RESUMO
In vitro blood-brain barrier (BBB) modeling with the use of the brain endothelial cells grown on a transwell membrane is widely used to investigate BBB disorders and factors intended to ameliorate these pathologies. Endothelial cells, due to tight junction proteins, ensure selective permeability for a number of substances. The low integrity (i.e., high permeability) of the BBB model, as compared to the physiological one, complicates evaluation of the effects caused by different agents. Thus, the selection of conditions to improve barrier integrity is an essential task. In this study, mouse brain endothelial cells bEnd.3 are used in experiments on transwell modeling. To determine which factors enhance BBB integrity, the effects of the cultivation medium, the number of cells during seeding, the state of the transwell membrane, and cultivation in the presence or in the absence of primary mouse neurons and matrigel as a matrix on the passage of a fluorescent label through the cell monolayer were assessed. The effect of fetal bovine serum on the tight junction protein claudin-5 was analyzed by immunocytochemistry. The obtained cultivation parameter data facilitate the solution to the problem of low integrity of the BBB transwell model and bring the model closer to the physiologically relevant indicators.
Assuntos
Barreira Hematoencefálica , Células Endoteliais , Animais , CamundongosRESUMO
BACKGROUND: In order to play different roles in vascular functions as a mechanosensor to blood flows and as a barrier to transvascular exchange, the endothelial surface glycocalyx (ESG) should have an organized structure. Due to the limitations of optical and electron microscopy, the ultra-structure of ESG has not been revealed until the recent development of super-resolution optical microscopy, STORM. OBJECTIVES: To investigate the ESG components and their organization on bEnd3 (mouse brain microvascular endothelial cells) monolayer. METHODS: ESG was immunolabeled with anti-heparan sulfate (HS), followed by an ATTO488 conjugated goat anti-mouse IgG, and with biotinylated hyaluronic acid (HA) binding protein, followed by an AF647 conjugated anti-biotin. The ESG was then imaged by the STORM. RESULTS: HA is a long molecule weaving into a network which covers the endothelial luminal surface. In contrast, HS is a shorter molecule, perpendicular to the cell surface. HA and HS are partially overlapped with each other at the endothelial luminal surface. We also quantified the length, diameter, orientation, and density of HS at the top, middle and bottom regions of the endothelial surface. CONCLUSIONS: Our results suggest that HS plays a major role in mechanosensing and HA plays a major role in the molecular sieve.
Assuntos
Células Endoteliais/ultraestrutura , Glicocálix/ultraestrutura , Animais , Encéfalo/ultraestrutura , Células Cultivadas , Camundongos , Microscopia/métodos , Imagem Óptica/métodos , Processos EstocásticosRESUMO
Glutathione (GSH) protects cells against oxidative stress by playing an antioxidant role. Protecting brain endothelial cells under oxidative stress is key to treating cerebrovascular diseases and neurodegenerative diseases including Alzheimer's disease and Huntington's disease. In present study, we investigated the protective effect of GSH on brain endothelial cells against hydrogen peroxide (H2O2). We showed that GSH attenuates H2O2-induced production of nitric oxide (NO), reactive oxygen species (ROS), and 8-Oxo-2'-deoxyguanosine (8-OHdG), an oxidized form of deoxiguanosine. GSH also prevents H2O2-induced reduction of tight junction proteins. Finally, GSH increases the level of nuclear factor erythroid 2-related factor 2 (Nrf2) and activates Nrf2-mediated signaling pathways. Thus, GSH is a promising target to protect brain endothelial cells in conditions of brain injury and disease.