Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 56(9): 2070-2085.e11, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37557168

RESUMO

Lymph nodes (LNs) are critical sites for shaping tissue-specific adaptive immunity. However, the impact of LN sharing between multiple organs on such tailoring is less understood. Here, we describe the drainage hierarchy of the pancreas, liver, and the upper small intestine (duodenum) into three murine LNs. Migratory dendritic cells (migDCs), key in instructing adaptive immune outcome, exhibited stronger pro-inflammatory signatures when originating from the pancreas or liver than from the duodenum. Qualitatively different migDC mixing in each shared LN influenced pancreatic ß-cell-reactive T cells to acquire gut-homing and tolerogenic phenotypes proportional to duodenal co-drainage. However, duodenal viral infections rendered non-intestinal migDCs and ß-cell-reactive T cells more pro-inflammatory in all shared LNs, resulting in elevated pancreatic islet lymphocyte infiltration. Our study uncovers immune crosstalk through LN co-drainage as a powerful force regulating pancreatic autoimmunity.


Assuntos
Autoimunidade , Pâncreas , Camundongos , Animais , Pâncreas/patologia , Fígado , Linfócitos T , Linfonodos
2.
Immunity ; 55(5): 800-818, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545029

RESUMO

Pathogenic enteric viruses are a major cause of morbidity and mortality, particularly among children in developing countries. The host response to enteric viruses occurs primarily within the mucosa, where the intestinal immune system must balance protection against pathogens with tissue protection and tolerance to harmless commensal bacteria and food. Here, we summarize current knowledge in natural immunity to enteric viruses, highlighting specialized features of the intestinal immune system. We further discuss how knowledge of intestinal anti-viral mechanisms can be translated into vaccine development with particular focus on immunization in the oral route. Research reveals that the intestine is a complex interface between enteric viruses and the host where environmental factors influence susceptibility and immunity to infection, while viral infections can have lasting implications for host health. A deeper mechanistic understanding of enteric anti-viral immunity with this broader context can ultimately lead to better vaccines for existing and emerging viruses.


Assuntos
Infecções por Enterovirus , Vacinas , Vírus , Antígenos Virais , Criança , Humanos , Imunidade Inata , Mucosa Intestinal , Intestinos
3.
Immunol Rev ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340232

RESUMO

Enteric viruses are the main cause of acute gastroenteritis worldwide with a significant morbidity and mortality, especially among children and aged adults. Some enteric viruses also cause disseminated infections and severe neurological manifestations such as poliomyelitis. Protective immunity against these viruses is not well understood in humans, with most knowledge coming from animal models, although the development of poliovirus and rotavirus vaccines has extended our knowledge. In a classical view, innate immunity involves the recognition of foreign DNA or RNA by pathogen recognition receptors leading to the production of interferons and other inflammatory cytokines. Antigen uptake and presentation to T cells and B cells then activate adaptive immunity and, in the case of the mucosal immunity, induce the secretion of dimeric IgA, the more potent immunoglobulins in viral neutralization. The study of Inborn errors of immunity (IEIs) offers a natural opportunity to study nonredundant immunity toward pathogens. In the case of enteric viruses, patients with a defective production of antibodies are at risk of developing neurological complications. Moreover, a recent description of patients with low or absent antibody production with protracted enteric viral infections associated with hepatitis reinforces the prominent role of B cells and immunoglobulins in the control of enteric virus.

4.
Trends Immunol ; 44(10): 745-747, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37591713

RESUMO

Celiac disease (CeD) is an immune disorder characterized by gluten intolerance that can be unleashed by enteric viral infections in mice. However, Sanchez-Medina et al. recently identified a murine commensal protist, Tritrichomonas arnold, that protects against reovirus-induced intolerance to dietary protein by counteracting virus-induced epithelial stress and proinflammatory dendritic cell (DC) activation.


Assuntos
Doença Celíaca , Viroses , Animais , Camundongos , Doença Celíaca/metabolismo , Tolerância Imunológica
5.
J Virol ; 97(10): e0096223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37787534

RESUMO

IMPORTANCE: Rotavirus is a leading cause of severe diarrhea in young children. Like other fecal-oral pathogens, rotaviruses encounter abundant, constitutively expressed defensins in the small intestine. These peptides are a vital part of the vertebrate innate immune system. By investigating the impact that defensins from multiple species have on the infectivity of different strains of rotavirus, we show that some rotaviral infections can be inhibited by defensins. We also found that rotaviruses may have evolved resistance to defensins in the intestine of their host species, and some even appropriate defensins to increase their infectivity. Because rotaviruses infect a broad range of animals and rotaviral infections are highly prevalent in children, identifying immune defenses against infection and how they vary across species and among viral genotypes is important for our understanding of the evolution, transmission, and zoonotic potential of these viruses as well as the improvement of vaccines.

6.
J Virol ; 97(4): e0038323, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37039654

RESUMO

Human sapoviruses (HuSaVs), like human noroviruses (HuNoV), belong to the Caliciviridae family and cause acute gastroenteritis in humans. Since their discovery in 1976, numerous attempts to grow HuSaVs in vitro were unsuccessful until 2020, when these viruses were reported to replicate in a duodenal cancer cell-derived line. Physiological cellular models allowing viral replication are essential to investigate HuSaV biology and replication mechanisms such as genetic susceptibility, restriction factors, and immune responses to infection. In this study, we demonstrate replication of two HuSaV strains in human intestinal enteroids (HIEs) known to support the replication of HuNoV and other human enteric viruses. HuSaVs replicated in differentiated HIEs originating from jejunum, duodenum and ileum, but not from the colon, and bile acids were required. Between 2h and 3 to 6 days postinfection, viral RNA levels increased up from 0.5 to 1.8 log10-fold. Importantly, HuSaVs were able to replicate in HIEs independent of their secretor status and histo-blood group antigen expression. The HIE model supports HuSaV replication and allows a better understanding of host-pathogen mechanisms such as cellular tropism and mechanisms of viral replication. IMPORTANCE Human sapoviruses (HuSaVs) are a frequent but overlooked cause of acute gastroenteritis, especially in children. Little is known about this pathogen, whose successful in vitro cultivation was reported only recently, in a cancer cell-derived line. Here, we assessed the replication of HuSaV in human intestinal enteroids (HIEs), which are nontransformed cultures originally derived from human intestinal stem cells that can be grown in vitro and are known to allow the replication of other enteric viruses. Successful infection of HIEs with two strains belonging to different genotypes of the virus allowed discovery that the tropism of these HuSaVs is restricted to the small intestine, does not occur in the colon, and replication requires bile acid but is independent of the expression of histo-blood group antigens. Thus, HIEs represent a physiologically relevant model to further investigate HuSaV biology and a suitable platform for the future development of vaccines and antivirals.


Assuntos
Infecções por Caliciviridae , Técnicas de Cultura , Sapovirus , Replicação Viral , Humanos , Ácidos e Sais Biliares/farmacologia , Infecções por Caliciviridae/virologia , Gastroenterite/virologia , Intestino Delgado/virologia , Sapovirus/crescimento & desenvolvimento , Sapovirus/imunologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia , Técnicas de Cultura/métodos , Interações entre Hospedeiro e Microrganismos , Meios de Cultura/química , Linhagem Celular Tumoral , Diferenciação Celular
7.
Appl Environ Microbiol ; 90(2): e0155323, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38259079

RESUMO

Anti-viral surface coatings are under development to prevent viral fomite transmission from high-traffic touch surfaces in public spaces. Copper's anti-viral properties have been widely documented, but the anti-viral mechanism of copper surfaces is not fully understood. We screened a series of metal and metal oxide surfaces for anti-viral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19). Copper and copper oxide surfaces exhibited superior anti-SARS-CoV-2 activity; however, the level of anti-viral activity was dependent on the composition of the carrier solution used to deliver virus inoculum. We demonstrate that copper ions released into solution from test surfaces can mediate virus inactivation, indicating a copper ion dissolution-dependent anti-viral mechanism. The level of anti-viral activity is, however, not dependent on the amount of copper ions released into solution per se. Instead, our findings suggest that degree of virus inactivation is dependent on copper ion complexation with other biomolecules (e.g., proteins/metabolites) in the virus carrier solution that compete with viral components. Although using tissue culture-derived virus inoculum is experimentally convenient to evaluate the anti-viral activity of copper-derived test surfaces, we propose that the high organic content of tissue culture medium reduces the availability of "uncomplexed" copper ions to interact with the virus, negatively affecting virus inactivation and hence surface anti-viral performance. We propose that laboratory anti-viral surface testing should include virus delivered in a physiologically relevant carrier solution (saliva or nasal secretions when testing respiratory viruses) to accurately predict real-life surface anti-viral performance when deployed in public spaces.IMPORTANCEThe purpose of evaluating the anti-viral activity of test surfaces in the laboratory is to identify surfaces that will perform efficiently in preventing fomite transmission when deployed on high-traffic touch surfaces in public spaces. The conventional method in laboratory testing is to use tissue culture-derived virus inoculum; however, this study demonstrates that anti-viral performance of test copper-containing surfaces is dependent on the composition of the carrier solution in which the virus inoculum is delivered to test surfaces. Therefore, we recommend that laboratory surface testing should include virus delivered in a physiologically relevant carrier solution to accurately predict real-life test surface performance in public spaces. Understanding the mechanism of virus inactivation is key to future rational design of improved anti-viral surfaces. Here, we demonstrate that release of copper ions from copper surfaces into small liquid droplets containing SARS-CoV-2 is a mechanism by which the virus that causes COVID-19 can be inactivated.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cobre/farmacologia , Antivirais , Óxidos , Íons
8.
Eur J Clin Microbiol Infect Dis ; 43(3): 435-443, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38147237

RESUMO

PURPOSE: The aim of the study was to determine and evaluate the clinical usefulness of pathogen specific semi-quantitative cut-offs in stool samples with multiple pathogen detections. METHODS: The PCR (Seegene Allplex Gastrointestinal Virus Assay) data from 4527 positive samples received over 16 months were retrospectively analyzed to investigate the distribution of the Ct values of each individual viral pathogen. By using interquartile ranges for each viral pathogen, pathogen specific semi-quantitative cut-offs were determined. RESULTS: After a thorough analysis of the Ct values, a well-founded decision to exclude all results with a Ct value higher than 35 was made. This approach made it possible to generate a more nuanced report and to facilitate clinical interpretation in case of mixed infections by linking a lower Ct value of a pathogen to a greater likelihood of being a relevant causative pathogen. Moreover, not reporting viral pathogens with a Ct value higher than 35 led to a significant reduction (p < 0.0001) of reported mixed infections compared to oversimplified qualitative or qualitative reporting. CONCLUSION: By omitting very high Ct values and reporting semi-quantitatively, value was added to the syndromic reports, leading to an easier to read lab report, especially in mixed infections.


Assuntos
Coinfecção , Doenças Transmissíveis , Gastroenteropatias , Vírus , Humanos , Estudos Retrospectivos , Sensibilidade e Especificidade , Gastroenteropatias/diagnóstico , Gastroenteropatias/microbiologia , Vírus/genética , Reação em Cadeia da Polimerase Multiplex/métodos
9.
Epidemiol Infect ; 152: e31, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329110

RESUMO

Wastewater-based epidemiology (WBE) has proven to be a powerful tool for the population-level monitoring of pathogens, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For assessment, several wastewater sampling regimes and methods of viral concentration have been investigated, mainly targeting SARS-CoV-2. However, the use of passive samplers in near-source environments for a range of viruses in wastewater is still under-investigated. To address this, near-source passive samples were taken at four locations targeting student hall of residence. These were chosen as an exemplar due to their high population density and perceived risk of disease transmission. Viruses investigated were SARS-CoV-2 and its variants of concern (VOCs), influenza viruses, and enteroviruses. Sampling was conducted either in the morning, where passive samplers were in place overnight (17 h) and during the day, with exposure of 7 h. We demonstrated the usefulness of near-source passive sampling for the detection of VOCs using quantitative polymerase chain reaction (qPCR) and next-generation sequencing (NGS). Furthermore, several outbreaks of influenza A and sporadic outbreaks of enteroviruses (some associated with enterovirus D68 and coxsackieviruses) were identified among the resident student population, providing evidence of the usefulness of near-source, in-sewer sampling for monitoring the health of high population density communities.


Assuntos
Infecções por Enterovirus , Águas Residuárias , Humanos , Universidades , Surtos de Doenças , Antígenos Virais , SARS-CoV-2 , RNA Viral
10.
Avian Pathol ; : 1-12, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39114873

RESUMO

RESEARCH HIGHLIGHTS: Detection timepoints and patterns indicate horizontal introduction of various enteric viruses.Flock infection profiles were very heterogeneous; no dominating virus profile.Broiler production was negatively affected by the number of enteric viruses detected.Common biosecurity measures had a significant negative effect on virus prevalence.

11.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38627246

RESUMO

AIMS: The present study aimed to use a conventional and metagenomic approach to investigate the microbiological diversity of water bodies in a network of drainage channels and rivers located in the central area of the city of Belém, northern Brazil, which is considered one of the largest cities in the Brazilian Amazon. METHODS AND RESULTS: In eight of the analyzed points, both bacterial and viral microbiological indicators of environmental contamination-physical-chemical and metals-were assessed. The bacterial resistance genes, drug resistance mechanisms, and viral viability in the environment were also assessed. A total of 473 families of bacteria and 83 families of viruses were identified. Based on the analysis of metals, the levels of three metals (Cd, Fe, and Mn) were found to be above the recommended acceptable level by local legislation. The levels of the following three physicochemical parameters were also higher than recommended: biochemical oxygen demand, dissolved oxygen, and turbidity. Sixty-three bacterial resistance genes that conferred resistance to 13 different classes of antimicrobials were identified. Further, five mechanisms of antimicrobial resistance were identified and viral viability in the environment was confirmed. CONCLUSIONS: Intense human actions combined with a lack of public policies and poor environmental education of the population cause environmental degradation, especially in water bodies. Thus, urgent interventions are warranted to restore the quality of this precious and scarce asset worldwide.


Assuntos
Bactérias , Metagenômica , Microbiologia da Água , Brasil , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/efeitos dos fármacos , Saúde Ambiental , Rios/microbiologia , Rios/virologia , Vírus/genética , Vírus/isolamento & purificação , Monitoramento Ambiental , Farmacorresistência Bacteriana/genética , Humanos , Cidades , Metais/farmacologia
12.
BMC Vet Res ; 20(1): 33, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291450

RESUMO

BACKGROUND: Enteric viruses are among the most prominent etiological agents of Runting-Stunting Syndrome (RSS). The Avian Nephritis Virus (ANV) is an astrovirus associated with enteric diseases in poultry, whose early diagnosis is essential for maintaining a good poultry breeding environment. ANV is an RNA virus that rapidly mutates, except for some conserved regions such as ORF1b. Therefore, the approach of a diagnostic method based on fast-RT-qPCR using SYBR® Green that focuses on the amplification of a fragment of ORF1b is presented as a feasible alternative for the diagnosis of this viral agent. In this study, the proposed assay showed a standard curve with an efficiency of 103.8% and a LoD and LoQ of 1 gene viral copies. The assay was specific to amplify the ORF 1b gene, and no amplification was shown from other viral genomes or in the negative controls. 200 enteric (feces) samples from chickens (broilers) and laying hens with signs of RSS from Ecuadorian poultry flocks were examined to validate the proposed method. RESULTS: Using our method, 164 positive results were obtained out of the total number of samples run, while the presence of viral RNA was detected in samples collected from one day to 44 weeks old in both avian lines. CONCLUSIONS: Our study presents a novel, rapid, robust, and sensitive molecular assay capable of detecting and quantifying even low copy numbers of the ANV in commercial birds, therefore introducing a handy tool in the early diagnosis of ANV in enteric disease outbreaks in poultry.


Assuntos
Infecções por Astroviridae , Avastrovirus , Doenças das Aves Domésticas , Vírus de RNA , Animais , Feminino , Galinhas , Avastrovirus/genética , Infecções por Astroviridae/diagnóstico , Infecções por Astroviridae/veterinária , RNA Viral/genética , RNA Viral/análise , Aves Domésticas , Vírus de RNA/genética
13.
J Infect Dis ; 228(7): 851-856, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37014728

RESUMO

BACKGROUND: Rotavirus vaccines have reduced effectiveness in high-mortality settings. Interference between enteric viruses and live-attenuated oral vaccine strains may be a factor. METHODS: In a birth cohort of healthy Australian infants, parents collected weekly stool samples. Three hundred eighty-one paired swabs collected within 10-days of RotaTeq vaccination from 140 infants were tested for 10 enteric viruses and RotaTeq strains. RESULTS: Collectively, both ribonucleic acid and deoxyribonucleic acid viruses were negatively associated with RotaTeq shedding (adjusted odds ratio = 0.29, 95% confidence interval = 0.14-0.58 and adjusted odds ratio = 0.30, 95% confidence interval = 0.11-0.78, respectively). CONCLUSIONS: Enteric viruses may interfere with RotaTeq replication in the gut and thus RotaTeq stool shedding.


Assuntos
Infecções por Enterovirus , Gastroenterite , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Lactente , Humanos , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/prevenção & controle , Coorte de Nascimento , Austrália/epidemiologia , Vacinas Atenuadas , Antígenos Virais
14.
J Virol ; 96(7): e0205321, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35285683

RESUMO

Fecal-oral pathogens encounter constitutively expressed enteric alpha-defensins in the intestine during replication and transmission. Alpha-defensins can be potently antiviral and antibacterial; however, their primary sequences, the number of isoforms, and their activity against specific microorganisms often vary greatly between species, reflecting adaptation to species-specific pathogens. Therefore, alpha-defensins might influence not only microbial evolution and tissue tropism within a host but also species tropism and zoonotic potential. To investigate these concepts, we generated a panel of enteric and myeloid alpha-defensins from humans, rhesus macaques, and mice and tested their activity against group A rotaviruses, an important enteric viral pathogen of humans and animals. Rotaviral adaptation to the rhesus macaque correlated with resistance to rhesus enteric, but not myeloid, alpha-defensins and sensitivity to human alpha-defensins. While mouse rotaviral infection was increased in the presence of mouse enteric alpha-defensins, two prominent genotypes of human rotaviruses were differentially sensitive to human enteric alpha-defensins. Furthermore, the effects of cross-species alpha-defensins on human and mouse rotaviruses did not follow an obvious pattern. Thus, exposure to alpha-defensins may have shaped the evolution of some, but not all, rotaviruses. We then used a genetic approach to identify the viral attachment and penetration protein, VP4, as a determinant of alpha-defensin sensitivity. Our results provide a foundation for future studies of the VP4-dependent mechanism of defensin neutralization, highlight the species-specific activities of alpha-defensins, and focus future efforts on a broader range of rotaviruses that differ in VP4 to uncover the potential for enteric alpha-defensins to influence species tropism. IMPORTANCE Rotavirus is a leading cause of severe diarrhea in young children. Like other fecal-oral pathogens, rotaviruses encounter abundant, constitutively expressed defensins in the small intestine. These peptides are a vital part of the vertebrate innate immune system. By investigating the impact that defensins from multiple species have on the infectivity of different strains of rotavirus, we show that some rotaviral infections can be inhibited by defensins. We also found that some, but not all, rotaviruses may have evolved resistance to defensins in the intestine of their host species, and some even appropriate defensins to increase their infectivity. Because rotaviruses infect a broad range of animals and rotaviral infections are highly prevalent in children, identifying immune defenses against infection and how they vary across species and among viral genotypes is important for our understanding of the evolution, transmission, and zoonotic potential of these viruses as well as the improvement of vaccines.


Assuntos
Infecções por Rotavirus , Rotavirus , alfa-Defensinas , Animais , Humanos , Intestino Delgado/imunologia , Intestino Delgado/virologia , Macaca mulatta , Camundongos , Rotavirus/efeitos dos fármacos , Rotavirus/genética , Infecções por Rotavirus/fisiopatologia , Infecções por Rotavirus/virologia , Proteínas Estruturais Virais/metabolismo , alfa-Defensinas/genética , alfa-Defensinas/metabolismo , alfa-Defensinas/farmacologia
15.
J Virol ; 96(8): e0033122, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35380459

RESUMO

The reovirus attachment protein σ1 mediates cell attachment and receptor binding and is thought to undergo conformational changes during viral disassembly. σ1 is a trimeric filamentous protein with an α-helical coiled-coil tail, a triple-ß-spiral body, and a globular head. At the trimer interface, the head domain features an unusual and conserved aspartic acid cluster, which forms the only significant intratrimer interactions in the head and must be protonated to allow trimer formation. To define the role of pH on σ1 stability and conformation, we tested its domains over a wide range of pH values. We show that all domains of σ1 are remarkably thermostable, even at the low pH of the stomach. We determined the optimal pH for stability to be between pHs 5 and 6, a value close to the pH of the endosome and of the jejunum. The σ1 head is stable at acidic and neutral pH but detrimerizes at basic pH. When Asp345 in the aspartic acid cluster is mutated to asparagine (D345N), the σ1 head loses stability at low pH and is more prone to detrimerize. Although the D345N mutation does not affect σ1 binding affinity for the JAM-A receptor, the overall binding stoichiometry is reduced by one-third. The additional replacement of the neighboring His349 with alanine disrupts inner trimer surface interactions, leading to a less thermostable and monomeric σ1 D345N head that fails to bind the JAM-A receptor. When the body is expressed together with the head domain, the thermostability is restored and the stoichiometry of the binding to JAM-A receptor is preserved. Our results confirm a fundamental role of the aspartic acid cluster as a pH-dependent molecular switch controlling trimerization and enhancing thermostability of σ1, which represent essential requirements to accomplish reovirus infection and entry and might be common mechanisms among other enteric viruses. IMPORTANCE Enteric viruses withstand the highly acidic environment of the stomach during transmission, and many of them use low pH as a trigger for conformational changes associated with entry. For many nonenveloped viruses, the structural basis of these effects is not clear. We have investigated the stability of the reovirus attachment protein σ1 over a range of pHs and find it to be remarkably thermostable, especially at low pH. We identify a role for the aspartic acid cluster in maintaining σ1 thermostability, trimeric organization, and binding to JAM-A receptor especially at the gastric pH reovirus has to withstand while passing the stomach. The understanding of monomer-trimer dynamics within σ1 enhances our knowledge of reovirus entry and has implications for stability and transmission of other enteric viruses.


Assuntos
Ácido Aspártico , Reoviridae , Proteínas não Estruturais Virais , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Polímeros/química , Estabilidade Proteica , Reoviridae/genética , Reoviridae/metabolismo , Infecções por Reoviridae/virologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
16.
Environ Res ; 216(Pt 3): 114762, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356670

RESUMO

Climate change is altering the habits of the population. Extensive drought periods and overuse of potable water led to significant water shortages in many different places. Therefore, new water sources are necessary for usage in applications where the microbiological and chemical water quality demands are less stringent, as for agriculture. In this study, we planted, germinated, and grew vegetables/fruits (cherry tomato, lettuce, and carrot) using three types of potential waters for irrigation: secondary-treated wastewater, chlorine-treated wastewater, and green wall-treated greywater, to observe potential health risks of foodstuff consumption. In this study the waters and crops were analyzed for three taxonomic groups: bacteria, enteric viruses, and protozoa. Enteric viruses, human Norovirus I (hNoVGI) and Enterovirus (EntV), were detected in tomato and carrots irrigated with secondary-treated and chlorine-treated wastewater, in concentrations as high as 2.63 log genome units (GU)/g. On the other hand, Aichi viruses were detected in lettuce. Bacteria and protozoa remained undetected in all fresh produce although being detected in both types of wastewaters. Fresh produce irrigated with green wall-treated greywater were free from the chosen pathogens. This suggests that green wall-treated greywater may be a valuable option for crop irrigation, directly impacting the cities of the future vision, and the circular and green economy concepts. On the other hand, this work demonstrates that further advancement is still necessary to improve reclaimed water to the point where it no longer constitutes risk of foodborne diseases and to human health.


Assuntos
Daucus carota , Solanum lycopersicum , Humanos , Águas Residuárias , Cloro , Agricultura , Lactuca , Produtos Agrícolas , Irrigação Agrícola
17.
J Virol ; 95(22): e0142421, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34431699

RESUMO

Enteric viruses infect the mammalian gastrointestinal tract and lead to significant morbidity and mortality worldwide. Data indicate that enteric viruses can utilize intestinal bacteria to promote viral replication and pathogenesis. However, the precise interactions between enteric viruses and bacteria are unknown. Here, we examined the interaction between bacteria and coxsackievirus B3, an enteric virus from the picornavirus family. We found that bacteria enhance the infectivity of coxsackievirus B3 (CVB3) in vitro. Notably, specific bacteria are required, as Gram-negative Salmonella enterica, but not Escherichia coli, enhanced CVB3 infectivity and stability. Investigating the cell wall components of both S. enterica and E. coli revealed that structures in the O-antigen or core of lipopolysaccharide, a major component of the Gram-negative bacterial cell wall, were required for S. enterica to enhance CVB3. To determine if these requirements were necessary for similar enteric viruses, we investigated if S. enterica and E. coli enhanced infectivity of poliovirus, another enteric virus in the picornavirus family. We found that while E. coli did not enhance the infectivity of CVB3, E. coli enhanced poliovirus infectivity. Overall, these data indicate that distinct bacteria enhance CVB3 infectivity and stability, and specific enteric viruses may have differing requirements for their interactions with specific bacterial species. IMPORTANCE Previous data indicate that several enteric viruses utilize bacteria to promote intestinal infection and viral stability. Here, we show that specific bacteria and bacterial cell wall components are required to enhance infectivity and stability of coxsackievirus B3 in vitro. These requirements are likely enteric virus specific, as the bacteria for CVB3 differ from poliovirus, a closely related virus. Therefore, these data indicate that specific bacteria and their cell wall components dictate the interaction with various enteric viruses in distinct mechanisms.


Assuntos
Infecções por Coxsackievirus , Enterovirus Humano B/fisiologia , Infecções por Escherichia coli , Escherichia coli/fisiologia , Infecções por Salmonella , Salmonella enterica/fisiologia , Animais , Coinfecção , Infecções por Coxsackievirus/microbiologia , Infecções por Coxsackievirus/virologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/virologia , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Salmonella/microbiologia , Infecções por Salmonella/virologia , Replicação Viral
18.
J Med Virol ; 94(8): 3840-3846, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35441419

RESUMO

Viral diarrhea is one of the leading causes of morbidity and mortality in children. This study was conducted to disclose the etiological cause and epidemiological features of viral diarrhea among children in China. From 2009 to 2021, active surveillance was performed on pediatric patients with acute diarrhea and tested for five enteric viruses. Positive detection was determined in 65.56% (3325/5072) patients and an age-specific infection pattern was observed. A significantly higher positive rate was observed in 12-23-month-old children for rotavirus (47.46%) and adenovirus (7.06%), while a significantly higher positive rate was observed for norovirus (37.62%) in 6-11-month-old patients, and for astrovirus (11.60%) and sapovirus (10.79%) in 24-47-month-old patients. A higher positive rate of rotavirus in girls and norovirus in boys was observed only among 6-11 months of patients. We also observed more norovirus among patients from rural areas in the 0-5- and 36-47-month groups and more rotavirus among those from rural areas in the 12-23-month group. Diarrhea severity was greater for rotavirus in the 6-23-month group and norovirus in the 6-11-month group. Coinfections were observed in 29.26% (973/3325) of positive patients, and were most frequently observed between rotavirus and others (89.31%). Our findings could help the prediction, prevention, and potential therapeutic approaches to viral diarrhea in children.


Assuntos
Infecções por Adenovirus Humanos , Infecções por Enterovirus , Norovirus , Rotavirus , Fatores Etários , Criança , Pré-Escolar , China/epidemiologia , Diarreia/epidemiologia , Fezes , Feminino , Humanos , Lactente , Masculino , Norovirus/genética , Estações do Ano
19.
J Med Virol ; 94(10): 4696-4703, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35641444

RESUMO

Nonpharmaceutical interventions (NPIs) taken to combat the coronavirus disease 2019 (COVID-19) pandemic have not only decreased the spread of severe acute respiratory syndrome coronavirus 2 but also have had an impact on the prevalence of other common viruses. This study aimed to investigate the long-term impact of NPIs on common respiratory and enteric viruses among children in Shanghai, China, as NPIs were relaxed after June 2020. The laboratory results and clinical data of outpatient children with acute respiratory tract infections (ARTI) and acute gastroenteritis (AGE) were analyzed and compared between the post-COVID-19 period (from June 2020 to January 2022) and pre-COVID-19 period (from June 2018 to January 2020). A total of 107 453 patients were enrolled from June 2018 to January 2022, including 43 190 patients with ARTI and 64 263 patients with AGE. The positive rates of most viruses decreased during the post-COVID-19 period, with the greatest decrease for influenza A (-0.94%), followed by adenoviruses (AdV) (-61.54%), rotaviruses (-48.17%), and influenza B (-40%). However, the positive rates of respiratory syncytial virus (RSV) and enteric AdV increased during the post-COVID-19 period as the NPIs were relaxed. Besides this, in the summer of 2021, an unexpected out-of-season resurgence of RSV activity was observed, and the resurgence was more prominent among children older than 5 years. The effectiveness of the current relaxed NPIs in control of common respiratory and enteric viruses was variable. Relaxation of NPIs might lead to the resurgence of common viruses.


Assuntos
COVID-19 , Infecções por Enterovirus , Influenza Humana , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Vírus , Antígenos Virais , COVID-19/epidemiologia , Criança , Pré-Escolar , China/epidemiologia , Infecções por Enterovirus/epidemiologia , Humanos , Influenza Humana/epidemiologia , Pacientes Ambulatoriais , Pandemias , Infecções Respiratórias/epidemiologia
20.
New Microbiol ; 45(2): 138-141, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35699563

RESUMO

A variety of enteric bacteria, viruses and protozoa are the leading causes of morbidity and mortality worldwide. To understand the evolution of gastroenteritis in Albania, in terms of distribution of aetiological pathogens, a one-year observational study was repeated in 2017, ten years after the first study performed in 2007. The data still show a clear circulation of viruses that cause gastroenteritis. Compared to the previous study in 2007, the data from the 2017 study showed the incidence of Norovirus and Adenovirus were significantly higher (p value <0.05), while Rotavirus was verified at a similar incidence rate.


Assuntos
Infecções por Enterovirus , Gastroenterite , Infecções por Rotavirus , Rotavirus , Vírus , Albânia/epidemiologia , Antígenos Virais , Fezes , Gastroenterite/epidemiologia , Humanos , Lactente , Rotavirus/genética , Infecções por Rotavirus/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA