Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dev Biol ; 416(2): 402-13, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27341759

RESUMO

Changes in gene regulatory networks (GRNs) underlie the evolution of morphological novelty and developmental system drift. The fruitfly Drosophila melanogaster and the dengue and Zika vector mosquito Aedes aegypti have substantially similar nervous system morphology. Nevertheless, they show significant divergence in a set of genes co-expressed in the midline of the Drosophila central nervous system, including the master regulator single minded and downstream genes including short gastrulation, Star, and NetrinA. In contrast to Drosophila, we find that midline expression of these genes is either absent or severely diminished in A. aegypti. Instead, they are co-expressed in the lateral nervous system. This suggests that in A. aegypti this "midline GRN" has been redeployed to a new location while lost from its previous site of activity. In order to characterize the relevant GRNs, we employed the SCRMshaw method we previously developed to identify transcriptional cis-regulatory modules in both species. Analysis of these regulatory sequences in transgenic Drosophila suggests that the altered gene expression observed in A. aegypti is the result of trans-dependent redeployment of the GRN, potentially stemming from cis-mediated changes in the expression of sim and other as-yet unidentified regulators. Our results illustrate a novel "repeal, replace, and redeploy" mode of evolution in which a conserved GRN acquires a different function at a new site while its original function is co-opted by a different GRN. This represents a striking example of developmental system drift in which the dramatic shift in gene expression does not result in gross morphological changes, but in more subtle differences in development and function of the late embryonic nervous system.


Assuntos
Aedes/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Genes de Insetos , Sistema Nervoso/embriologia , Aedes/embriologia , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Padronização Corporal/genética , Sequência Conservada , Culex/embriologia , Culex/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Redes Reguladoras de Genes/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/genética , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Especificidade da Espécie
2.
Proc Natl Acad Sci U S A ; 110(19): 7766-71, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23610385

RESUMO

The genetic basis of bacterial adaptation to a natural environment has been investigated in a highly successful Pseudomonas aeruginosa lineage (DK2) that evolved within the airways of patients with cystic fibrosis (CF) for more than 35 y. During evolution in the CF airways, the DK2 lineage underwent substantial phenotypic changes, which correlated with temporal fixation of specific mutations in the genes mucA (frame-shift), algT (substitution), rpoN (substitution), lasR (deletion), and rpoD (in-frame deletion), all encoding regulators of large gene networks. To clarify the consequences of these genetic changes, we moved the specific mutations, alone and in combination, to the genome of the reference strain PAO1. The phenotypes of the engineered PAO1 derivatives showed striking similarities with phenotypes observed among the DK2 isolates. The phenotypes observed in the DK2 isolates and PAO1 mutants were the results of individual, additive and epistatic effects of the regulatory mutations. The mutations fixed in the σ factor encoding genes algT, rpoN, and rpoD caused minor changes in σ factor activity, resulting in remodeling of the regulatory networks to facilitate generation of unexpected phenotypes. Our results suggest that adaptation to a highly selective environment, such as the CF airways, is a highly dynamic and complex process, which involves continuous optimization of existing regulatory networks to match the fluctuations in the environment.


Assuntos
Fibrose Cística/microbiologia , Evolução Molecular , Redes Reguladoras de Genes , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/genética , Epistasia Genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Humanos , Fenótipo , Filogenia , Mutação Puntual , RNA Polimerase Sigma 54/genética , Fator sigma/genética , Fatores de Tempo , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA