Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 599
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 181(3): 665-673.e10, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32289252

RESUMO

A growing number of bacteria are recognized to conduct electrons across their cell envelope, and yet molecular details of the mechanisms supporting this process remain unknown. Here, we report the atomic structure of an outer membrane spanning protein complex, MtrAB, that is representative of a protein family known to transport electrons between the interior and exterior environments of phylogenetically and metabolically diverse microorganisms. The structure is revealed as a naturally insulated biomolecular wire possessing a 10-heme cytochrome, MtrA, insulated from the membrane lipidic environment by embedding within a 26 strand ß-barrel formed by MtrB. MtrAB forms an intimate connection with an extracellular 10-heme cytochrome, MtrC, which presents its hemes across a large surface area for electrical contact with extracellular redox partners, including transition metals and electrodes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/ultraestrutura , Proteínas da Membrana Bacteriana Externa/ultraestrutura , Proteínas de Bactérias/ultraestrutura , Proteínas de Ligação a RNA/ultraestrutura , Fatores de Transcrição/ultraestrutura , Transportadores de Cassetes de Ligação de ATP/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Citocromos/metabolismo , Transporte de Elétrons/fisiologia , Elétrons , Heme/metabolismo , Complexos Multiproteicos/ultraestrutura , Oxirredução , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
2.
Cell ; 182(4): 919-932.e19, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32763156

RESUMO

Redox cycling of extracellular electron shuttles can enable the metabolic activity of subpopulations within multicellular bacterial biofilms that lack direct access to electron acceptors or donors. How these shuttles catalyze extracellular electron transfer (EET) within biofilms without being lost to the environment has been a long-standing question. Here, we show that phenazines mediate efficient EET through interactions with extracellular DNA (eDNA) in Pseudomonas aeruginosa biofilms. Retention of pyocyanin (PYO) and phenazine carboxamide in the biofilm matrix is facilitated by eDNA binding. In vitro, different phenazines can exchange electrons in the presence or absence of DNA and can participate directly in redox reactions through DNA. In vivo, biofilm eDNA can also support rapid electron transfer between redox active intercalators. Together, these results establish that PYO:eDNA interactions support an efficient redox cycle with rapid EET that is faster than the rate of PYO loss from the biofilm.


Assuntos
Biofilmes/crescimento & desenvolvimento , DNA/química , Pseudomonas aeruginosa/fisiologia , Piocianina/química , DNA/metabolismo , Técnicas Eletroquímicas , Eletrodos , Transporte de Elétrons/efeitos dos fármacos , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Oxirredução , Fenazinas/química , Fenazinas/metabolismo , Fenazinas/farmacologia , Piocianina/metabolismo
3.
Annu Rev Microbiol ; 77: 517-539, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713456

RESUMO

Extracellular electron transfer (EET) is the physiological process that enables the reduction or oxidation of molecules and minerals beyond the surface of a microbial cell. The first bacteria characterized with this capability were Shewanella and Geobacter, both reported to couple their growth to the reduction of iron or manganese oxide minerals located extracellularly. A key difference between EET and nearly every other respiratory activity on Earth is the need to transfer electrons beyond the cell membrane. The past decade has resolved how well-conserved strategies conduct electrons from the inner membrane to the outer surface. However, recent data suggest a much wider and less well understood collection of mechanisms enabling electron transfer to distant acceptors. This review reflects the current state of knowledge from Shewanella and Geobacter, specifically focusing on transfer across the outer membrane and beyond-an activity that enables reduction of highly variable minerals, electrodes, and even other organisms.


Assuntos
Elétrons , Geobacter , Transporte de Elétrons , Membrana Celular , Ferro
4.
Proc Natl Acad Sci U S A ; 120(17): e2206975120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068259

RESUMO

Living bio-nano systems for artificial photosynthesis are of growing interest. Typically, these systems use photoinduced charge transfer to provide electrons for microbial metabolic processes, yielding a biosynthetic solar fuel. Here, we demonstrate an entirely different approach to constructing a living bio-nano system, in which electrogenic bacteria respire semiconductor nanoparticles to support nanoparticle photocatalysis. Semiconductor nanocrystals are highly active and robust photocatalysts for hydrogen (H2) evolution, but their use is hindered by the oxidative side of the reaction. In this system, Shewanella oneidensis MR-1 provides electrons to a CdSe nanocrystalline photocatalyst, enabling visible light-driven H2 production. Unlike microbial electrolysis cells, this system requires no external potential. Illuminating this system at 530 nm yields continuous H2 generation for 168 h, which can be lengthened further by replenishing bacterial nutrients.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Compostos de Selênio , Shewanella , Pontos Quânticos/química , Compostos de Cádmio/química , Hidrogênio/metabolismo , Compostos de Selênio/química , Compostos de Selênio/metabolismo , Shewanella/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(19): e2119964119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35503913

RESUMO

Using a series of multiheme cytochromes, the metal-reducing bacterium Shewanella oneidensis MR-1 can perform extracellular electron transfer (EET) to respire redox-active surfaces, including minerals and electrodes outside the cell. While the role of multiheme cytochromes in transporting electrons across the cell wall is well established, these cytochromes were also recently found to facilitate long-distance (micrometer-scale) redox conduction along outer membranes and across multiple cells bridging electrodes. Recent studies proposed that long-distance conduction arises from the interplay of electron hopping and cytochrome diffusion, which allows collisions and electron exchange between cytochromes along membranes. However, the diffusive dynamics of the multiheme cytochromes have never been observed or quantified in vivo, making it difficult to assess their hypothesized contribution to the collision-exchange mechanism. Here, we use quantum dot labeling, total internal reflection fluorescence microscopy, and single-particle tracking to quantify the lateral diffusive dynamics of the outer membrane-associated decaheme cytochromes MtrC and OmcA, two key components of EET in S. oneidensis. We observe confined diffusion behavior for both quantum dot-labeled MtrC and OmcA along cell surfaces (diffusion coefficients DMtrC = 0.0192 ± 0.0018 µm2/s, DOmcA = 0.0125 ± 0.0024 µm2/s) and the membrane extensions thought to function as bacterial nanowires. We find that these dynamics can trace a path for electron transport via overlap of cytochrome trajectories, consistent with the long-distance conduction mechanism. The measured dynamics inform kinetic Monte Carlo simulations that combine direct electron hopping and redox molecule diffusion, revealing significant electron transport rates along cells and membrane nanowires.


Assuntos
Shewanella , Imagem Individual de Molécula , Membrana Celular/metabolismo , Citocromos/metabolismo , Transporte de Elétrons , Oxirredução , Shewanella/metabolismo
6.
Mol Biol Evol ; 40(8)2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37440531

RESUMO

Many aerobic microbes can utilize alternative electron acceptors under oxygen-limited conditions. In some cases, this is mediated by extracellular electron transfer (or EET), wherein electrons are transferred to extracellular oxidants such as iron oxide and manganese oxide minerals. Here, we show that an ammonia-oxidizer previously known to be strictly aerobic, Nitrosomonas communis, may have been able to utilize a poised electrode to maintain metabolic activity in anoxic conditions. The presence and activity of multiheme cytochromes in N. communis further suggest a capacity for EET. Molecular clock analysis shows that the ancestors of ß-proteobacterial ammonia oxidizers appeared after Earth's atmospheric oxygenation when the oxygen levels were >10-4pO2 (present atmospheric level [PAL]), consistent with aerobic origins. Equally important, phylogenetic reconciliations of gene and species trees show that the multiheme c-type EET proteins in Nitrosomonas and Nitrosospira lineages were likely acquired by gene transfer from γ-proteobacteria when the oxygen levels were between 0.1 and 1 pO2 (PAL). These results suggest that ß-proteobacterial EET evolved during the Proterozoic when oxygen limitation was widespread, but oxidized minerals were abundant.


Assuntos
Amônia , Gammaproteobacteria , Oxirredução , Amônia/metabolismo , Elétrons , Filogenia , Oxigênio , Genes Arqueais , Gammaproteobacteria/metabolismo
7.
Small ; 20(7): e2304754, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37632311

RESUMO

Microbial fuel cells (MFCs) are of great potential for wastewater remediation and chemical energy recovery. Nevertheless, limited by inefficient electron transfer between microorganisms and electrode, the remediation capacity and output power density of MFCs are still far away from the demand of practical application. Herein, a pore-matching strategy is reported to develop uniform electroactive biofilms by inoculating microorganisms inside a pore-matched sponge, which is assembled of core-shell polyaniline@carbon nanotube (PANI@CNT). The maximum power density achieved by the PANI@CNT bioanode is 7549.4 ± 27.6 mW m-2 , which is higher than the excellent MFCs with proton exchange membrane reported to date, while the coulombic efficiency also attains a considerable 91.7 ± 1.2%. The PANI@CNT sponge enriches the exoelectrogen Geobacter significantly, and is proved to play the role of conductive pili in direct electron transfer as it down-regulates the gene encoding pilA. This work exemplifies a practicable strategy to develop excellent bioanode to boost electron extraction in MFCs and provides in-depth insights into the enhancement mechanism.


Assuntos
Compostos de Anilina , Fontes de Energia Bioelétrica , Nanotubos de Carbono , Elétrons , Transporte de Elétrons , Fímbrias Bacterianas , Condutividade Elétrica , Eletrodos , Nanotubos de Carbono/química
8.
Small ; 20(25): e2309648, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38234134

RESUMO

The utility of electrochemical active biofilm in bioelectrochemical systems has received considerable attention for harvesting energy and chemical products. However, the slow electron transfer between biofilms and electrodes hinders the enhancement of performance and still remains challenging. Here, using Fe3O4 /L-Cys nanoparticles as precursors to induce biomineralization, a facile strategy for the construction of an effective electron transfer pathway through biofilm and biological/inorganic interface is proposed, and the underlying mechanisms are elucidated. Taking advantage of an on-chip interdigitated microelectrode array (IDA), the conductive current of biofilm that is related to the electron transfer process within biofilm is characterized, and a 2.10-fold increase in current output is detected. The modification of Fe3O4/L-Cys on the electrode surface facilitates the electron transfer between the biofilm and the electrode, as the bio/inorganic interface electron transfer resistance is only 16% compared to the control. The in-situ biosynthetic Fe-containing nanoparticles (e.g., FeS) enhance the transmembrane EET and the EET within biofilm, and the peak conductivity increases 3.4-fold compared to the control. The in-situ biosynthesis method upregulates the genes involved in energy metabolism and electron transfer from the transcriptome analysis. This study enriches the insights of biosynthetic nanoparticles on electron transfer process, holding promise in bioenergy conversion.


Assuntos
Biofilmes , Transporte de Elétrons , Técnicas Eletroquímicas/métodos , Compostos Ferrosos/química , Eletrodos , Nanopartículas/química , Fontes de Energia Bioelétrica
9.
Appl Environ Microbiol ; 90(8): e0079524, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39082847

RESUMO

Cable bacteria are filamentous bacteria that couple the oxidation of sulfide in sediments to the reduction of oxygen via long-distance electron transport over centimeter distances through periplasmic wires. However, the capability of cable bacteria to perform extracellular electron transfer to acceptors, such as electrodes, has remained elusive. In this study, we demonstrate that living cable bacteria actively move toward electrodes in different bioelectrochemical systems. Carbon felt and carbon fiber electrodes poised at +200 mV attracted live cable bacteria from the sediment. When the applied potential was switched off, cable bacteria retracted from the electrode. qPCR and scanning electron microscopy corroborated this finding and revealed cable bacteria in higher abundance present on the electrode surface compared with unpoised controls. These experiments raise new possibilities to study metabolism of cable bacteria and cultivate them in bioelectrochemical devices for bioelectronic applications, such as biosensing and bioremediation. IMPORTANCE: Extracellular electron transfer is a metabolic function associated with electroactive bacteria wherein electrons are exchanged with external electron acceptors or donors. This feature has enabled the development of several applications, such as biosensing, carbon capture, and energy recovery. Cable bacteria are a unique class of long, filamentous microbes that perform long-distance electron transport in freshwater and marine sediments. In this study, we demonstrate the attraction of cable bacteria toward carbon electrodes and demonstrate their potential electroactivity. This finding enables electronic control and monitoring of the metabolism of cable bacteria and may, in turn, aid in the development of bioelectronic applications.


Assuntos
Bactérias , Fontes de Energia Bioelétrica , Eletrodos , Eletrodos/microbiologia , Transporte de Elétrons , Bactérias/metabolismo , Bactérias/genética , Fontes de Energia Bioelétrica/microbiologia , Carbono/metabolismo , Sedimentos Geológicos/microbiologia , Oxirredução , Técnicas Eletroquímicas
10.
Appl Environ Microbiol ; 90(5): e0041424, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38563750

RESUMO

Lactococcus lactis, a lactic acid bacterium used in food fermentations and commonly found in the human gut, is known to possess a fermentative metabolism. L. lactis, however, has been demonstrated to transfer metabolically generated electrons to external electron acceptors, a process termed extracellular electron transfer (EET). Here, we investigated an L. lactis mutant with an unusually high capacity for EET that was obtained in an adaptive laboratory evolution (ALE) experiment. First, we investigated how global gene expression had changed, and found that amino acid metabolism and nucleotide metabolism had been affected significantly. One of the most significantly upregulated genes encoded the NADH dehydrogenase NoxB. We found that this upregulation was due to a mutation in the promoter region of NoxB, which abolished carbon catabolite repression. A unique role of NoxB in EET could be attributed and it was directly verified, for the first time, that NoxB could support respiration in L. lactis. NoxB, was shown to be a novel type-II NADH dehydrogenase that is widely distributed among gut microorganisms. This work expands our understanding of EET in Gram-positive electroactive microorganisms and the special significance of a novel type-II NADH dehydrogenase in EET.IMPORTANCEElectroactive microorganisms with extracellular electron transfer (EET) ability play important roles in biotechnology and ecosystems. To date, there have been many investigations aiming at elucidating the mechanisms behind EET, and determining the relevance of EET for microorganisms in different niches. However, how EET can be enhanced and harnessed for biotechnological applications has been less explored. Here, we compare the transcriptomes of an EET-enhanced L. lactis mutant with its parent and elucidate the underlying reason for its superior performance. We find that one of the most significantly upregulated genes is the gene encoding the NADH dehydrogenase NoxB, and that upregulation is due to a mutation in the catabolite-responsive element that abolishes carbon catabolite repression. We demonstrate that NoxB has a special role in EET, and furthermore show that it supports respiration to oxygen, which has never been done previously. In addition, a search reveals that this novel NoxB-type NADH dehydrogenase is widely distributed among gut microorganisms.


Assuntos
Proteínas de Bactérias , Lactococcus lactis , NADH Desidrogenase , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactococcus lactis/enzimologia , Transporte de Elétrons , NADH Desidrogenase/metabolismo , NADH Desidrogenase/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Regulação Bacteriana da Expressão Gênica , Fermentação
11.
Crit Rev Biotechnol ; 44(3): 352-372, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36775662

RESUMO

Microbial electrosynthesis (MES) is a promising technology that mainly utilizes microbial cells to convert CO2 into value-added chemicals using electrons provided by the cathode. However, the low electron transfer rate is a solid bottleneck hindering the further application of MES. Thus, as an effective strategy, genetic tools play a key role in MES for enhancing the electron transfer rate and diversity of production. We describe a set of genetic strategies based on fundamental characteristics and current successes and discuss their functional mechanisms in driving microbial electrocatalytic reactions to fully comprehend the roles and uses of genetic tools in MES. This paper also analyzes the process of nanomaterial application in extracellular electron transfer (EET). It provides a technique that combines nanomaterials and genetic tools to increase MES efficiency, because nanoparticles have a role in the production of functional genes in EET although genetic tools can subvert MES, it still has issues with difficult transformation and low expression levels. Genetic tools remain one of the most promising future strategies for advancing the MES process despite these challenges.


Assuntos
Dióxido de Carbono , Engenharia Metabólica , Dióxido de Carbono/metabolismo , Transporte de Elétrons , Eletrodos
12.
Biotechnol Bioeng ; 121(6): 2002-2012, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38555482

RESUMO

The physiological role of Geobacter sulfurreducens extracellular cytochrome filaments is a matter of debate and the development of proposed electronic device applications of cytochrome filaments awaits methods for large-scale cytochrome nanowire production. Functional studies in G. sulfurreducens are stymied by the broad diversity of redox-active proteins on the outer cell surface and the redundancy and plasticity of extracellular electron transport routes. G. sulfurreducens is a poor chassis for producing cytochrome nanowires for electronics because of its slow, low-yield, anaerobic growth. Here we report that filaments of the G. sulfurreducens cytochrome OmcS can be heterologously expressed in Shewanella oneidensis. Multiple lines of evidence demonstrated that a strain of S. oneidensis, expressing the G. sulfurreducens OmcS gene on a plasmid, localized OmcS on the outer cell surface. Atomic force microscopy revealed filaments with the unique morphology of OmcS filaments emanating from cells. Electron transfer to OmcS appeared to require a functional outer-membrane porin-cytochrome conduit. The results suggest that S. oneidensis, which grows rapidly to high culture densities under aerobic conditions, may be suitable for the development of a chassis for producing cytochrome nanowires for electronics applications and may also be a good model microbe for elucidating cytochrome filament function in anaerobic extracellular electron transfer.


Assuntos
Citocromos , Geobacter , Shewanella , Shewanella/genética , Shewanella/metabolismo , Shewanella/enzimologia , Geobacter/genética , Geobacter/metabolismo , Citocromos/metabolismo , Citocromos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte de Elétrons , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Environ Sci Technol ; 58(10): 4670-4679, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38411077

RESUMO

Bacteria utilize electron conduction in their communities to drive their metabolism, which has led to the development of various environmental technologies, such as electrochemical microbial systems and anaerobic digestion. It is challenging to measure the conductivity among bacterial cells when they hardly form stable biofilms on electrodes. This makes it difficult to identify the biomolecules involved in electron conduction. In the present study, we aimed to identify c-type cytochromes involved in electron conduction in Shewanella oneidensis MR-1 and examine the molecular mechanisms. We established a colony-based bioelectronic system that quantifies bacterial electrical conductivity, without the need for biofilm formation on electrodes. This system enabled the quantification of the conductivity of gene deletion mutants that scarcely form biofilms on electrodes, demonstrating that c-type cytochromes, MtrC and OmcA, are involved in electron conduction. Furthermore, the use of colonies of gene deletion mutants demonstrated that flavins participate in electron conduction by binding to OmcA, providing insight into the electron conduction pathways at the molecular level. Furthermore, phenazine-based electron transfer in Pseudomonas aeruginosa PAO1 and flavin-based electron transfer in Bacillus subtilis 3610 were confirmed, indicating that this colony-based system can be used for various bacteria, including weak electricigens.


Assuntos
Flavinas , Shewanella , Eletroquímica , Flavinas/metabolismo , Elétrons , Citocromos/metabolismo , Transporte de Elétrons , Shewanella/química , Shewanella/genética , Shewanella/metabolismo
14.
Environ Sci Technol ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39226031

RESUMO

Attention is widely drawn to the extracellular electron transfer (EET) process of electroactive bacteria (EAB) for water purification, but its efficacy is often hindered in complex environmental matrices. In this study, the engineered living materials with EET capability (e-ELMs) were for the first time created with customized geometric configurations for pollutant removal using three-dimensional (3D) bioprinting platform. By combining EAB and tailored viscoelastic matrix, a biocompatible and tunable electroactive bioink for 3D bioprinting was initially developed with tuned rheological properties, enabling meticulous manipulation of microbial spatial arrangement and density. e-ELMs with different spatial microstructures were then designed and constructed by adjusting the filament diameter and orientation during the 3D printing process. Simulations of diffusion and fluid dynamics collectively showcase internal mass transfer rates and EET efficiency of e-ELMs with different spatial microstructures, contributing to the outstanding decontamination performances. Our research propels 3D bioprinting technology into the environmental realm, enabling the creation of intricately designed e-ELMs and providing promising routes to address the emerging water pollution concerns.

15.
Environ Sci Technol ; 58(40): 17766-17776, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39315852

RESUMO

Pyrogenic carbon is considered an enhancer to H2-yielding dark fermentation (DF), but little is known about how it regulates extracellular electron transfer (EET) and influences transmembrane respiratory chains and intracellular metabolisms. This study addressed these knowledge gaps and demonstrated that wood waste pyrogenic carbon (biochar) could significantly improve the DF performance; e.g., addition of pyrogenic carbon produced by pyrolysis at 800 °C (PC800) increased H2 yield by 369.7%. Biochemical quantification, electrochemical analysis, and electron respiratory chain inhibition tests revealed that PC800 promoted the extracellular flavin-based electron transfer process and further activated the acceleration of the transmembrane electron transfer. Comparative metagenome/metatranscriptome analyses indicated that the flavin-containing Rnf complex was the potential transmembrane respiratory enzyme associated with PC800-mediated EET. Based on NADH/NAD+ circulation, the promoted Rnf complex could stimulate the functions of the electron bifurcating Etf/Bcd complex and startup of glycolysis. The promoted Etf/Bcd could further contribute to balance the NADH/NAD+ level for glycolytic reactions and meanwhile provide reduced ferredoxin for group A1 [FeFe]-hydrogenases. This proton-energy-linked mechanism could achieve coupling production of ATP and H2. This study verified the important roles of pyrogenic carbon in mediating EET and transmembrane/intracellular pathways and revealed the crucial roles of electron bifurcation in DF for hydrogen production.


Assuntos
Fermentação , Hidrogênio , Transporte de Elétrons , Hidrogênio/metabolismo , Carbono/metabolismo , Flavinas/metabolismo , Elétrons
16.
Environ Sci Technol ; 58(40): 17756-17765, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39323212

RESUMO

Humic substances are organic substances prevalent in various natural environments, such as wetlands, which are globally important sources of methane (CH4) emissions. Extracellular electron transfer (EET)-mediated anaerobic oxidation of methane (AOM)-coupled with humic substances reduction plays an important role in the reduction of methane emissions from wetlands, where magnetite is prevalent. However, little is known about the magnetite-mediated EET mechanisms in AOM-coupled humic substances reduction. This study shows that magnetite promotes the reduction of the AOM-coupled humic substances model compound, anthraquinone-2,6-disulfonate (AQDS). 13CH4 labeling experiments further indicated that AOM-coupled AQDS reduction occurred, and acetate was an intermediate product of AOM. Moreover, 13CH313COONa labeling experiments showed that AOM-generated acetate can be continuously reduced to methane in a state of dynamic equilibrium. In the presence of magnetite, the EET capacity of the microbial community increased, and Methanosarcina played a key role in the AOM-coupled AQDS reduction. Pure culture experiments showed that Methanosarcina barkeri can independently perform AOM-coupled AQDS reduction and that magnetite increased its surface protein redox activity. The metatranscriptomic results indicated that magnetite increased the expression of membrane-bound proteins involved in energy metabolism and electron transfer in M. barkeri, thereby increasing the EET capacity. This phenomenon potentially elucidates the rationale as to why magnetite promoted AOM-coupled AQDS reduction.


Assuntos
Óxido Ferroso-Férrico , Substâncias Húmicas , Metano , Oxirredução , Metano/metabolismo , Anaerobiose , Transporte de Elétrons , Óxido Ferroso-Férrico/química
17.
Environ Sci Technol ; 58(18): 7880-7890, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38670926

RESUMO

Flooding of paddy fields during the rice growing season enhances arsenic (As) mobilization and greenhouse gas (e.g., methane) emissions. In this study, an adsorbent for dissolved organic matter (DOM), namely, activated carbon (AC), was applied to an arsenic-contaminated paddy soil. The capacity for simultaneously alleviating soil carbon emissions and As accumulation in rice grains was explored. Soil microcosm incubations and 2-year pot experimental results indicated that AC amendment significantly decreased porewater DOM, Fe(III) reduction/Fe2+ release, and As release. More importantly, soil carbon dioxide and methane emissions were mitigated in anoxic microcosm incubations. Porewater DOM of pot experiments mainly consisted of humic-like fluorophores with a molecular structure of lignins and tannins, which could mediate microbial reduction of Fe(III) (oxyhydr)oxides. Soil microcosm incubation experiments cospiking with a carbon source and AC further consolidated that DOM electron shuttling and microbial carbon source functions were crucial for soil Fe(III) reduction, thus driving paddy soil As release and carbon emission. Additionally, the application of AC alleviated rice grain dimethylarsenate accumulation over 2 years. Our results highlight the importance of microbial extracellular electron transfer in driving paddy soil anaerobic respiration and decreasing porewater DOM in simultaneously remediating As contamination and mitigating methane emission in paddy fields.


Assuntos
Arsênio , Carbono , Oryza , Solo , Arsênio/metabolismo , Solo/química , Poluentes do Solo , Carvão Vegetal/química , Metano
18.
Environ Sci Technol ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39370945

RESUMO

Mercury nanoparticles are abundant in natural environments. Yet, understanding their contribution to global biogeochemical cycling of mercury remains elusive. Here, we show that microbial transformation of nanoparticulate divalent mercury can be an important source of elemental and methylmercury.Geobacter sulfurreducensPCA, a model bacterium predominant in anoxic environments (e.g., paddy soils), simultaneously reduces and methylates nanoparticulate Hg(II). Moreover, the relative prevalence of these two competing processes and the dominant transformation pathways differ markedly between nanoparticulate Hg(II) and its dissolved and bulk-sized counterparts. Notably, even when intracellular reduction of Hg(II) nanoparticles is constrained by cross-membrane transport (a rate-limiting step that also regulates methylation), the overall Hg(0) formation remains substantial due to extracellular electron transfer. With multiple lines of evidence based on microscopic and electrochemical analyses, gene knockout experiments, and theoretical calculations, we show that nanoparticulate Hg(II) is preferentially associated with c-type cytochromes on cell membranes and has a higher propensity for accepting electrons from the heme groups than adsorbed ionic Hg(II), which explains the surprisingly larger extent of reduction of nanoparticles than dissolved Hg(II) at relatively high mercury loadings. These findings have important implications for the assessment of global mercury budgets as well as the bioavailability of nanominerals and mineral nanoparticles.

19.
Environ Res ; : 120099, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39374750

RESUMO

Tetramethylammonium hydroxide (TMAH), an extensively utilized photoresist developer, is frequently present in ammonium-rich wastewater from semiconductor manufacturing, and its substantial ecotoxicity should not be underestimated. This study systematically investigated the effects of TMAH on the anammox granular sludge (AnGS) system and elucidated its inhibitory mechanisms. The results demonstrated that the median inhibitory concentration of TMAH for anammox was 84.85 mg/L. The nitrogen removal performance of the system was significantly decreased after long-term exposure to TMAH (0 - 200 mg/L) for 30 days (p < 0.05), but it showed adaptability to certain concentrations (≤ 50 mg/L). Concurrently, the stability of the granules decreased dramatically, resulting in the breakdown of AnGS. Further investigations indicated that TMAH exposure increased the secretion of extracellular polymeric substances but weakened their defense function. The increase in reactive oxygen species resulted in damage to the cell membrane. Reduced activity of anammox bacteria, impeded electron transfer, and changes in enzyme activity suggested that TMAH affected the metabolic activity. Microbiological analysis revealed that TMAH caused a decrease in the abundance of anammox bacteria and a weakening of symbiotic interactions within the microbial community. These results provide valuable guidance for the AnGS system application in chip wastewater treatment.

20.
Environ Res ; : 120093, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39368596

RESUMO

Electrochemically active biofilms (EABs) for nitrite detection have high specificity, rapid response, operational simplicity, and extended lifespan advantages. However, their scale production remains challenging due to time-consuming and uniform preparation. In this study, a novel approach was proposed to fast fabricate an EAB biosensor with a synthetic biofilm electrode for nitrite detection. The biofilm electrode was prepared by coating bioinks with varying conductive materials onto the surface of the graphite sheets, showing short incubation time and good reproducibility. Incorporating conductive materials into the bioinks remarkably enhanced the maximum voltage of the first cycle of bioelectrode incubation, with an increase of up to 633% for carbon nanofiber. The nitrite reduction current was amplified by a factor of 2.97, due to the enhancement of extracellular electron transfer (EET). The developed nitrite biosensor exhibited a detection range of 0.1 to 15 mg NO-2-N L-1, with a high sensitivity of 610.8 µA mM-1 cm-2, and a stabilization operation time of at least 280 cycles. This study not only provided valuable insights into conductive materials for synthetic biofilms but also presented a practical approach for the rapid preparation, scale production, and optimization of highly sensitive and stable EAB sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA