Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31826998

RESUMO

Skin is a major target tissue of herpes simplex virus 1 (HSV-1), and we are only beginning to understand how individual receptors contribute to the initiation of infection in tissue. We recently demonstrated the impact of the receptors nectin-1 and herpesvirus entry mediator (HVEM) for entry of HSV-1 into murine epidermis. Here, we focus on viral invasion into the dermis, a further critical target tissue in vivo In principle, murine dermal fibroblasts are highly susceptible to HSV-1, and we previously showed that nectin-1 and HVEM can act as alternative receptors. To characterize their contribution as receptors in dermal tissue, we established an ex vivo infection assay of murine dermis. Only after separation of the epidermis from the dermis, we observed single infected cells in the upper dermis from juvenile mice at 5 h postinfection with increasing numbers of infected cells at later times. While nectin-1-expressing cells were less frequently detected, we found HVEM expressed on most cells of juvenile dermis. The comparison of infection efficiency during aging revealed a strong delay in the onset of infection in the dermis from aged mice. This observation correlated with a decrease in nectin-1-expressing fibroblasts during aging while the number of HVEM-expressing cells remained stable. Accordingly, aged nectin-1-deficient dermis was less susceptible to HSV-1 than the dermis from control mice. Thus, we conclude that the reduced availability of nectin-1 in aged dermis is a key contributor to a decrease in infection efficiency during aging.IMPORTANCE HSV-1 is a prevalent human pathogen which invades skin and mucocutaneous linings. So far, the underlying mechanisms of how the virus invades tissue, reaches its receptors, and initiates infection are still unresolved. To unravel the mechanical prerequisites that limit or favor viral invasion into tissue, we need to understand the contribution of the receptors that are involved in viral internalization. Here, we investigated the invasion process into murine dermis with the focus on receptor availability and found that infection efficiency decreases in aging mice. Based on studies of the expression of the receptors nectin-1 and HVEM, we suggest that the decreasing number of nectin-1-expressing fibroblasts leads to a delayed onset of infection in the dermis from aged compared to juvenile mice. Our results imply that the level of infection efficiency in murine dermis is closely linked to the availability of the receptor nectin-1 and can change during aging.


Assuntos
Envelhecimento/patologia , Derme/virologia , Herpesvirus Humano 1/metabolismo , Nectinas/metabolismo , Receptores de Superfície Celular/metabolismo , Membro 14 de Receptores do Fator de Necrose Tumoral/metabolismo , Animais , Derme/metabolismo , Derme/patologia , Modelos Animais de Doenças , Epiderme/metabolismo , Epiderme/virologia , Herpes Simples/patologia , Herpes Simples/virologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nectinas/genética , Pele/metabolismo , Pele/virologia , Internalização do Vírus
2.
Ann Clin Microbiol Antimicrob ; 19(1): 52, 2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33222688

RESUMO

BACKGROUND: Multidrug-resistant infections due to Mycobacterium abscessus often require complex and prolonged regimens for treatment. Here, we report the evaluation of a new ex vivo antimicrobial susceptibility testing model using organotypic cultures of murine precision-cut lung slices, an experimental model in which metabolic activity, and all the usual cell types of the organ are found while the tissue architecture and the interactions between the different cells are maintained. METHODS: Precision cut lung slices (PCLS) were prepared from the lungs of wild type BALB/c mice using the Krumdieck® tissue slicer. Lung tissue slices were ex vivo infected with the virulent M. abscessus strain L948. Then, we tested the antimicrobial activity of two drugs: imipenem (4, 16 and 64 µg/mL) and tigecycline (0.25, 1 and 4 µg/mL), at 12, 24 and 48 h. Afterwards, CFUs were determined plating on blood agar to measure the surviving intracellular bacteria. The viability of PCLS was assessed by Alamar Blue assay and corroborated using histopathological analysis. RESULTS: PCLS were successfully infected with a virulent strain of M. abscessus as demonstrated by CFUs and detailed histopathological analysis. The time-course infection, including tissue damage, parallels in vivo findings reported in genetically modified murine models for M. abscessus infection. Tigecycline showed a bactericidal effect at 48 h that achieved a reduction of > 4log10 CFU/mL against the intracellular mycobacteria, while imipenem showed a bacteriostatic effect. CONCLUSIONS: The use of this new organotypic ex vivo model provides the opportunity to test new drugs against M. abscessus, decreasing the use of costly and tedious animal models.


Assuntos
Antibacterianos/administração & dosagem , Pulmão/microbiologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Mycobacterium abscessus/efeitos dos fármacos , Animais , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Modelos Biológicos , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium abscessus/fisiologia
3.
Am J Physiol Gastrointest Liver Physiol ; 310(2): G55-63, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26564721

RESUMO

Using an ex vivo perfused rat small intestinal model, we examined pathological changes to the tissue, inflammation induction, as well as dynamic changes to smooth muscle activity, metabolic competence, and luminal fluid accumulation during short-term infection with the enteropathogenic bacteria Salmonella enterica serovar Typhimurium and Yersinia enterocolitica. Although few effects were seen upon Yersinia infection, this system accurately modeled key aspects associated with Salmonella enteritis. Our results confirmed the importance of the Salmonella Pathogenicity Island 1 (SPI1)-encoded type 3 secretion system (T3SS) in pathology, tissue invasion, inflammation induction, and fluid secretion. Novel physiological consequences of Salmonella infection of the small intestine were also identified, namely, SPI-1-dependent vasoconstriction and SPI-1-independent reduction in the digestive and absorptive functions of the epithelium. Importantly, this is the first small animal model that allows for the study of Salmonella-induced fluid secretion. Another major advantage of this model is that one can specifically determine the contribution of resident cell populations. Accordingly, we can conclude that recruited cell populations were not involved in the pathological damage, inflammation induction, fluid accumulation, nutrient absorption deficiency, and vasoconstriction observed. Although fluid loss induced by Salmonella infection is hypothesized to be due to damage caused by recruited neutrophils, our data suggest that bacterial invasion and inflammation induction in resident cell populations are sufficient for fluid loss into the lumen. In summary, this model is a novel and useful tool that allows for detailed examination of the early physiopathological effects of Salmonella infection on the small intestine.


Assuntos
Enterite/patologia , Intestino Delgado/patologia , Salmonelose Animal/patologia , Salmonella enterica , Animais , Modelos Animais de Doenças , Enterite/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Ilhas Genômicas , Inflamação/microbiologia , Inflamação/patologia , Intestino Delgado/microbiologia , Ratos , Ratos Wistar , Salmonelose Animal/microbiologia
4.
J Control Release ; 365: 936-949, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070603

RESUMO

Acute bacterial skin and skin structure infections (ABSSSIs) confer a substantial burden on the healthcare system. Local antibiotic delivery systems can provide controlled drug release directly to the site of infection to maximize efficacy and minimize systemic toxicity. The purpose of this study was to examine the antibacterial activity of antibiotic-loaded glutathione-conjugated poly(ethylene glycol) hydrogels (GSH-PEG) against ABSSSIs utilizing an ex vivo porcine dermal explant model. Vancomycin- or meropenem-loaded GSH-PEG hydrogels at 3 different dose levels were loaded over 1 h. Drug release was monitored in vitro under submerged conditions, by the Franz cell diffusion method, and ex vivo utilizing a porcine dermis model. Antibacterial activity was assessed ex vivo on porcine dermis explants inoculated with Staphylococcus aureus or Pseudomonas aeruginosa isolates treated with vancomycin- or meropenem-loaded GSH-PEG hydrogels, respectively. Histological assessment of the explants was conducted to evaluate tissue integrity and viability in the context of the experimental conditions. A dose-dependent release was observed from vancomycin and meropenem hydrogels, with in vitro Franz cell diffusion data closely representing ex vivo vancomycin release, but not high dose meropenem release. High dose vancomycin-loaded hydrogels resulted in a >3 log10 clearance against all S. aureus isolates at 48 h. High dose meropenem-loaded hydrogels achieved 6.5, 4, and 2 log10 reductions in CFU/ml against susceptible, intermediate, and resistant P. aeruginosa isolates, respectively. Our findings demonstrate the potential application of GSH-PEG hydrogels for flexible, local antibiotic delivery against bacterial skin infections.


Assuntos
Antibacterianos , Vancomicina , Animais , Suínos , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/química , Staphylococcus aureus , Meropeném , Materiais Biocompatíveis
5.
Front Cell Infect Microbiol ; 13: 1269329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37900310

RESUMO

Background: Influenza A virus (IAV) infection poses a persistent global health challenge, necessitating a nuanced grasp of host immune responses for optimal interventions. While the interplay between aging, immunosenescence, and IAV is recognized as key in severe lower respiratory tract infections, the role of specific patient attributes in shaping innate immune reactions and inflammasome activity during IAV infection remains under-investigated. In this study, we utilized an ex vivo infection model of human lung tissues with H3N2 IAV to discern relationships among patient demographics, IAV nucleoprotein (NP) expression, toll-like receptor (TLR) profiles, PD-1/PD-L1 markers, and cytokine production. Methods: Our cohort consisted of thirty adult patients who underwent video-assisted thoracoscopic surgery during 2018-2019. Post-surgical lung tissues were exposed to H3N2 IAV for ex vivo infections, and the ensuing immune responses were profiled using flow cytometry. Results: We observed pronounced IAV activity within lung cells, as indicated by marked NP upregulation in both epithelial cells (P = 0.022) and macrophages (P = 0.003) in the IAV-exposed group relative to controls. Notably, interleukin-2 levels correlated with variations in TLR1 expression on epithelial cells and PD-L1 markers on macrophages. Age emerged as a modulating factor, dampening innate immune reactions, as evidenced by reduced interleukin-2 and interferon-γ concentrations (both adjusted P < 0.05). Intriguingly, a subset of participants with pronounced tumor necrosis factor-alpha post-mock infection (Cluster 1) showed attenuated cytokine responses in contrast to their counterparts in Cluster 2 and Cluster 3 (all adjusted P < 0.05). Individuals in Cluster 2, characterized by a low post-mock infection NP expression in macrophages, exhibited reduced variations in both NP and TLR1-3 expressions on these cells and a decreased variation in interleukin-2 secretion in comparison to their Cluster 3 counterparts, who were identified by their elevated NP macrophage expression (all adjusted P < 0.05). Conclusion: Our work elucidates the multifaceted interplay of patient factors, innate immunity, and inflammasome responses in lung tissues subjected to ex vivo H3N2 IAV exposure, reflecting real-world lower respiratory tract infections. While these findings provide a foundation for tailored therapeutic strategies, supplementary studies are requisite for thorough validation and refinement.


Assuntos
Vírus da Influenza A , Influenza Humana , Adulto , Humanos , Inflamassomos , Interleucina-2 , Antígeno B7-H1 , Vírus da Influenza A Subtipo H3N2 , Receptor 1 Toll-Like , Imunidade Inata/fisiologia , Pulmão/patologia , Citocinas
6.
Emerg Microbes Infect ; 11(1): 2160-2175, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36000328

RESUMO

Pandemic outbreaks of viruses such as influenza virus or SARS-CoV-2 are associated with high morbidity and mortality and thus pose a massive threat to global health and economics. Physiologically relevant models are needed to study the viral life cycle, describe the pathophysiological consequences of viral infection, and explore possible drug targets and treatment options. While simple cell culture-based models do not reflect the tissue environment and systemic responses, animal models are linked with huge direct and indirect costs and ethical questions. Ex vivo platforms based on tissue explants have been introduced as suitable platforms to bridge the gap between cell culture and animal models. We established a murine lung tissue explant platform for two respiratory viruses, influenza A virus (IAV) and SARS-CoV-2. We observed efficient viral replication, associated with the release of inflammatory cytokines and the induction of an antiviral interferon response, comparable to ex vivo infection in human lung explants. Endolysosomal entry could be confirmed as a potential host target for pharmacological intervention, and the potential repurposing potentials of fluoxetine and interferons for host-directed therapy previously seen in vitro could be recapitulated in the ex vivo model.


Assuntos
COVID-19 , Pulmão , Infecções por Orthomyxoviridae , Animais , Antivirais/farmacologia , COVID-19/patologia , Fluoxetina/farmacologia , Humanos , Vírus da Influenza A/fisiologia , Influenza Humana/patologia , Interferons , Pulmão/virologia , Camundongos , Infecções por Orthomyxoviridae/patologia , SARS-CoV-2/fisiologia , Técnicas de Cultura de Tecidos , Replicação Viral
7.
Bio Protoc ; 12(9): e4411, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35800458

RESUMO

Although herpes simplex virus 1 (HSV-1) is a well-studied virus, how the virus invades its human host via skin and mucosa to reach its receptors and initiate infection remains an open question. For studies of HSV-1 infection in skin, mice have been used as animal models. Murine skin infection can be induced after injection or scratching of the skin, which provides insights into disease pathogenesis but is clearly distinct from the natural entry route in human tissue. To explore the invasion route of HSV-1 on the tissue level, we established an ex vivo infection assay using skin explants. Here, we detail a protocol allowing the investigation of how the virus overcomes mechanical barriers in human skin to penetrate in keratinocytes and dermal fibroblasts. The protocol includes the preparation of total skin samples, skin shaves, and of separated epidermis and dermis, which is followed by incubation in virus suspension. The ex vivo infection assay allows the visualization, quantification, and characterization of single infected cells in the epidermis and dermis prior to viral replication and the virus-induced tissue damage. Hence, this experimental approach enables the identification of primary viral entry portals. Graphical abstract.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA