células Endoteliais/citologia , Endotelina-1/sangue , Epigenômica , Edição de Genes , Expressão Gênica , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Humanos , Músculo Liso Vascular/citologia
12.
Physiol Rev ; 103(2): 1247-1421, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603156

RESUMO

This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.


Assuntos
Células Endoteliais , Mecanotransdução Celular , Humanos , Mecanotransdução Celular/fisiologia , Células Endoteliais/metabolismo , Epigênese Genética , Transdução de Sinais/fisiologia , Miócitos de Músculo Liso , Estresse Mecânico
13.
Physiol Rev ; 102(4): 1837-1879, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35771983

RESUMO

The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules, and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.


Assuntos
Células Endoteliais , Vasos Linfáticos , Humanos , Imunoterapia , Linfangiogênese , Metástase Linfática/patologia
14.
Genes Dev ; 35(7-8): 512-527, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766982

RESUMO

Epithelioid hemangioendothelioma (EHE) is a genetically homogenous vascular sarcoma that is a paradigm for TAZ dysregulation in cancer. EHE harbors a WWTR1(TAZ)-CAMTA1 gene fusion in >90% of cases, 45% of which have no other genetic alterations. In this study, we used a first of its kind approach to target the Wwtr1-Camta1 gene fusion to the Wwtr1 locus, to develop a conditional EHE mouse model whereby Wwtr1-Camta1 is controlled by the endogenous transcriptional regulators upon Cre activation. These mice develop EHE tumors that are indistinguishable from human EHE clinically, histologically, immunohistochemically, and genetically. Overall, these results demonstrate unequivocally that TAZ-CAMTA1 is sufficient to drive EHE formation with exquisite specificity, as no other tumor types were observed. Furthermore, we fully credential this unique EHE mouse model as a valid preclinical model for understanding the role of TAZ dysregulation in cancer formation and for testing therapies directed at TAZ-CAMTA1, TAZ, and YAP/TAZ signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Carcinogênese/genética , Modelos Animais de Doenças , Fusão Gênica , Hemangioendotelioma Epitelioide/genética , Hemangioendotelioma Epitelioide/patologia , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Humanos , Camundongos , Transdução de Sinais/genética , Transativadores/genética
15.
Genes Dev ; 35(7-8): 495-511, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33766984

RESUMO

Epithelioid hemangioendothelioma (EHE) is a poorly understood and devastating vascular cancer. Sequencing of EHE has revealed a unique gene fusion between the Hippo pathway nuclear effector TAZ (WWTR1) and the brain-enriched transcription factor CAMTA1 in ∼90% of cases. However, it remains unclear whether the TAZ-CAMTA1 gene fusion is a driver of EHE, and potential targeted therapies are unknown. Here, we show that TAZ-CAMTA1 expression in endothelial cells is sufficient to drive the formation of vascular tumors with the distinctive features of EHE, and inhibition of TAZ-CAMTA1 results in the regression of these vascular tumors. We further show that activated TAZ resembles TAZ-CAMTA1 in driving the formation of EHE-like vascular tumors, suggesting that constitutive activation of TAZ underlies the pathological features of EHE. We show that TAZ-CAMTA1 initiates an angiogenic and regenerative-like transcriptional program in endothelial cells, and disruption of the TAZ-CAMTA1-TEAD interaction or ectopic expression of a dominant negative TEAD in vivo inhibits TAZ-CAMTA1-mediated transformation. Our study provides the first genetic model of a TAZ fusion oncoprotein driving its associated human cancer, pinpointing TAZ-CAMTA1 as the key driver and a valid therapeutic target of EHE.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Carcinogênese/genética , Células Endoteliais/patologia , Regulação Neoplásica da Expressão Gênica , Hemangioendotelioma Epitelioide/genética , Hemangioendotelioma Epitelioide/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transativadores/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Fusão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Transativadores/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
16.
Physiol Rev ; 101(4): 1809-1871, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33507128

RESUMO

Primary lymphedema is a long-term (chronic) condition characterized by tissue lymph retention and swelling that can affect any part of the body, although it usually develops in the arms or legs. Due to the relevant contribution of the lymphatic system to human physiology, while this review mainly focuses on the clinical and physiological aspects related to the regulation of fluid homeostasis and edema, clinicians need to know that the impact of lymphatic dysfunction with a genetic origin can be wide ranging. Lymphatic dysfunction can affect immune function so leading to infection; it can influence cancer development and spread, and it can determine fat transport so impacting on nutrition and obesity. Genetic studies and the development of imaging techniques for the assessment of lymphatic function have enabled the recognition of primary lymphedema as a heterogenic condition in terms of genetic causes and disease mechanisms. In this review, the known biological functions of several genes crucial to the development and function of the lymphatic system are used as a basis for understanding normal lymphatic biology. The disease conditions originating from mutations in these genes are discussed together with a detailed clinical description of the phenotype and the up-to-date knowledge in terms of disease mechanisms acquired from in vitro and in vivo research models.


Assuntos
Sistema Linfático/crescimento & desenvolvimento , Sistema Linfático/fisiologia , Linfedema/genética , Animais , Humanos , Linfangiogênese/genética , Linfangiogênese/fisiologia , Vasos Linfáticos/fisiopatologia , Linfedema/fisiopatologia
17.
EMBO J ; 43(5): 868-885, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351385

RESUMO

Lymphatic vessel development studies in mice and zebrafish models have demonstrated that lymphatic endothelial cells (LECs) predominantly differentiate from venous endothelial cells via the expression of the transcription factor Prox1. However, LECs can also be generated from undifferentiated mesoderm, suggesting potential diversity in their precursor cell origins depending on the organ or anatomical location. Despite these advances, recapitulating human lymphatic malformations in animal models has been difficult, and considering lymphatic vasculature function varies widely between species, analysis of development directly in humans is needed. Here, we examined early lymphatic development in humans by analyzing the histology of 31 embryos and three 9-week-old fetuses. We found that human embryonic cardinal veins, which converged to form initial lymph sacs, produce Prox1-expressing LECs. Furthermore, we describe the lymphatic vessel development in various organs and observe organ-specific differences. These characterizations of the early development of human lymphatic vessels should help to better understand the evolution and phylogenetic relationships of lymphatic systems, and their roles in human disease.


Assuntos
Estruturas Embrionárias , Células Endoteliais , Vasos Linfáticos , Sistema Porta/embriologia , Humanos , Animais , Camundongos , Filogenia , Peixe-Zebra , Fatores de Transcrição
18.
Immunity ; 50(6): 1467-1481.e6, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31201093

RESUMO

Tissue-resident macrophages are receptive to specific signals concentrated in cellular niches that direct their cell differentiation and maintenance genetic programs. Here, we found that deficiency of the cytokine RANKL in lymphoid tissue organizers and marginal reticular stromal cells of lymph nodes resulted in the loss of the CD169+ sinusoidal macrophages (SMs) comprising the subcapsular and the medullary subtypes. Subcapsular SM differentiation was impaired in mice with targeted RANK deficiency in SMs. Temporally controlled RANK removal in lymphatic endothelial cells (LECs) revealed that lymphatic RANK activation during embryogenesis and shortly after birth was required for the differentiation of both SM subtypes. Moreover, RANK expression by LECs was necessary for SM restoration after inflammation-induced cell loss. Thus, cooperation between mesenchymal cells and LECs shapes a niche environment that supports SM differentiation and reconstitution after inflammation.


Assuntos
Citocinas/metabolismo , Linfonodos/citologia , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Células Estromais/metabolismo , Animais , Biomarcadores , Diferenciação Celular , Microambiente Celular , Imunofenotipagem , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Transdução de Sinais
19.
Immunity ; 51(3): 561-572.e5, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31402260

RESUMO

Lymphatic vessels form a critical component in the regulation of human health and disease. While their functional significance is increasingly being recognized, the comprehensive heterogeneity of lymphatics remains uncharacterized. Here, we report the profiling of 33,000 lymphatic endothelial cells (LECs) in human lymph nodes (LNs) by single-cell RNA sequencing. Unbiased clustering revealed six major types of human LECs. LECs lining the subcapsular sinus (SCS) of LNs abundantly expressed neutrophil chemoattractants, whereas LECs lining the medullary sinus (MS) expressed a C-type lectin CD209. Binding of a carbohydrate Lewis X (CD15) to CD209 mediated neutrophil binding to the MS. The neutrophil-selective homing by MS LECs may retain neutrophils in the LN medulla and allow lymph-borne pathogens to clear, preventing their spread through LNs in humans. Our study provides a comprehensive characterization of LEC heterogeneity and unveils a previously undefined role for medullary LECs in human immunity.


Assuntos
Células Endoteliais/imunologia , Neutrófilos/imunologia , Animais , Moléculas de Adesão Celular/imunologia , Células Cultivadas , Humanos , Lectinas Tipo C/imunologia , Antígenos CD15/imunologia , Linfonodos/imunologia , Vasos Linfáticos/imunologia , Camundongos Endogâmicos C57BL , Receptores de Superfície Celular/imunologia , Inquéritos e Questionários
20.
Annu Rev Physiol ; 86: 71-97, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37863105

RESUMO

Mechanical forces influence different cell types in our bodies. Among the earliest forces experienced in mammals is blood movement in the vascular system. Blood flow starts at the embryonic stage and ceases when the heart stops. Blood flow exposes endothelial cells (ECs) that line all blood vessels to hemodynamic forces. ECs detect these mechanical forces (mechanosensing) through mechanosensors, thus triggering physiological responses such as changes in vascular diameter. In this review, we focus on endothelial mechanosensing and on how different ion channels, receptors, and membrane structures detect forces and mediate intricate mechanotransduction responses. We further highlight that these responses often reflect collaborative efforts involving several mechanosensors and mechanotransducers. We close with a consideration of current knowledge regarding the dysregulation of endothelial mechanosensing during disease. Because hemodynamic disruptions are hallmarks of cardiovascular disease, studying endothelial mechanosensing holds great promise for advancing our understanding of vascular physiology and pathophysiology.


Assuntos
Endotélio Vascular , Mecanotransdução Celular , Animais , Humanos , Endotélio Vascular/fisiologia , Mecanotransdução Celular/fisiologia , Células Endoteliais/metabolismo , Estresse Mecânico , Canais Iônicos/metabolismo , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA