Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Neurochem ; 153(3): 390-412, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31550048

RESUMO

Retinal hypoxia triggers abnormal vessel growth and microvascular hyper-permeability in ischemic retinopathies. Whereas vascular endothelial growth factor A (VEGF-A) inhibitors significantly hinder disease progression, their benefits to retinal neurons remain poorly understood. Similar to humans, oxygen-induced retinopathy (OIR) mice exhibit severe retinal microvascular malformations and profound neuronal dysfunction. OIR mice are thus a phenocopy of human retinopathy of prematurity, and a proxy for investigating advanced stages of proliferative diabetic retinopathy. Hence, the OIR model offers an excellent platform for assessing morpho-functional responses of the ischemic retina to anti-angiogenic therapies. Using this model, we investigated the retinal responses to VEGF-Trap (Aflibercept), an anti-angiogenic agent recognizing ligands of VEGF receptors 1 and 2 that possesses regulatory approval for the treatment of neovascular age-related macular degeneration, macular edema secondary to retinal vein occlusion and diabetic macular edema. Our results indicate that Aflibercept not only reduces the severity of retinal microvascular aberrations but also significantly improves neuroretinal function. Aflibercept administration significantly enhanced light-responsiveness, as revealed by electroretinographic examinations, and led to increased numbers of dopaminergic amacrine cells. Additionally, retinal transcriptional profiling revealed the concerted regulation of both angiogenic and neuronal targets, including transcripts encoding subunits of transmitter receptors relevant to amacrine cell function. Thus, Aflibercept represents a promising therapeutic alternative for the treatment of further progressive ischemic retinal neurovasculopathies beyond the set of disease conditions for which it has regulatory approval. Cover Image for this issue: doi: 10.1111/jnc.14743.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Rede Nervosa/efeitos dos fármacos , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Degeneração Retiniana/tratamento farmacológico , Vasos Retinianos/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Neurônios Dopaminérgicos/patologia , Feminino , Isquemia/tratamento farmacológico , Isquemia/patologia , Masculino , Camundongos , Microvasos/patologia , Rede Nervosa/patologia , Proteínas Recombinantes de Fusão/farmacologia , Degeneração Retiniana/patologia , Vasos Retinianos/patologia , Sistema Vasomotor/efeitos dos fármacos , Sistema Vasomotor/patologia
2.
Proc Natl Acad Sci U S A ; 110(21): E1943-52, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23625008

RESUMO

Nogo-A is an important axonal growth inhibitor in the adult and developing CNS. In vitro, Nogo-A has been shown to inhibit migration and cell spreading of neuronal and nonneuronal cell types. Here, we studied in vivo and in vitro effects of Nogo-A on vascular endothelial cells during angiogenesis of the early postnatal brain and retina in which Nogo-A is expressed by many types of neurons. Genetic ablation or virus-mediated knock down of Nogo-A or neutralization of Nogo-A with an antibody caused a marked increase in the blood vessel density in vivo. In culture, Nogo-A inhibited spreading, migration, and sprouting of primary brain microvascular endothelial cells (MVECs) in a dose-dependent manner and induced the retraction of MVEC lamellipodia and filopodia. Mechanistically, we show that only the Nogo-A-specific Delta 20 domain exerts inhibitory effects on MVECs, but the Nogo-66 fragment, an inhibitory domain common to Nogo-A, -B, and -C, does not. Furthermore, the action of Nogo-A Delta 20 on MVECs required the intracellular activation of the Ras homolog gene family, member A (Rho-A)-associated, coiled-coil containing protein kinase (ROCK)-Myosin II pathway. The inhibitory effects of early postnatal brain membranes or cultured neurons on MVECs were relieved significantly by anti-Nogo-A antibodies. These findings identify Nogo-A as an important negative regulator of developmental angiogenesis in the CNS. They may have important implications in CNS pathologies involving angiogenesis such as stroke, brain tumors, and retinopathies.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/crescimento & desenvolvimento , Células Endoteliais/metabolismo , Proteínas da Mielina/metabolismo , Neovascularização Fisiológica/fisiologia , Animais , Encéfalo/citologia , Células Cultivadas , Circulação Cerebrovascular/fisiologia , Células Endoteliais/citologia , Camundongos , Camundongos Knockout , Proteínas da Mielina/genética , Proteínas Nogo
3.
Ann Anat ; 209: 37-44, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27777113

RESUMO

Telocytes (TCs) are morphologically defined as small-sized cells with long, thin, moniliform processes called telopodes (Tps). Numerous papers imply that TCs are a distinctive cell type, and that transmission electron microscopy (TEM) is the gold standard tool for their identification. We aimed to reproduce previous studies on myocardial TCs to check their validity. For this purpose we performed an immunohistochemical study on human cardiac samples from six autopsied donor cadavers, using antibodies against CD10, CD31, CD34, CD146, Ki67, alpha-smooth muscle actin (α-SMA), Platelet-Derived Growth Factor Receptor-alpha (PDGFRα) and laminin. Additionally we performed a TEM study on cardiac samples from three human autopsied donor cadavers and five adult Sprague-Dawley rats. We found endothelial cells (ECs), cords, and filopodia-projecting endothelial tip cells (ETCs) that expressed CD10, CD31, CD34, CD146, and PDGFR-α. Often, endothelial cells closely neighbored the sarcolemmal basal laminae. Endothelial progenitor cells, as well as nascent capillaries, were CD31+/CD34+. Proliferative endothelial cells expressed Ki67. In larger vessels we found pericytes that expressed CD146 and α-SMA; scarce α-SMA-expressing spindle-shaped cells lining cardiomyocytes were suggestive of a pericytic role in angiogenic sprout guidance. The TEM study showed that endothelial tubes are almost exclusively found in the narrow myocardial interstitia. ECs that built them up appeared identical to the cells that previous TEM studies have suggested to be myocardial telocytes. A subset of stromal cells with TC-like phenotype and telopodes-like processes actually seem to configure blood vessels, and therefore belong to the endothelial lineage. This study shows that data presented in previous studies on myocardial telocytes is not enough to allow the reproducibility of the results. At least a subset of cells considered to be TCs might belong to the endothelial lineage.


Assuntos
Citocinas/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Telócitos/citologia , Telócitos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Cadáver , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie , Telócitos/classificação , Distribuição Tecidual
4.
Ann Anat ; 200: 24-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25723517

RESUMO

There have been few studies on human embryos describing a specific pattern of hindgut colonization by hematopoietic stem cells (HSCs) and interstitial Cajal cells (ICCs). We aimed to study CD34, CD45 and CD117/c-kit expression in late stage human embryos, to attain observational data that could be related to studies on the aorta-gonad-mesonephros (AGM)-derived HSCs, and data on hindgut ICCs. Antibodies were also applied to identify alpha-smooth muscle actin and neurofilaments. Six human embryos of 48-56 days were used. In the 48 day embryo, the hindgut was sporadically populated by c-kit+ ICCs, but, in all other embryos, a layer of myenteric ICCs had been established. Intraneural c-kit+ cells were found in pelvic nerves and vagal trunks, suggesting that the theory of Ramon y Cajal assuming that ICCs may be primitive neurons may not be so invalid. Also in the 48 day embryo, c-kit+/CD45+ perivascular cells were found along the pelvic neurovascular axes, suggesting that not only liver, but also other organs could be seeded with HSCs from the AGM region. CD45+ cells with dendritic morphologies were found in all hindgut layers, including the epithelium. This last evidence is suggestive of an AGM contribution to the tissue resident macrophages and could be related to processes of sprouting angiogenesis which, in turn, have been found to be guided by filopodia of endothelial tip cells. Further studies on human embryonic and fetal material should be performed to attempt to clarify whether the hindgut colonization with HSCs is a transitory or definitive process.


Assuntos
Células-Tronco Embrionárias/fisiologia , Feto/fisiologia , Trato Gastrointestinal/citologia , Células-Tronco Hematopoéticas/fisiologia , Células Intersticiais de Cajal/fisiologia , Actinas/metabolismo , Adulto , Células Dendríticas/fisiologia , Feminino , Feto/citologia , Trato Gastrointestinal/embriologia , Trato Gastrointestinal/fisiologia , Humanos , Antígenos Comuns de Leucócito/metabolismo , Plexo Mientérico/citologia , Plexo Mientérico/embriologia , Neovascularização Fisiológica/fisiologia , Gravidez , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA