Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232713

RESUMO

Deep eutectic solvents (DESs) can compensate for some of the major drawbacks of traditional organic solvents and ionic liquids and meet all requirements of green chemistry. However, the potential of their use as a medium for biocatalytic reactions has not been adequately studied. In this work we used the DES betaine-glycerol with a molar ratio of 1:2 as co-solvent for enzymatic template-guided polymerization/copolymerization of aniline (ANI) and 3-aminobenzoic acid (3ABA). The laccase from the basidial fungus Trametes hirsuta and air oxygen served as catalyst and oxidant, respectively. Sodium polystyrene sulfonate (PSS) was used as template. Interpolyelectrolyte complexes of homopolymers polyaniline (PANI) and poly(3-aminobenzoic acid) (P3ABA) and copolymer poly(aniline-co-3-aminobenzoic acid) (P(ANI-3ABA)) were prepared and their physico-chemical properties were studied by UV-Vis and FTIR spectroscopy and cyclic voltammetry. According to the results obtained by atomic force microscopy, PANI/PSS had a granular shape, P(ANI-3ABA)/PSS had a spherical shape and P3ABA/PSS had a spindle-like shape. The copolymer showed a greater antimicrobial activity against Escherichia coli and Staphylcocus aureus as compared with the homopolymers. The minimal inhibitory concentration of the P(ANI-3ABA)/PSS against the gram-positive bacterium S. aureus was 0.125 mg mL-1.


Assuntos
Anti-Infecciosos , Líquidos Iônicos , Compostos de Anilina/química , Betaína , Biocatálise , Solventes Eutéticos Profundos , Glicerol , Lacase/metabolismo , Oxidantes , Oxigênio , Polimerização , Polímeros/química , Solventes/química , Staphylococcus aureus/metabolismo , Trametes/metabolismo , meta-Aminobenzoatos
2.
Molecules ; 27(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744827

RESUMO

Naringenin is one of the flavonoids originating from citrus fruit. This polyphenol is mainly found in grapefruit, orange and lemon. The antioxidant and antimicrobial properties of flavonoids depend on their structure, including the polymeric form. The aim of this research was to achieve enzymatic polymerization of naringenin and to study the properties of poly(naringenin). The polymerization was performed by methods using two different enzymes, i.e., laccase and horseradish peroxidase (HRP). According to the literature data, naringenin had not been polymerized previously using the enzymatic polymerization method. Therefore, obtaining polymeric naringenin by reaction with enzymes is a scientific novelty. The research methodology included analysis of the structure of poly(naringenin) by NMR, GPC, FTIR and UV-Vis and its morphology by SEM, as well as analysis of its properties, i.e., thermal stability (DSC and TGA), antioxidant activity (ABTS, DPPH, FRAP and CUPRAC) and antimicrobial properties. Naringenin oligomers were obtained as a result of polymerization with two types of enzymes. The polymeric forms of naringenin were more resistant to thermo-oxidation; the final oxidation temperature To of naringenin catalyzed by laccase (poly(naringenin)-laccase) was 28.2 °C higher, and poly(naringenin)-HRP 23.6 °C higher than that of the basic flavonoid. Additionally, due to the higher molar mass and associated increase in OH groups in the structure, naringenin catalyzed by laccase (poly(naringenin)-laccase) showed better activity for scavenging ABTS+• radicals than naringenin catalyzed by HRP (poly(naringenin)-HRP) and naringenin. In addition, poly(naringenin)-laccase at a concentration of 5 mg/mL exhibited better microbial activity against E. coli than monomeric naringenin.


Assuntos
Citrus , Lacase , Antioxidantes/farmacologia , Citrus/metabolismo , Escherichia coli/metabolismo , Flavonoides/química , Peroxidase do Rábano Silvestre/metabolismo , Lacase/metabolismo , Oxirredução , Polímeros
3.
Small ; 17(45): e2102485, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34605169

RESUMO

The therapeutic potential of nanomaterials toward oxidative damage relevant diseases has attracted great attentions by offering promising advantages compared with conventional antioxidants. Although different kinds of nanoantioxidants have been well developed, the facile fabrication of robust and efficient nanoscavengers is still met with challenges like the use of toxic and high-cost subunits, the involvement of multistep synthetic process, and redundant purification work. Herein, a direct fabrication strategy toward polyphenol nanoparticles with tunable size, excellent biocompatibility, and reactive oxygen species (ROS) scavenging capacities from grape seed via an enzymatic polymerization method is reported. The resulting nanoparticles can efficiently prevent cell damage from ROS and exert promising in vivo antioxidant therapeutic effects on several oxidative stress-related diseases, including accelerating wound healing, inhibiting ulcerative colitis, and regulating the oxidative stress in dry eye disease. This study can stimulate the development of more kinds of low-cost, safe, and efficient biomass-based antioxidative nanomaterials via similar fabrication methodologies.


Assuntos
Nanopartículas , Vitis , Antioxidantes , Estresse Oxidativo , Espécies Reativas de Oxigênio
4.
Molecules ; 26(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067052

RESUMO

Trends in the dynamically developing application of biocatalysis for the synthesis and modification of polymers over the past 5 years are considered, with an emphasis on the production of biodegradable, biocompatible and functional polymeric materials oriented to medical applications. The possibilities of using enzymes not only as catalysts for polymerization but also for the preparation of monomers for polymerization or oligomers for block copolymerization are considered. Special attention is paid to the prospects and existing limitations of biocatalytic production of new synthetic biopolymers based on natural compounds and monomers from biomass, which can lead to a huge variety of functional biomaterials. The existing experience and perspectives for the integration of bio- and chemocatalysis in this area are discussed.


Assuntos
Biocatálise , Polímeros/síntese química , Enzimas/metabolismo , Polimerização , Polímeros/química , Engenharia de Proteínas , Publicações
5.
Molecules ; 26(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946828

RESUMO

In this study, we attempted to prepare an amylose-oligo[(R)-3-hydroxybutyrate] (ORHB) inclusion complex using a vine-twining polymerization approach. Our previous studies indicated that glucan phosphorylase (GP)-catalyzed enzymatic polymerization in the presence of appropriate hydrophobic guest polymers produces the corresponding amylose-polymer inclusion complexes, a process named vine-twining polymerization. When vine-twining polymerization was conducted in the presence of ORHB under general enzymatic polymerization conditions (45 °C), the enzymatically produced amylose did not undergo complexation with ORHB. However, using a maltotriose primer in the same polymerization system at 70 °C for 48 h to obtain water-soluble amylose, called single amylose, followed by cooling the system over 7 h to 45 °C, successfully induced the formation of the inclusion complex. Furthermore, enzymatic polymerization initiated from a longer primer under the same conditions induced the partial formation of the inclusion complex. The structures of the different products were analyzed by X-ray diffraction, 1H-NMR, and IR measurements. The mechanism of formation of the inclusion complexes discussed in the study is proposed based on the additional experimental results.

6.
Angew Chem Int Ed Engl ; 60(36): 19982-19987, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34173310

RESUMO

The in situ gelation of injectable precursors is desirable in the field of tissue regeneration, especially in the context of irregular defect filling. The current driving forces for fast gelation include the phase-transition of thermally sensitive copolymers, click chemical reactions with tissue components, and metal coordination effect. However, the rapid formation of tough hydrogels remains a challenge. Inspired by aerobic metabolism, we herein propose a tissue-fluid-triggered cascade enzymatic polymerization process catalyzed by glucose oxidase and ferrous glycinate for the ultrafast gelation of acryloylated chondroitin sulfates and acrylamides. The highly efficient production of carbon radicals and macromolecules contribute to rapid polymerization for soft tissue augmentation in bone defects. The copolymer hydrogel demonstrated the regeneration-promoting capacity of cartilage. As the first example of using artificial enzyme complexes for in situ polymerization, this work offers a biomimetic approach to the design of strength-adjustable hydrogels for bio-implanting and bio-printing applications.


Assuntos
Cartilagem/metabolismo , Glucose Oxidase/metabolismo , Hidrogéis/metabolismo , Líquido Sinovial/metabolismo , Agrecanas/genética , Agrecanas/metabolismo , Animais , Materiais Biomiméticos , Cartilagem/química , Colágeno/genética , Colágeno/metabolismo , Glucose Oxidase/química , Hidrogéis/química , Masculino , Polimerização , Ratos , Ratos Sprague-Dawley , Líquido Sinovial/química
7.
Small ; 16(35): e2001177, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32762022

RESUMO

Photoacoustic imaging-guided photothermal therapy in the second near-infrared (NIR-II) window shows promise for clinical deep-penetrating tumor phototheranostics. However, ideal photothermal agents in the NIR-II window are still rare. Here, the emeraldine salt of polyaniline (PANI-ES), especially synthesized by a one-pot enzymatic reaction on sodium bis(2-ethylhexyl) sulfosuccinate (AOT) vesicle surface (PANI-ES@AOT, λmax  ≈ 1000 nm), exhibits excellent dispersion in physiological environment and remarkable photothermal ability at pH 6.5 (photothermal conversion efficiency of 43.9%). As a consequence of the enhanced permeability and retention effect of tumors and the doping-induced photothermal effect of PANI-ES@AOT, this pH-sensitive NIR-II photothermal agent allows tumor acidity phototheranostics with minimized pseudosignal readout and subdued normal tissue damage. Moreover, the enhanced fluidity of vesicle membrane triggered by heating is beneficial for drug release and allows precise synergistic therapy for an improved therapeutic effect. This study highlights the potential of template-oriented (or interface-confined) enzymatic polymerization reactions for the construction of conjugated polymers with desired biomedical applications.


Assuntos
Técnicas Fotoacústicas , Fototerapia , Compostos de Anilina , Polímeros
8.
J Fluoresc ; 30(1): 157-174, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31970584

RESUMO

Enzymatic polymerization of 2,6-diaminopyridine (DAP) compound in the presence of HRP (Horse radish peroxidase) and H2O2 (hydrogen peroxide) with Poly(DAP-en) with the structures of two different types of polymers obtained by the oxidative polymerization of Poly(DAP-ox) using H2O2 in an aqueous basic environment was illuminated by 1H-NMR, 13C-NMR, FT-IR, UV-Vis spectral methods. GPC (gel permeation chromatography), TGA (thermal gravimetric analysis), DSC (differential scanning calorimetry), CV (cyclic voltammetry), fluorescence analysis and conductivity measurements to characterize the compounds and their electronic structure were examined. SEM analyzes were performed for the morphological properties of the compounds. As a result of the analysis, it was observed that the polymer obtained by enzymatic polymerization was better than the polymer obtained by oxidative method. It was observed that the results of the fluorescence measurements were better than Poly(DAP-en) in Poly(DAP-ox) emitting blue and green light. According to TGA analysis, the first decay temperatures for Poly (DAP-en) and Poly (DAP-ox) were calculated as 342 °C and 181 °C, respectively. The higher value of glass transition temperature for poly (DAP-en) confirms that the average molar mass is higher than 8650 Da for Poly (DAP-en) according to GPC analysis.


Assuntos
Peroxidase do Rábano Silvestre/metabolismo , Piridinas , Condutividade Elétrica , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Estrutura Molecular , Oxirredução , Polimerização , Polímeros/química , Polímeros/metabolismo , Piridinas/análise , Piridinas/síntese química , Piridinas/metabolismo , Solubilidade , Espectrometria de Fluorescência , Temperatura
9.
Anal Bioanal Chem ; 411(17): 3811-3818, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31104084

RESUMO

We propose a new fluorometric method for alkaline phosphatase (ALP) determination. This method is based on the regulation of enzymatically generated poly(thymine) for the preparation of copper nanoparticles (CuNPs). 2'-Deoxythymidine 5'-triphosphate (dTTP) serves as the source for polymerization mediated by terminal deoxynucleotidyl transferase (TdT). This process generates poly(thymine), which acts as the template for synthesis of fluorescent CuNPs. However, if ALP catalyzes the hydrolysis of dTTP, the TdT-mediated polymerization will be disabled. This prevents the formation of CuNPs and causes a drop in fluorescence. The findings were used to design a sensitive and selective fluorometric method for ALP determination. A linear response in the activity range from 0.1 to 20 U L-1 and a limit of quantification of 0.3 U L-1 were obtained. The results indicate that the proposed method can be successfully applied to ALP assay in spiked diluted serum. This demonstrates the method's reliability and practicability. Graphical abstract A fluoromoetric method for alkaline phosphatase assay has been developed based on regulation of enzymatically generated poly(thymine) as template for the formation of fluorescent CuNPs.


Assuntos
Fosfatase Alcalina/sangue , Biopolímeros/química , Cobre/química , Nanopartículas Metálicas/química , Timina/química , Catálise , Eletroforese em Gel de Ágar , Estudos de Viabilidade , Fluorescência , Hidrólise , Limite de Detecção , Reprodutibilidade dos Testes
10.
Macromol Rapid Commun ; 40(16): e1900144, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31162765

RESUMO

Herein, the synthesis of amylose-coated, temperature-responsive poly(N-vinylcaprolactam) (VCL)-based copolymer microgels by enzyme-catalyzed grafting-from polymerization with phosphorylase b from rabbit muscle is reported. The phosphorylase is able to recognize the oligosaccharide maltoheptaose as primer and attach glucose units from the monomer glucose-1-phosphate to it, thereby forming amylose chains while releasing inorganic phosphate. Therefore, to enable the phosphorylase-catalyzed grafting-from polymerization of glucose-1-phosphate from the PVCL-based microgels, the maltoheptaose primer is covalently attached to the microgel in the first synthesis step. This is realized by adding N-(2-aminoethyl)methacrylamide (AEMAA) as a comonomer to the PVCL microgel to integrate primary amino groups and subsequent coupling of maltoheptaonolactone. Both the PVCL/AEMAA microgel as well as the obtained microgel-maltoheptaose construct are characterized in detail by dynamic light scattering, electrophoretic mobility measurements, IR spectroscopy, and atomic force microscopy. From the microgel-maltoheptaose construct, the grafting-from polymerization of glucose-1-phosphate is performed by the addition of phosphorylase b. Atomic force microscopy images clearly demonstrate the formation of an amylose shell around the microgels. The developed amylose-coated microgels open up promising application possibilities, for example, as colloidal scavengers, since amylose helices can serve as host molecules for inclusion of hydrophobic guest molecules.


Assuntos
Amilose/metabolismo , Caprolactama/análogos & derivados , Microgéis/química , Fosforilases/metabolismo , Polímeros/síntese química , Amilose/química , Biocatálise , Caprolactama/síntese química , Caprolactama/química , Estrutura Molecular , Polimerização , Polímeros/química
11.
Mikrochim Acta ; 186(3): 199, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796615

RESUMO

A fluorescence enhancement method is presented for the determination of ochratoxin A (OTA). The interaction of OTA with its aptamer causes structural changes which, in turn, change fluorescence of enzymatically generated polythymine-coated copper nanoparticles (CuNPs) (with excitation/emission maxima at 340/625 nm). The OTA-binding aptamer was immobilized on magnetic beads. When it binds OTA, it is partially released and exposes a region with a partly complimentary DNA strand (cDNA). After magnetic separation, the cDNA was employed as a primer to trigger the terminal deoxynucleotidyl transferase-mediated polymerization. This process generates polythymine which act as a template for synthesis of the CuNPs. The method is sensitive in having a 2.0 nM detection limit for OTA. It was successfully applied to the determination of OTA in spiked diluted red wine. Graphical abstract Schematic presentation of a fluorometric enhancement method for ochratoxin A assay based on ochratoxin A inducing structure switching of its aptamer and enzymatically generated polythymine for copper nanoparticles formation.

12.
Biopolymers ; 109(12): e23240, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30489632

RESUMO

A statistical approach with D-optimal design was used to optimize the process parameters for polycaprolactone (PCL) synthesis. The variables selected were temperature (50°C-110°C), time (1-7 h), mixing speed (50-500 rpm) and monomer/solvent ratio (1:1-1:6). Molecular weight was chosen as response and was determined using matrix-assisted laser desorption/ionization time of flight (MALDI TOF). Using the D-optimal method in design of experiments, the interactions between parameters and responses were analysed and validated. The results show a good agreement with a minimum error between the actual and predicted values.


Assuntos
Candida/enzimologia , Proteínas Fúngicas/metabolismo , Lipase/metabolismo , Poliésteres/metabolismo , Algoritmos , Biocatálise , Cinética , Modelos Químicos , Peso Molecular , Poliésteres/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura , Fatores de Tempo
13.
Molecules ; 23(2)2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29385763

RESUMO

ε-caprolactone (CL) has been enzymatically polymerized using α-amino acids based on sulfur (methionine and cysteine) as (co-)initiators and immobilized lipase B of Candida antarctica (CALB) as biocatalyst. In-depth characterizations allowed determining the corresponding involved mechanisms and the polymers thermal properties. Two synthetic strategies were tested, a first one with direct polymerization of CL with the native amino acids and a second one involving the use of an amino acid with protected functional groups. The first route showed that mainly polycaprolactone (PCL) homopolymer could be obtained and highlighted the lack of reactivity of the unmodified amino acids due to poor solubility and affinity with the lipase active site. The second strategy based on protected cysteine showed higher monomer conversion, with the amino acids acting as (co-)initiators, but their insertion along the PCL chains remained limited to chain endcapping. These results thus showed the possibility to synthesize enzymatically polycaprolactone-based chains bearing amino acids units. Such cysteine endcapped PCL materials could then find application in the biomedical field. Indeed, subsequent functionalization of these polyesters with drugs or bioactive molecules can be obtained, by derivatization of the amino acids, after removal of the protecting group.


Assuntos
Candida/enzimologia , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Lipase/química , Poliésteres , Poliésteres/síntese química , Poliésteres/química
14.
Molecules ; 22(11)2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29112152

RESUMO

Yarrowia lipolytica (YL) is a "non-conventional" yeast that is capable of producing important metabolites. One of the most important products that is secreted by this microorganism is lipase, a ubiquitous enzyme that has considerable industrial potential and can be used as a biocatalyst in the pharmaceutical, food, and environmental industries. In this work, Yarrowia lipolytica lipase (YLL) was immobilized on Lewatit and Amberlite beads and is used in the enzymatic ring-opening polymerization (ROP) of cyclic esters in the presence of different organic solvents. YLL immobilized on Amberlite XAD7HP had the higher protein adsorption (96%) and a lipolytic activity of 35 U/g. Lewatit VPOC K2629 has the higher lipolytic activity (805 U/g) and 92% of protein adsorption. The highest molecular weight (Mn 10,685 Da) was achieved at 90 °C using YLL that was immobilized on Lewatit 1026 with decane as solvent after 60 h and 100% of monomer conversion.


Assuntos
Caproatos/química , Proteínas Fúngicas/metabolismo , Lactonas/química , Lipase/metabolismo , Yarrowia/enzimologia , Biocatálise , Enzimas Imobilizadas/metabolismo , Peso Molecular , Polimerização
15.
Artigo em Inglês | MEDLINE | ID: mdl-25200738

RESUMO

An interesting cooperation between Candida antarctica Lipase B (CAL-B) and alkaline protease from Bacillus subtilis (BSP) in the copolymerization of bulky ibuprofen-containing hydroxyacid methyl ester (HAEP) and ε-caprolactone (ε-CL) is observed. This cooperation improved the M¯n of the polymers from 3130 (CAL-B) to 9200 g mol-1 (CAL-B/BSP). Experimental results clearly indicate that CAL-B mainly catalyzes the ring-opening polymerization (ROP) of ε-CL under the initiation of HAEP to form the homopolymer of ε-CL, while BSP catalyzes the subsequent polycondensation of the ROP product to yield the copolymer with increased molecular weight. Furthermore, using suitable chemo-enzymatic methods, valuable polyesters with chiral (R)- or (S)-ibuprofen pendants can be tailor-made.

16.
Int J Biol Macromol ; 226: 1141-1153, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36427616

RESUMO

MXene-based functional textiles have been widely studied and applied in many fields. However, the service stability of MXene combined with textile substrates in the environment is far from ideal, which makes its practical application a great challenge. Here we introduced gallic acid (GA), as natural reactive polyphenol compound to silk fibers through enzymatic polymerization, which significantly improved the durability of its conductivity. The small molecules of GA can covalently bind to the titanium atoms on the MXene nanosheets, and the tyrosine residues from silk fibroins can be enzymatically oxidized by horseradish peroxidase (HRP) and further coupled with GA simultaneously, thus forming a covalent cross-linked network on the fiber surfaces. Furthermore, the durable MXene-based textile was used to manufacture smart dual-driven thermal devices with temperature monitoring, which can judge the real-time temperature during heating by changes in its apparent color. More importantly, the textile with smart temperature visualization also offers good EMI shielding and superior UV resistance, while retaining its inherent moisture-wicking, breathable and softness. The present work provides a new insight for the preparation of MXene-based multifunctional textile, and the smart visualization of dual-driven heating shows promising applications in practical personal thermal management.


Assuntos
Calefação , Seda , Têxteis , Ácido Gálico , Peroxidase do Rábano Silvestre , Catálise
17.
Plant Commun ; 4(2): 100498, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36435967

RESUMO

Proanthocyanidins (PAs) are natural flavan-3-ol polymers that contribute protection to plants under biotic and abiotic stress, benefits to human health, and bitterness and astringency to food products. They are also potential targets for carbon sequestration for climate mitigation. In recent years, from model species to commercial crops, research has moved closer to elucidating the flux control and channeling, subunit biosynthesis and polymerization, transport mechanisms, and regulatory networks involved in plant PA metabolism. This review extends the conventional understanding with recent findings that provide new insights to address lingering questions and focus strategies for manipulating PA traits in plants.


Assuntos
Proantocianidinas , Humanos , Proantocianidinas/metabolismo , Produtos Agrícolas/metabolismo
18.
Biophys Chem ; 296: 107001, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36913888

RESUMO

The sequence-regulating polyhydroxyalkanoate (PHA) synthase PhaCAR spontaneously synthesizes the homo-random block copolymer, poly[3-hydroxybutyrate (3HB)]-b-poly[glycolate (GL)-ran-3HB]. In this study, a real-time in vitro chasing system was established using a high-resolution 800 MHz nuclear magnetic resonance (NMR) and 13C-labeled monomers to monitor the polymerization of GL-CoA and 3HB-CoA into this atypical copolymer. Consequently, PhaCAR initially consumed only 3HB-CoA and subsequently consumed both substrates. The structure of the nascent polymer was analyzed by extracting it with deuterated hexafluoro-isopropanol. In the primary reaction product, a 3HB-3HB dyad was detected, and GL-3HB linkages were subsequently formed. According to these results, the P(3HB) homopolymer segment is synthesized prior to the random copolymer segment. This is the first report of its kind which proposes the application of real-time NMR to a PHA synthase assay, paving the way for elucidating the mechanisms of PHA block copolymerization.


Assuntos
Glicolatos , Polímeros , Ácido 3-Hidroxibutírico , Espectroscopia de Ressonância Magnética
19.
Life (Basel) ; 13(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37629605

RESUMO

The commonly supposed template-based format for RNA self-replication requires both duplex assembly and disassembly. This requisite binary provision presents a challenge to the development of a serviceable self-replication model since chemical reactions are thermochemically unidirectional. We submit that a solution to this problem lies in volcanic landmasses that engage in continuous cycles of wetting and drying and thus uniquely provide the twofold state required for self-replication. Moreover, they offer conditions that initiate chain branching, and thus furnish a path to autocatalytic self-replication. The foundations of this dual thermochemical landscape arise from the broad differences in the properties of the bulk water phase on the one hand, and the air/water interfacial regions that emerge in the evaporative stages on the other. With this reaction system as a basis and employing recognized thermochemical and kinetic parameters, we present simulations displaying the spontaneous and autocatalyzed conversion of racemic and unactivated RNA monomers to necessarily homochiral duplex structures over characteristic periods of years.

20.
Carbohydr Res ; 534: 108969, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839282

RESUMO

We demonstrated that a unique polysaccharide with extremely high molecular weight can be easily obtained via a low-cost, mild reaction in a water medium from sucrose, a photosynthetic product. α-1,3/1,6-Glucosyltransferase L (GtfL) from Streptococcus salivarius produced water-insoluble α-d-glucan from sucrose at 37 °C. Gel permeation chromatography revealed the molecular weight was extremely high; the weight-average molecular weight values were more than 1,000,000 irrespective of the substrate concentration. The Smith degradation of neat glucan and NMR spectroscopic analyses of the acetyl derivative revealed a structure similar to that of a comb-type graft copolymer, α-d-(1 â†’ 3)-graft-(1 â†’ 6)-glucan. The anhydroglucose units (AGUs) in the main-chain backbone are linked by (1 â†’ 3)-glycosidic bonds, whereas a side chain consisting of four AGUs via (1 â†’ 6)-glycosidic bonds alternately extends from C6 of the main chain.


Assuntos
Glucanos , Streptococcus salivarius , Glucanos/química , Streptococcus salivarius/metabolismo , Glucosiltransferases/metabolismo , Polissacarídeos , Streptococcus , Sacarose , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA