Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Cell Int ; 24(1): 199, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840117

RESUMO

The extracellular matrix (ECM) is a dynamic and complex microenvironment that modulates cell behavior and cell fate. Changes in ECM composition and architecture have been correlated with development, differentiation, and disease progression in various pathologies, including breast cancer [1]. Studies have shown that aligned fibers drive a pro-metastatic microenvironment, promoting the transformation of mammary epithelial cells into invasive ductal carcinoma via the epithelial-to-mesenchymal transition (EMT) [2]. The impact of ECM orientation on breast cancer metabolism, however, is largely unknown. Here, we employ two non-invasive imaging techniques, fluorescence-lifetime imaging microscopy (FLIM) and intensity-based multiphoton microscopy, to assess the metabolic states of cancer cells cultured on ECM-mimicking nanofibers in a random and aligned orientation. By tracking the changes in the intrinsic fluorescence of nicotinamide adenine dinucleotide and flavin adenine dinucleotide, as well as expression levels of metastatic markers, we reveal how ECM fiber orientation alters cancer metabolism and EMT progression. Our study indicates that aligned cellular microenvironments play a key role in promoting metastatic phenotypes of breast cancer as evidenced by a more glycolytic metabolic signature on nanofiber scaffolds of aligned orientation compared to scaffolds of random orientation. This finding is particularly relevant for subsets of breast cancer marked by high levels of collagen remodeling (e.g. pregnancy associated breast cancer), and may serve as a platform for predicting clinical outcomes within these subsets [3-6].

2.
Liver Int ; 44(2): 614-624, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38105495

RESUMO

BACKGROUND AND AIMS: Hepatitis B virus X protein (HBx) play a key role in pathogenesis of HBV-induced hepatocellular carcinoma (HCC) by promoting epithelial to mesenchymal transition (EMT). In this study, we hypothesized that inhibition of HBx is an effective strategy to combat HCC. METHODOLOGY AND RESULTS: We designed and synthesized novel HBx gene specific single guide RNA (sgRNA) with CRISPR/Cas9 system and studied its in vitro effects on tumour properties of HepG2-2.15. Full length HBx gene was excised using HBx-CRISPR that resulted in significant knockdown of HBx expression in hepatoma cells. HBx-CRISPR also decreased levels of HBsAg and HBV cccDNA expression. A decreased expression of mesenchymal markers, proliferation and tumorigenic properties was observed in HBx-CRISPR treated cells as compared to controls in both two- and three- dimensional (2D and 3D) tumour models. Transcriptomics data showed that out of 1159 differentially expressed genes in HBx-CRISPR transfected cells as compared to controls, 70 genes were upregulated while 1089 genes associated with cell proliferation and EMT pathways were downregulated. CONCLUSION: Thus, targeting of HBx by CRISPR/Cas9 gene editing system reduces covalently closed circular DNA (cccDNA) levels, HBsAg production and mesenchymal characteristics of HBV-HCC cells. We envision inhibition of HBx by CRISPR as a novel therapeutic approach for HBV-induced HCC.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Vírus da Hepatite B/genética , Neoplasias Hepáticas/genética , Antígenos de Superfície da Hepatite B/genética , Edição de Genes , Sistemas CRISPR-Cas , Transição Epitelial-Mesenquimal/genética , RNA Guia de Sistemas CRISPR-Cas , DNA Circular , Replicação Viral , Células Hep G2
3.
Cell Biol Int ; 48(8): 1185-1197, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38773713

RESUMO

Lactate is an oncometabolite that play important role in tumor aggressiveness. Lactate from the tumor microenvironment (TME) is taken up by cancer cells as an energy resource via mitochondrial oxidative phosphorylation (or OXPHOS). In the present study, by using an online meta-analysis tool we demonstrated that in oral squamous cancer cells (OSCCs) glycolytic and OXPHOS governing genes are overexpressed, like in breast cancer. For experimental demonstration, we treated the OSCC cell line (SCC4) and breast cancer cells (MDA-MB-231) with sodium L-lactate and analyzed its effects on changes in EMT and migration. For the therapeutic intervention of lactate metabolism, we used AZD3965 (an MCT1 inhibitor), and 7ACC2 (an MPC inhibitor). Like breast cancer, oral cancer tissues showed increased transcripts of 12 genes that were previously shown to be associated with glycolysis and OXPHOS. We experimentally demonstrated that L-lactate treatment induced mesenchymal markers and migration of cancer cells, which was significantly neutralized by MPC inhibitor that is, 7ACC2. Such an effect on EMT status was not observed with AZD3965. Furthermore, we showed that lactate treatment increases the MPC1 expression in both cancer cells, and this might be the reason why cancer cells in the high lactate environment are more sensitive to 7ACC2. Overall, our present findings demonstrate that extracellular lactate positively regulates the MPC1 protein expression in cancer cells, thereby putting forward the notion of using 7ACC2 as a potential therapeutic alternative to inhibit malignant oxidative cancers. Future preclinical studies are warranted to validate the present findings.


Assuntos
Neoplasias da Mama , Movimento Celular , Transição Epitelial-Mesenquimal , Ácido Láctico , Transportadores de Ácidos Monocarboxílicos , Neoplasias Bucais , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Feminino , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Neoplasias Bucais/tratamento farmacológico , Ácido Láctico/metabolismo , Movimento Celular/efeitos dos fármacos , Cumarínicos/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Simportadores/metabolismo , Simportadores/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Pirimidinonas , Tiofenos
4.
Endocr J ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880606

RESUMO

The endometrium during the sexual cycle undergoes detachment, tissue remodeling, and differentiation during the menstrual cycle. Localized and transient destruction and regeneration of endometrial tissue are also essential for pregnancy. It is possible to attribute many causes of failure in infertility treatment to the implantation stage. To improve the success rate of plateau fertility treatment, it is important to understand the regeneration mechanism of the endometrium, a unique regenerative tissue in the human body. In association with cell proliferation, tissue remodeling requires the relocation of proliferative cells, and the steady-state epithelial cells need to be motile for the relocation. Transient add-on motile activity in epithelial cells is mediated by epithelial to mesenchymal transition (EMT) and reversible mesenchymal to epithelial transition (MET). The destruction and regeneration of endometrial tissue over a period of days to weeks requires a system with a rapid and characteristic mechanism similar to that of wound healing. Here, I review the relationship between the well-known phenomenon of EMT in wound healing and endometrial tissue remodeling during the sexual cycle and pregnancy establishment, which are automatically triggered by menstruation and embryonal invasion.

5.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 675-687, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38551020

RESUMO

Benign prostatic hyperplasia (BPH) is the expansion of the prostate gland that results in urinary symptoms. Both the epithelial-to-mesenchymal transition (EMT) and the Wnt signaling pathway are associated with BPH pathology. In this study, we find that miR-1202 is increased in BPH samples. Overexpression of miR-1202 in TGF-ß-treated BPH-1 cells enhances cell survival and DNA synthesis and inhibits cell apoptosis, whereas miR-1202 inhibition partially abolishes the effects of TGF-ß on BPH-1 cells. miR-1202 overexpression reduces E-cadherin level but elevates vimentin, N-cadherin, and snail levels, whereas miR-1202 inhibition partially attenuates the effects of TGF-ß on EMT markers. Regarding the Wnt/ß-catenin pathway, miR-1202 overexpression significantly enhances, whereas miR-1202 inhibition partially decreases, the promotive effects of TGF-ß on Wnt1, c-Myc, and cyclin D1 proteins. 3-Hydroxy-3-methylglutaryl-CoA lyase (HMGCL) is a direct downstream target of miR-1202, and miR-1202 inhibits HMGCL expression through binding to its 3'UTR. Overexpression of HMGCL significantly reduces the effect of miR-1202 overexpression on the phenotypes of BPH-1 cells by inhibiting cell survival and promoting apoptosis. Similarly, HMGCL overexpression has the opposite effects on EMT markers and the Wnt/ß-catenin signaling, and markedly alleviates the effects of miR-1202 overexpression. Finally, in the BPH rat model, Ki67 and vimentin levels are elevated, but E-cadherin and HMGCL levels are reduced. In conclusion, miR-1202 is upregulated in benign prostatic hyperplasia; miR-1202 enhances epithelial cell proliferation, suppresses cell apoptosis, and promotes EMT by targeting HMGCL. The Wnt/ß-catenin pathway may participate in the miR-1202/HMGCL axis-mediated regulation of BPH-1 cell phenotypes.


Assuntos
Apoptose , Proliferação de Células , Transição Epitelial-Mesenquimal , MicroRNAs , Hiperplasia Prostática , Animais , Humanos , Masculino , Ratos , Apoptose/genética , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/genética , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Hiperplasia Prostática/patologia , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/genética , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/efeitos dos fármacos
6.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612859

RESUMO

Chronic sinusitis with nasal polyps (CRSwNP) is one of the most common chronic inflammatory diseases, and involves tissue remodeling. One of the key mechanisms of tissue remodeling is the epithelial-mesenchymal transition (EMT), which also represents one of the pathophysiological processes of CRS observed in CRSwNP tissues. To date, many transcription factors and forms of extracellular stimulation have been found to regulate the EMT process. However, it is not known whether gangliosides, which are the central molecules of plasma membranes, involved in regulating signal transmission pathways, are involved in the EMT process. Therefore, we aimed to determine the role of gangliosides in the EMT process. First, we confirmed that N-cadherin, which is a known mesenchymal marker, and ganglioside GD3 were specifically expressed in CRSwNP_NP tissues. Subsequently, we investigated whether the administration of TNF-α to human nasal epithelial cells (hNECs) resulted in the upregulation of ganglioside GD3 and its synthesizing enzyme, ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialytransferase 1 (ST8Sia1), and the consequently promoted inflammatory processes. Additionally, the expression of N-cadherin, Zinc finger protein SNAI2 (SLUG), and matrix metallopeptidase 9 (MMP-9) were elevated, but that of E-cadherin, which is known to be epithelial, was reduced. Moreover, the inhibition of ganglioside GD3 expression by the siRNA or exogenous treatment of neuraminidase 3 (NEU 3) led to the suppression of inflammation and EMT. These results suggest that gangliosides may play an important role in prevention and therapy for inflammation and EMT.


Assuntos
Inflamação , Pólipos Nasais , Humanos , Gangliosídeos , Caderinas/genética , Células Epiteliais , Transição Epitelial-Mesenquimal
7.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732119

RESUMO

High-risk human papillomavirus (HR-HPV; HPV-16) and cigarette smoking are associated with cervical cancer (CC); however, the underlying mechanism(s) remain unclear. Additionally, the carcinogenic components of tobacco have been found in the cervical mucus of women smokers. Here, we determined the effects of cigarette smoke condensate (CSC; 3R4F) on human ectocervical cells (HPV-16 Ect/E6E7) exposed to CSC at various concentrations (10-6-100 µg/mL). We found CSC (10-3 or 10 µg/mL)-induced proliferation, enhanced migration, and histologic and electron microscopic changes consistent with EMT in ectocervical cells with a significant reduction in E-cadherin and an increase in the vimentin expression compared to controls at 72 h. There was increased phosphorylation of receptor tyrosine kinases (RTKs), including Eph receptors, FGFR, PDGFRA/B, and DDR2, with downstream Ras/MAPK/ERK1/2 activation and upregulation of common EMT-related genes, TGFB SNAI2, PDGFRB, and SMAD2. Our study demonstrated that CSC induces EMT in ectocervical cells with the upregulation of EMT-related genes, expression of protein biomarkers, and activation of RTKs that regulate TGFB expression, and other EMT-related genes. Understanding the molecular pathways and environmental factors that initiate EMT in ectocervical cells will help delineate molecular targets for intervention and define the role of EMT in the initiation and progression of cervical intraepithelial neoplasia and CC.


Assuntos
Células Epiteliais , Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta , Humanos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Fator de Crescimento Transformador beta/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Células Epiteliais/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Colo do Útero/patologia , Colo do Útero/metabolismo , Colo do Útero/virologia , Fumaça/efeitos adversos , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/patologia , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/etiologia , Papillomavirus Humano 16/patogenicidade , Nicotiana/efeitos adversos , Papillomavirus Humano
8.
Semin Cancer Biol ; 86(Pt 2): 202-213, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35779713

RESUMO

Epithelial-mesenchymal transition (EMT) is a key mechanism related to tumor progression, invasion, metastasis, resistance to therapy and poor prognosis in several types of cancer. However, targeting EMT or partial-EMT, as well as the molecules involved in this process, has remained a challenge. Recently, the CD73 enzyme, which hydrolyzes AMP to produce adenosine (ADO), has been linked to the EMT process. This relationship is not only due to the production of the immunosuppressant ADO but also to its role as a receptor for extracellular matrix proteins, being involved in cell adhesion and migration. This article reviews the crosstalk between the adenosinergic pathway and the EMT program and the impact of this interrelation on cancer development and progression. An in silico analysis of RNAseq datasets showed that several tumor types have a significant correlation between an EMT score and NT5E (CD73) and ENTPD1 (CD39) expressions, with the strongest correlations being in prostate adenocarcinoma. Furthermore, it is evident that the cooperation between EMT and the adenosinergic pathway in tumor progression is context and tumor-dependent. The increased knowledge about this topic will help broaden the view to explore new treatments and therapies for different types of cancer.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias da Próstata , Masculino , Humanos , Movimento Celular , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Neoplasias da Próstata/patologia
9.
J Proteome Res ; 22(10): 3264-3274, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37616547

RESUMO

The epithelial-to-mesenchymal transition (EMT) and migration of cranial neural crest cells within the midbrain are critical processes that permit proper craniofacial patterning in the early embryo. Disruptions in these processes not only impair development but also lead to various diseases, underscoring the need for their detailed understanding at the molecular level. The chick embryo has served historically as an excellent model for human embryonic development, including cranial neural crest cell EMT and migration. While these developmental events have been characterized transcriptionally, studies at the protein level have not been undertaken to date. Here, we applied mass spectrometry (MS)-based proteomics to establish a deep proteomics profile of the chick midbrain region during early embryonic development. Our proteomics method combines optimal lysis conditions, offline fractionation, separation on a nanopatterned stationary phase (µPAC) using nanoflow liquid chromatography, and detection using quadrupole-ion trap-Orbitrap tribrid high-resolution tandem MS. Identification of >5900 proteins and >450 phosphoproteins in this study marks the deepest coverage of the chick midbrain proteome to date. These proteins have known roles in pathways related to neural crest cell EMT and migration such as signaling, proteolysis/extracellular matrix remodeling, and transcriptional regulation. This study offers valuable insight into important developmental processes occurring in the midbrain region and demonstrates the utility of proteomics for characterization of tissue microenvironments during chick embryogenesis.

10.
Clin Immunol ; 254: 109687, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37419296

RESUMO

Pulmonary fibrosis, a serious complication of systemic lupus erythematosus (SLE) and coronavirus disease 2019 (COVID-19), leads to irreversible lung damage. However, the underlying mechanism of this condition remains unclear. In this study, we revealed the landscape of transcriptional changes in lung biopsies from individuals with SLE, COVID-19-induced pulmonary fibrosis, and idiopathic pulmonary fibrosis (IPF) using histopathology and RNA sequencing, respectively. Despite the diverse etiologies of these diseases, lung expression of matrix metalloproteinase genes in these diseases showed similar patterns. Particularly, the differentially expressed genes were significantly enriched in the pathway of neutrophil extracellular trap formation, showing similar enrichment signature between SLE and COVID-19. The abundance of Neutrophil extracellular traps (NETs) was much higher in the lungs of individuals with SLE and COVID-19 compared to those with IPF. In-depth transcriptome analyses revealed that NETs formation pathway promotes epithelial-mesenchymal transition (EMT). Furthermore, stimulation with NETs significantly up-regulated α-SMA, Twist, Snail protein expression, while decreasing the expression of E-cadherin protein in vitro. This indicates that NETosis promotes EMT in lung epithelial cells. Given drugs that are efficacious in degrading damaged NETs or inhibiting NETs production, we identified a few drug targets that were aberrantly expressed in both SLE and COVID-19. Among these targets, the JAK2 inhibitor Tofacitinib could effectively disrupted the process of NETs and reversed NET-induced EMT in lung epithelial cells. These findings support that the NETs/EMT axis, activated by SLE and COVID-19, contributes to the progression of pulmonary fibrosis. Our study also highlights that JAK2 as a potential target for the treatment of fibrosis in these diseases.


Assuntos
COVID-19 , Lúpus Eritematoso Sistêmico , Fibrose Pulmonar , Humanos , Neutrófilos/metabolismo , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , COVID-19/patologia , Lúpus Eritematoso Sistêmico/metabolismo , Inflamação/metabolismo , Fibrose
11.
Biochem Biophys Res Commun ; 677: 98-104, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37566923

RESUMO

Breast cancer is the second most cancer worldwide in females. The primary factor responsible for tumor recurrence is the presence of breast cancer stem cells (BCSCs), which escape the chemo-radiotherapy. In this study, we have investigated the role of Secretory phospholipase-A2 Group 2A (sPLA2-IIA) that is overexpressed in BCSCs of MCF7 and MDA-MB-231 breast cancer cell lines. Further, overexpression of sPLA2-IIA revealed an increased EGFR/JNK/c-JUN/c-FOS signaling in BCSCs, while sPLA2-IIA knockdown significantly reduced the percentage of BCSCs and decreased signaling in both the cell lines. Importantly, sPLA2-IIA knockdown showed differentiation of BCSCs. Strikingly, PET imaging showed a decreased metastatic potential of BCSCs. Our study revealed a novel role of sPLA2-IIA in regulating BCSCs, which play a crucial role in regulating the differentiation and metastatic potential of BCSCs.


Assuntos
Neoplasias da Mama , Fosfolipases A2 Secretórias , Feminino , Humanos , Fosfolipases A2 Secretórias/genética , Fosfolipases , Recidiva Local de Neoplasia , Diferenciação Celular , Células-Tronco Neoplásicas , Fosfolipases A2 do Grupo II/genética
12.
Cell Commun Signal ; 21(1): 63, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973740

RESUMO

BACKGROUND: Fucosyltransferase 2(FUT2) and its induced α-1,2 fucosylation is associated with cancer metastasis. However, the role of FUT2 in colorectal cancer (CRC) metastasis remains unclear. METHODS: The expression levels and clinical analyses of FUT2 were assessed in CRC samples. Migration and invasion assays, EMT detection, nude mice peritoneal dissemination models and intestinal specific FUT2 knockout mice (FUT2△IEC mice) were used to investigate the effect of FUT2 on metastasis in colorectal cancer. Quantitative proteomics study of glycosylated protein, UEA enrichment, Co-immunoprecipitation identified the mediator of the invasive-inhibiting effects of FUT2. RESULTS: FUT2 is downregulated in CRC tissues and is positively correlated with the survival of CRC patients. FUT2 is an inhibitor of colorectal cancer metastasis which, when overexpressed, suppresses invasion and tumor dissemination in vitro and in vivo. FUT2 knock-out mice (FUT2△IEC mice) develop AMO and DSS-induced tumors and promote EMT in colorectal cancers. FUT2-induced α-1,2 fucosylation impacts the ability of low-density lipoprotein receptor-related protein 1(LRP1) to suppress colorectal cancer invasion. CONCLUSIONS: Our study demonstrated that FUT2 induces α-1,2 fucosylation and inhibits EMT and metastasis of colorectal cancer through LRP1 fucosylation, suggesting that FUT2 may serve as a therapeutic target for colorectal cancer. Video Abstract.


Assuntos
Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Fucosiltransferases , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Animais , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos Nus , Metástase Neoplásica , Fucosiltransferases/genética , Galactosídeo 2-alfa-L-Fucosiltransferase
13.
Mol Biol Rep ; 50(12): 9935-9950, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37878207

RESUMO

BACKGROUND: T-box transcription factor 3(TBX3) is a transcription factor that can regulate cell proliferation, apoptosis, invasion, and migration in different tumor cells; however, its role in adenomyosis (ADM) has not been previously studied. Some of ADM's pathophysiological characteristics are similar to those of malignant tumors (e.g., abnormal proliferation, migration, and invasion). METHODS AND RESULTS: We hypothesized that TBX3 might have a role in ADM. We used tamoxifen-induced Institute of Cancer research (ICR) mice to establish ADM disease model. The study procedure included western blotting and immunohistochemistry to analyze protein levels; additionally, we used intraperitoneal injection of Wnt/ß-catenin pathway inhibitor XAV-939 to study the relationship between TBX3 and Wnt/ß-catenin pathway as well as Anti-proliferation cell nuclear antigen( PCNA) and TUNEL to detect cell proliferation and apoptosis, respectively. TBX3 overexpression and epithelial-to-mesenchymal transition (EMT) in ADM mice was found to be associated with activation of the Wnt3a/ß-catenin pathway. Treatment with XAV-939 in ADM mice led to the inhibition of both TBX3 and EMT; moreover, abnormal cell proliferation was suppressed, the depth of invasion of endometrium cells was limited. Thus, the use of XAV-939 effectively inhibited further invasion of endometrial cells. CONCLUSION: These findings suggest that TBX3 may play an important role in the development of ADM. The expression of TBX3 in ADM was regulated by the Wnt3a/ß-catenin pathway. The activation of the Wnt3a/ß-catenin pathway in ADM promoted TBX3 expression and induced the occurrence of EMT, thus promoting cell proliferation and inhibiting apoptosis, ultimately accelerating the development of ADM. The study provides a reference for the diagnosis of ADM.


Assuntos
Adenomiose , beta Catenina , Animais , Feminino , Camundongos , Adenomiose/genética , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Proteínas com Domínio T/genética , Fator 3 de Transcrição/metabolismo , Via de Sinalização Wnt
14.
Biol Pharm Bull ; 46(1): 35-41, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36273899

RESUMO

Pachymic acid (PA), exacted from Polyporaceae, has been known for its biological activities including diuretic, dormitive, anti-oxidant, anti-aging, anti-inflammatory and anticancer properties in several types of diseases. Recently, studies have demonstrated that PA could suppress cell growth and induce cell apoptosis in different kinds of cancer cells. But the underlying mechanisms remain poorly elucidated. In the current study, we investigated the effect of pachymic acid on liver cancer cells and its underlying mechanisms. Our results evidenced that pachymic acid effectively inhibited the cell growth and metastatic potential in HepG2 and Huh7 cells. Mechanistically, we revealed that pachymic acid triggered cell apoptosis by increasing caspase 3 and caspase 9 cleavage, upregulating Bax and cytochrome c expression, while reducing the expression of Bcl2. Besides, pachymic acid could markedly inhibit the cell invasion and migration and cell metastatic potential by mediating epithelial-to-mesenchymal transition (EMT) markers and metastasis-associated genes in HepG2 and Huh7 cells. In addition, we demonstrated that FAK-Src-Jun N-terminal kinase (JNK)-matrix metalloproteinase 2 (MMP2) axis was involved in PA-inhibited liver cell EMT. Together, these results contribute to our deeper understanding of the anti-cancer effects of pachymic acid on liver cancer cells. This study also provided compelling evidence that PA might be a potential therapeutic agent for liver cancer treatment.


Assuntos
Neoplasias Hepáticas , Metaloproteinase 2 da Matriz , Humanos , Metaloproteinase 2 da Matriz/genética , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Apoptose , Transição Epitelial-Mesenquimal
15.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003273

RESUMO

Non-small cell lung cancer (NSCLC) is one of the deadliest diseases worldwide. Tissue biopsy is the current gold standard for the diagnosis and molecular profiling of NSCLC. However, this approach presents some limitations due to inadequate tissue sampling, and intra- and intertumour heterogenicity. Liquid biopsy is a noninvasive method to determine cancer-related biomarkers in peripheral blood, and can be repeated at multiple timepoints. One of the most studied approaches to liquid biopsies is represented by circulating tumour cells (CTCs). Several studies have evaluated the prognostic and predictive role of CTCs in advanced NSCLC. Despite the limitations of these studies, the results of the majority of studies seem to be concordant regarding the correlation between high CTC count and poor prognosis in patients with NSCLC. Similarly, the decrease of CTC count during treatment may represent an important predictive marker of sensitivity to therapy in advanced NSCLC. Furthermore, molecular characterization of CTCs can be used to provide information on tumour biology, and on the mechanisms involved in resistance to targeted treatment. This review will discuss the current status of the clinical utility of CTCs in patients with advanced NSCLC, highlighting their potential application to prognosis and to treatment decision making.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais/análise , Biópsia
16.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372954

RESUMO

P53 is a critical tumor suppressor that protects the integrity of genome and prevents cells from malignant transformation, including metastases. One of the driving forces behind the onset of metastases is the epithelial to mesenchymal transition (EMT) program. Zeb1 is one of the key transcription factors that govern EMT (TF-EMT). Therefore, the interaction and mutual influence of p53 and Zeb1 plays a critical role in carcinogenesis. Another important feature of tumors is their heterogeneity mediated by the presence of so-called cancer stem cells (CSCs). To this end, we have developed a novel fluorescent reporter-based approach to enrich the population of CSCs in MCF7 cells with inducible expression of Zeb1. Using these engineered cell lines, we studied the effect of p53 on Zeb1 interactomes isolated from both CSCs and regular cancer cells. By employing co-immunoprecipitations followed by mass spectrometry, we found that the composition of Zeb1 interactome was affected not only by the p53 status but also by the level of Oct4/Sox2 expression, indicating that stemness likely affects the specificity of Zeb1 interactions. This study, together with other proteomic studies of TF-EMT interactomes, provides a framework for future molecular analyses of biological functions of Zeb1 at all stages of oncogenesis.


Assuntos
Neoplasias da Mama , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Humanos , Feminino , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias da Mama/metabolismo , Proteômica , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
17.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298519

RESUMO

Among the newer choices of targeted therapies against cancer, stem cell therapy is gaining importance because of their antitumor properties. Stem cells suppress growth, metastasis, and angiogenesis, and induce apoptosis in cancer cells. In this study, we have examined the impact of the cellular component and the secretome of preconditioned and naïve placenta-derived Chorionic Villus Mesenchymal Stem Cells (CVMSCs) on the functional characteristics of the Human Breast Cancer cell line MDA231. MDA231 cells were treated with preconditioned CVMSCs and their conditioned media (CM), followed by an evaluation of their functional activities and modulation in gene and protein expression. Human Mammary Epithelial Cells (HMECs) were used as a control. CM obtained from the preconditioned CVMSCs significantly altered the proliferation of MDA231 cells, yet no change in other phenotypes, such as adhesion, migration, and invasion, were observed at various concentrations and time points tested. However, the cellular component of preconditioned CVMSCs significantly inhibited several phenotypes of MDA231 cells, including proliferation, migration, and invasion. CVMSCs-treated MDA231 cells exhibited modulation in the expression of various genes involved in apoptosis, oncogenesis, and Epithelial to Mesenchymal Transition (EMT), explaining the changes in the invasive behavior of MDA231 cells. These studies reveal that preconditioned CVMSCs may make useful candidate in a stem cell-based therapy against cancer.


Assuntos
Neoplasias da Mama , Células-Tronco Mesenquimais , Humanos , Feminino , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Vilosidades Coriônicas , Neoplasias da Mama/terapia , Neoplasias da Mama/metabolismo , Proliferação de Células , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Movimento Celular
18.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003736

RESUMO

We previously developed several successful decellularization strategies that yielded porcine cardiac extracellular matrices (pcECMs) exhibiting tissue-specific bioactivity and bioinductive capacity when cultured with various pluripotent and multipotent stem cells. Here, we study the tissue-specific effects of the pcECM on seeded human mesenchymal stem cell (hMSC) phenotypes using reverse transcribed quantitative polymerase chain reaction (RT-qPCR) arrays for cardiovascular related gene expression. We further corroborated interesting findings at the protein level (flow cytometry and immunological stains) as well as bioinformatically using several mRNA sequencing and protein databases of normal and pathologic adult and embryonic (organogenesis stage) tissue expression. We discovered that upon the seeding of hMSCs on the pcECM, they displayed a partial mesenchymal-to-epithelial transition (MET) toward endothelial phenotypes (CD31+) and morphologies, which were preceded by an early spike (~Day 3 onward after seeding) in HAND2 expression at both the mRNA and protein levels compared to that in plate controls. The CRISPR-Cas9 knockout (KO) of HAND2 and its associated antisense long non-coding RNA (HAND2-AS1) regulatory region resulted in proliferation arrest, hypertrophy, and senescent-like morphology. Bioinformatic analyses revealed that HAND2 and HAND2-AS1 are highly correlated in expression and are expressed in many different tissue types albeit at distinct yet tightly regulated expression levels. Deviation (downregulation or upregulation) from these basal tissue expression levels is associated with a long list of pathologies. We thus suggest that HAND2 expression levels may possibly fine-tune hMSCs' plasticity through affecting senescence and mesenchymal-to-epithelial transition states, through yet unknown mechanisms. Targeting this pathway may open up a promising new therapeutic approach for a wide range of diseases, including cancer, degenerative disorders, and aging. Nevertheless, further investigation is required to validate these findings and better understand the molecular players involved, potential inducers and inhibitors of this pathway, and eventually potential therapeutic applications.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , RNA Longo não Codificante , Adulto , Humanos , Animais , Suínos , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Regulação para Baixo , Fatores de Transcrição/metabolismo , RNA Mensageiro , Células-Tronco Mesenquimais/metabolismo , RNA Longo não Codificante/genética , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Transição Epitelial-Mesenquimal , MicroRNAs/genética
19.
J Cell Mol Med ; 26(6): 1729-1741, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33560588

RESUMO

Renal cell carcinoma (RCC) is the most common form of kidney cancer, with a high recurrence rate and metastasis capacity. Circular RNAs (circRNAs) have been suggested to act as the critical regulator in several diseases. This study is designed to investigate the role of circCSNK1G3 on RCC progression. We observed a highly expression of circCSNK1G3 in RCC tissues compared with normal tissues. The aberrantly circCSNK1G3 promoted the tumour growth and metastasis in RCC. In the subsequent mechanism investigation, we discovered that the tumour-promoting effects of circCSNK1G3 were, at least partly, achieved by up-regulating miR-181b. Increased miR-181b inhibits several tumour suppressor gene, including CYLD, LATS2, NDRG2 and TIMP3. Furthermore, the decreased TIMP3 leads to the enhanced epithelial to mesenchymal transition (EMT) process, thus promoting the cancer metastasis. In conclusion, we identified the oncogenic role of circCSNK1G3 in RCC progression and demonstrated the regulatory role of circCSNK1G3 induced miR-181b expression, which leads to TIMP3-mediated EMT process, thus resulting in tumour growth and metastasis in RCC. This study reveals the promise of circCSNK1G3 to be developed as a potential diagnostic and prognostic biomarker in the clinic. And the roles of circCSNK1G3 in cancer research deserve further investigation.


Assuntos
Carcinoma de Células Renais , Caseína Quinase I/genética , Neoplasias Renais , MicroRNAs , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Proteínas Supressoras de Tumor/genética
20.
J Cell Biochem ; 123(3): 644-656, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34989006

RESUMO

The factor binding inducer of short transcripts-1 (FBI-1) is a POZ-domain Kruppel-like (POK) family of transcription factors and is known as a proto-oncogene or tumor suppressor in various carcinomas. However, the role of FBI-1 on epithelial-to-mesenchymal transition (EMT) and invasiveness in lung cancer remains unknown. Preliminarily, clinical data such as tissue microarray, Kaplan-Meier, and Oncomine were analyzed to confirm the correlation between lung cancer metastasis and FBI-1. To investigate the function of FBI-1 in EMT in lung cancer, EMT was measured in FBI-1-deficient or FBI-1-overexpressing cells. FBI-1 showed decreased expression in tumors metastasized to lymph nodes than in the primary tumor. In addition, it was also associated with improved survival rates of lung cancer patients. FBI-1 knockdown improved E-to-N-cadherin switching, migration, and invasion in A549 cells, similar to the initiation of EMT stimulated by transforming growth factor- ß1 (TGF-ß1). In contrast, overexpression of FBI-1 inhibited the transcription and activation of Smad2, thereby interfering with EMT, despite stimulation by TGF-ß1. These results suggest that FBI-1 plays a negative role in EMT in lung cancer via the TGF-ß1 signaling pathway, implying its use as a new potential therapeutic target and diagnostic indicator for early stage of lung cancer metastasis.


Assuntos
Adenocarcinoma de Pulmão , Proteínas de Ligação a DNA , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Fatores de Transcrição , Células A549 , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Movimento Celular , Proteínas de Ligação a DNA/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Invasividade Neoplásica , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA