Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53.444
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 42(1): 153-178, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941602

RESUMO

The intestine is the largest peripheral lymphoid organ in animals, including humans, and interacts with a vast array of microorganisms called the gut microbiota. Comprehending the symbiotic relationship between the gut microbiota and our immune system is essential not only for the field of immunology but also for understanding the pathogenesis of various systemic diseases, including cancer, cardiometabolic disorders, and extraintestinal autoimmune conditions. Whereas microbe-derived antigens are crucial for activating the intestinal immune system, particularly T and B cells, as environmental cues, microbes and their metabolites play a critical role in directing the differentiation of these immune cells. Microbial metabolites are regarded as messengers from the gut microbiota, since bacteria have the ability to produce unique molecules that humans cannot, and many immune cells in the intestine express receptors for these molecules. This review highlights the distinct relationships between microbial metabolites and the differentiation and function of the immune system.


Assuntos
Microbioma Gastrointestinal , Humanos , Animais , Microbioma Gastrointestinal/imunologia , Diferenciação Celular , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Bactérias/imunologia , Bactérias/metabolismo
2.
Cell ; 187(5): 1177-1190.e18, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38366593

RESUMO

Phospholipids containing a single polyunsaturated fatty acyl tail (PL-PUFA1s) are considered the driving force behind ferroptosis, whereas phospholipids with diacyl-PUFA tails (PL-PUFA2s) have been rarely characterized. Dietary lipids modulate ferroptosis, but the mechanisms governing lipid metabolism and ferroptosis sensitivity are not well understood. Our research revealed a significant accumulation of diacyl-PUFA phosphatidylcholines (PC-PUFA2s) following fatty acid or phospholipid treatments, correlating with cancer cell sensitivity to ferroptosis. Depletion of PC-PUFA2s occurred in aging and Huntington's disease brain tissue, linking it to ferroptosis. Notably, PC-PUFA2s interacted with the mitochondrial electron transport chain, generating reactive oxygen species (ROS) for initiating lipid peroxidation. Mitochondria-targeted antioxidants protected cells from PC-PUFA2-induced mitochondrial ROS (mtROS), lipid peroxidation, and cell death. These findings reveal a critical role for PC-PUFA2s in controlling mitochondria homeostasis and ferroptosis in various contexts and explain the ferroptosis-modulating mechanisms of free fatty acids. PC-PUFA2s may serve as diagnostic and therapeutic targets for modulating ferroptosis.


Assuntos
Gorduras na Dieta , Ferroptose , Fosfolipídeos , Ácidos Graxos , Fosfatidilcolinas , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Espécies Reativas de Oxigênio , Gorduras na Dieta/metabolismo
3.
Cell ; 186(23): 5054-5067.e16, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37949058

RESUMO

Fatty acids (FAs) play a central metabolic role in living cells as constituents of membranes, cellular energy reserves, and second messenger precursors. A 2.6 MDa FA synthase (FAS), where the enzymatic reactions and structures are known, is responsible for FA biosynthesis in yeast. Essential in the yeast FAS catalytic cycle is the acyl carrier protein (ACP) that actively shuttles substrates, biosynthetic intermediates, and products from one active site to another. We resolve the S. cerevisiae FAS structure at 1.9 Å, elucidating cofactors and water networks involved in their recognition. Structural snapshots of ACP domains bound to various enzymatic domains allow the reconstruction of a full yeast FA biosynthesis cycle. The structural information suggests that each FAS functional unit could accommodate exogenous proteins to incorporate various enzymatic activities, and we show proof-of-concept experiments where ectopic proteins are used to modulate FAS product profiles.


Assuntos
Proteína de Transporte de Acila , Ácidos Graxos , Saccharomyces cerevisiae , Proteína de Transporte de Acila/química , Domínio Catalítico , Ácidos Graxos/biossíntese , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Cell ; 186(4): 748-763.e15, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36758548

RESUMO

Although many prokaryotes have glycolysis alternatives, it's considered as the only energy-generating glucose catabolic pathway in eukaryotes. Here, we managed to create a hybrid-glycolysis yeast. Subsequently, we identified an inositol pyrophosphatase encoded by OCA5 that could regulate glycolysis and respiration by adjusting 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) levels. 5-InsP7 levels could regulate the expression of genes involved in glycolysis and respiration, representing a global mechanism that could sense ATP levels and regulate central carbon metabolism. The hybrid-glycolysis yeast did not produce ethanol during growth under excess glucose and could produce 2.68 g/L free fatty acids, which is the highest reported production in shake flask of Saccharomyces cerevisiae. This study demonstrated the significance of hybrid-glycolysis yeast and determined Oca5 as an inositol pyrophosphatase controlling the balance between glycolysis and respiration, which may shed light on the role of inositol pyrophosphates in regulating eukaryotic metabolism.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Difosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfatos de Inositol/genética , Fosfatos de Inositol/metabolismo , Glicólise/genética , Respiração , Pirofosfatases/metabolismo , Glucose/metabolismo
5.
Cell ; 186(9): 1968-1984.e20, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37040760

RESUMO

Somatic mutations in nonmalignant tissues accumulate with age and injury, but whether these mutations are adaptive on the cellular or organismal levels is unclear. To interrogate genes in human metabolic disease, we performed lineage tracing in mice harboring somatic mosaicism subjected to nonalcoholic steatohepatitis (NASH). Proof-of-concept studies with mosaic loss of Mboat7, a membrane lipid acyltransferase, showed that increased steatosis accelerated clonal disappearance. Next, we induced pooled mosaicism in 63 known NASH genes, allowing us to trace mutant clones side by side. This in vivo tracing platform, which we coined MOSAICS, selected for mutations that ameliorate lipotoxicity, including mutant genes identified in human NASH. To prioritize new genes, additional screening of 472 candidates identified 23 somatic perturbations that promoted clonal expansion. In validation studies, liver-wide deletion of Tbx3, Bcl6, or Smyd2 resulted in protection against hepatic steatosis. Selection for clonal fitness in mouse and human livers identifies pathways that regulate metabolic disease.


Assuntos
Doenças Metabólicas , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Masculino , Camundongos , Histona-Lisina N-Metiltransferase/genética , Fígado/metabolismo , Mosaicismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo
6.
Cell ; 186(18): 3793-3809.e26, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37562401

RESUMO

Hepatocytes, the major metabolic hub of the body, execute functions that are human-specific, altered in human disease, and currently thought to be regulated through endocrine and cell-autonomous mechanisms. Here, we show that key metabolic functions of human hepatocytes are controlled by non-parenchymal cells (NPCs) in their microenvironment. We developed mice bearing human hepatic tissue composed of human hepatocytes and NPCs, including human immune, endothelial, and stellate cells. Humanized livers reproduce human liver architecture, perform vital human-specific metabolic/homeostatic processes, and model human pathologies, including fibrosis and non-alcoholic fatty liver disease (NAFLD). Leveraging species mismatch and lipidomics, we demonstrate that human NPCs control metabolic functions of human hepatocytes in a paracrine manner. Mechanistically, we uncover a species-specific interaction whereby WNT2 secreted by sinusoidal endothelial cells controls cholesterol uptake and bile acid conjugation in hepatocytes through receptor FZD5. These results reveal the essential microenvironmental regulation of hepatic metabolism and its human-specific aspects.


Assuntos
Células Endoteliais , Fígado , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Hepatócitos/metabolismo , Células de Kupffer/metabolismo , Fígado/citologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fibrose/metabolismo
7.
Cell ; 185(7): 1172-1188.e28, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35303419

RESUMO

Intestinal mucus forms the first line of defense against bacterial invasion while providing nutrition to support microbial symbiosis. How the host controls mucus barrier integrity and commensalism is unclear. We show that terminal sialylation of glycans on intestinal mucus by ST6GALNAC1 (ST6), the dominant sialyltransferase specifically expressed in goblet cells and induced by microbial pathogen-associated molecular patterns, is essential for mucus integrity and protecting against excessive bacterial proteolytic degradation. Glycoproteomic profiling and biochemical analysis of ST6 mutations identified in patients show that decreased sialylation causes defective mucus proteins and congenital inflammatory bowel disease (IBD). Mice harboring a patient ST6 mutation have compromised mucus barriers, dysbiosis, and susceptibility to intestinal inflammation. Based on our understanding of the ST6 regulatory network, we show that treatment with sialylated mucin or a Foxo3 inhibitor can ameliorate IBD.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Sialiltransferases/genética , Animais , Homeostase , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Muco/metabolismo , Sialiltransferases/metabolismo , Simbiose
8.
Annu Rev Biochem ; 90: 245-285, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-33848425

RESUMO

Protein lysine acetylation is an important posttranslational modification that regulates numerous biological processes. Targeting lysine acetylation regulatory factors, such as acetyltransferases, deacetylases, and acetyl-lysine recognition domains, has been shown to have potential for treating human diseases, including cancer and neurological diseases. Over the past decade, many other acyl-lysine modifications, such as succinylation, crotonylation, and long-chain fatty acylation, have also been investigated and shown to have interesting biological functions. Here, we provide an overview of the functions of different acyl-lysine modifications in mammals. We focus on lysine acetylation as it is well characterized, and principles learned from acetylation are useful for understanding the functions of other lysine acylations. We pay special attention to the sirtuins, given that the study of sirtuins has provided a great deal of information about the functions of lysine acylation. We emphasize the regulation of sirtuins to illustrate that their regulation enables cells to respond to various signals and stresses.


Assuntos
Lisina/metabolismo , Mamíferos/metabolismo , Sirtuínas/química , Sirtuínas/metabolismo , Acetilação , Acilação , Animais , Cromatina/genética , Cromatina/metabolismo , Histona Acetiltransferases/metabolismo , Humanos , Processamento de Proteína Pós-Traducional
9.
Cell ; 184(10): 2537-2564, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33989548

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide. Its more advanced subtype, nonalcoholic steatohepatitis (NASH), connotes progressive liver injury that can lead to cirrhosis and hepatocellular carcinoma. Here we provide an in-depth discussion of the underlying pathogenetic mechanisms that lead to progressive liver injury, including the metabolic origins of NAFLD, the effect of NAFLD on hepatic glucose and lipid metabolism, bile acid toxicity, macrophage dysfunction, and hepatic stellate cell activation, and consider the role of genetic, epigenetic, and environmental factors that promote fibrosis progression and risk of hepatocellular carcinoma in NASH.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Carcinoma Hepatocelular/patologia , Humanos , Fígado/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/patologia
10.
Cell ; 180(6): 1130-1143.e20, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32160528

RESUMO

Fatty acid synthases (FASs) are central to metabolism but are also of biotechnological interest for the production of fine chemicals and biofuels from renewable resources. During fatty acid synthesis, the growing fatty acid chain is thought to be shuttled by the dynamic acyl carrier protein domain to several enzyme active sites. Here, we report the discovery of a γ subunit of the 2.6 megadalton α6-ß6S. cerevisiae FAS, which is shown by high-resolution structures to stabilize a rotated FAS conformation and rearrange ACP domains from equatorial to axial positions. The γ subunit spans the length of the FAS inner cavity, impeding reductase activities of FAS, regulating NADPH turnover by kinetic hysteresis at the ketoreductase, and suppressing off-pathway reactions at the enoylreductase. The γ subunit delineates the functional compartment within FAS. As a scaffold, it may be exploited to incorporate natural and designed enzymatic activities that are not present in natural FAS.


Assuntos
Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/metabolismo , Aciltransferases/metabolismo , Sítios de Ligação , Domínio Catalítico , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X/métodos , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
11.
Cell ; 181(3): 716-727.e11, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32259488

RESUMO

Human cells are able to sense and adapt to variations in oxygen levels. Historically, much research in this field has focused on hypoxia-inducible factor (HIF) signaling and reactive oxygen species (ROS). Here, we perform genome-wide CRISPR growth screens at 21%, 5%, and 1% oxygen to systematically identify gene knockouts with relative fitness defects in high oxygen (213 genes) or low oxygen (109 genes), most without known connection to HIF or ROS. Knockouts of many mitochondrial pathways thought to be essential, including complex I and enzymes in Fe-S biosynthesis, grow relatively well at low oxygen and thus are buffered by hypoxia. In contrast, in certain cell types, knockout of lipid biosynthetic and peroxisomal genes causes fitness defects only in low oxygen. Our resource nominates genetic diseases whose severity may be modulated by oxygen and links hundreds of genes to oxygen homeostasis.


Assuntos
Metabolismo dos Lipídeos/genética , Mitocôndrias/genética , Oxigênio/metabolismo , Transcriptoma/genética , Hipóxia Celular , Testes Genéticos/métodos , Estudo de Associação Genômica Ampla/métodos , Células HEK293 , Humanos , Hipóxia/metabolismo , Células K562 , Metabolismo dos Lipídeos/fisiologia , Lipídeos/genética , Lipídeos/fisiologia , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
12.
Cell ; 180(1): 135-149.e14, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31883797

RESUMO

Autophagy is a conserved catabolic homeostasis process central for cellular and organismal health. During autophagy, small single-membrane phagophores rapidly expand into large double-membrane autophagosomes to encapsulate diverse cargoes for degradation. It is thought that autophagic membranes are mainly derived from preformed organelle membranes. Instead, here we delineate a pathway that expands the phagophore membrane by localized phospholipid synthesis. Specifically, we find that the conserved acyl-CoA synthetase Faa1 accumulates on nucleated phagophores and locally activates fatty acids (FAs) required for phagophore elongation and autophagy. Strikingly, using isotopic FA tracing, we directly show that Faa1 channels activated FAs into the synthesis of phospholipids and promotes their assembly into autophagic membranes. Indeed, the first committed steps of de novo phospholipid synthesis at the ER, which forms stable contacts with nascent autophagosomes, are essential for autophagy. Together, our work illuminates how cells spatially tune synthesis and flux of phospholipids for autophagosome biogenesis during autophagy.


Assuntos
Autofagia/fisiologia , Ácidos Graxos/metabolismo , Fagossomos/metabolismo , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Membrana Celular/metabolismo , Coenzima A Ligases/metabolismo , Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Fagossomos/fisiologia , Fosfolipídeos/biossíntese , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Cell ; 179(5): 1112-1128.e26, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730853

RESUMO

Plasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development.


Assuntos
Genoma de Protozoário , Estágios do Ciclo de Vida/genética , Fígado/metabolismo , Fígado/parasitologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/genética , Alelos , Amino Açúcares/biossíntese , Animais , Culicidae/parasitologia , Eritrócitos/parasitologia , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Técnicas de Inativação de Genes , Genótipo , Modelos Biológicos , Mutação/genética , Parasitos/genética , Parasitos/crescimento & desenvolvimento , Fenótipo , Plasmodium berghei/metabolismo , Ploidias , Reprodução
14.
Cell ; 177(6): 1522-1535.e14, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31130380

RESUMO

Metabolic coordination between neurons and astrocytes is critical for the health of the brain. However, neuron-astrocyte coupling of lipid metabolism, particularly in response to neural activity, remains largely uncharacterized. Here, we demonstrate that toxic fatty acids (FAs) produced in hyperactive neurons are transferred to astrocytic lipid droplets by ApoE-positive lipid particles. Astrocytes consume the FAs stored in lipid droplets via mitochondrial ß-oxidation in response to neuronal activity and turn on a detoxification gene expression program. Our findings reveal that FA metabolism is coupled in neurons and astrocytes to protect neurons from FA toxicity during periods of enhanced activity. This coordinated mechanism for metabolizing FAs could underlie both homeostasis and a variety of disease states of the brain.


Assuntos
Astrócitos/metabolismo , Ácidos Graxos/metabolismo , Neurônios/metabolismo , Animais , Apolipoproteínas E/metabolismo , Apolipoproteínas E/fisiologia , Astrócitos/fisiologia , Encéfalo/metabolismo , Ácidos Graxos/toxicidade , Homeostase , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley
15.
Cell ; 178(3): 686-698.e14, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31257031

RESUMO

Immune cells residing in white adipose tissue have been highlighted as important factors contributing to the pathogenesis of metabolic diseases, but the molecular regulators that drive adipose tissue immune cell remodeling during obesity remain largely unknown. Using index and transcriptional single-cell sorting, we comprehensively map all adipose tissue immune populations in both mice and humans during obesity. We describe a novel and conserved Trem2+ lipid-associated macrophage (LAM) subset and identify markers, spatial localization, origin, and functional pathways associated with these cells. Genetic ablation of Trem2 in mice globally inhibits the downstream molecular LAM program, leading to adipocyte hypertrophy as well as systemic hypercholesterolemia, body fat accumulation, and glucose intolerance. These findings identify Trem2 signaling as a major pathway by which macrophages respond to loss of tissue-level lipid homeostasis, highlighting Trem2 as a key sensor of metabolic pathologies across multiple tissues and a potential therapeutic target in metabolic diseases.


Assuntos
Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Dieta Hiperlipídica , Intolerância à Glucose , Humanos , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Metabolismo dos Lipídeos/genética , Lipídeos/análise , Macrófagos/citologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , Monócitos/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Transdução de Sinais , Análise de Célula Única
16.
Cell ; 177(5): 1201-1216.e19, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31031005

RESUMO

Innate immune responses are intricately linked with intracellular metabolism of myeloid cells. Toll-like receptor (TLR) stimulation shifts intracellular metabolism toward glycolysis, while anti-inflammatory signals depend on enhanced mitochondrial respiration. How exogenous metabolic signals affect the immune response is unknown. We demonstrate that TLR-dependent responses of dendritic cells (DCs) are exacerbated by a high-fatty-acid (FA) metabolic environment. FAs suppress the TLR-induced hexokinase activity and perturb tricarboxylic acid cycle metabolism. These metabolic changes enhance mitochondrial reactive oxygen species (mtROS) production and, in turn, the unfolded protein response (UPR), leading to a distinct transcriptomic signature with IL-23 as hallmark. Interestingly, chemical or genetic suppression of glycolysis was sufficient to induce this specific immune response. Conversely, reducing mtROS production or DC-specific deficiency in XBP1 attenuated IL-23 expression and skin inflammation in an IL-23-dependent model of psoriasis. Thus, fine-tuning of innate immunity depends on optimization of metabolic demands and minimization of mtROS-induced UPR.


Assuntos
Microambiente Celular/imunologia , Células Dendríticas/imunologia , Imunidade Inata , Mitocôndrias/imunologia , Espécies Reativas de Oxigênio/imunologia , Resposta a Proteínas não Dobradas/imunologia , Animais , Microambiente Celular/genética , Ciclo do Ácido Cítrico/genética , Ciclo do Ácido Cítrico/imunologia , Células Dendríticas/patologia , Hexoquinase/genética , Hexoquinase/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Resposta a Proteínas não Dobradas/genética , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/imunologia
17.
Cell ; 179(6): 1289-1305.e21, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31761534

RESUMO

Adult mesenchymal stem cells, including preadipocytes, possess a cellular sensory organelle called the primary cilium. Ciliated preadipocytes abundantly populate perivascular compartments in fat and are activated by a high-fat diet. Here, we sought to understand whether preadipocytes use their cilia to sense and respond to external cues to remodel white adipose tissue. Abolishing preadipocyte cilia in mice severely impairs white adipose tissue expansion. We discover that TULP3-dependent ciliary localization of the omega-3 fatty acid receptor FFAR4/GPR120 promotes adipogenesis. FFAR4 agonists and ω-3 fatty acids, but not saturated fatty acids, trigger mitosis and adipogenesis by rapidly activating cAMP production inside cilia. Ciliary cAMP activates EPAC signaling, CTCF-dependent chromatin remodeling, and transcriptional activation of PPARγ and CEBPα to initiate adipogenesis. We propose that dietary ω-3 fatty acids selectively drive expansion of adipocyte numbers to produce new fat cells and store saturated fatty acids, enabling homeostasis of healthy fat tissue.


Assuntos
Adipogenia , Cílios/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Cílios/efeitos dos fármacos , AMP Cíclico/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo
18.
Annu Rev Biochem ; 87: 503-531, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925265

RESUMO

Polyketides are a large family of structurally complex natural products including compounds with important bioactivities. Polyketides are biosynthesized by polyketide synthases (PKSs), multienzyme complexes derived evolutionarily from fatty acid synthases (FASs). The focus of this review is to critically compare the properties of FASs with iterative aromatic PKSs, including type II PKSs and fungal type I nonreducing PKSs whose chemical logic is distinct from that of modular PKSs. This review focuses on structural and enzymological studies that reveal both similarities and striking differences between FASs and aromatic PKSs. The potential application of FAS and aromatic PKS structures for bioengineering future drugs and biofuels is highlighted.


Assuntos
Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Policetídeo Sintases/química , Policetídeo Sintases/metabolismo , Animais , Biocatálise , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Ácido Graxo Sintases/classificação , Humanos , Modelos Moleculares , Mimetismo Molecular , Estrutura Molecular , Policetídeo Sintases/classificação , Policetídeos/química , Policetídeos/metabolismo , Domínios Proteicos , Homologia Estrutural de Proteína , Especificidade por Substrato
19.
Immunity ; 57(9): 2077-2094.e12, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38906145

RESUMO

Tissues are exposed to diverse inflammatory challenges that shape future inflammatory responses. While cellular metabolism regulates immune function, how metabolism programs and stabilizes immune states within tissues and tunes susceptibility to inflammation is poorly understood. Here, we describe an innate immune metabolic switch that programs long-term intestinal tolerance. Intestinal interleukin-18 (IL-18) stimulation elicited tolerogenic macrophages by preventing their proinflammatory glycolytic polarization via metabolic reprogramming to fatty acid oxidation (FAO). FAO reprogramming was triggered by IL-18 activation of SLC12A3 (NCC), leading to sodium influx, release of mitochondrial DNA, and activation of stimulator of interferon genes (STING). FAO was maintained in macrophages by a bistable switch that encoded memory of IL-18 stimulation and by intercellular positive feedback that sustained the production of macrophage-derived 2'3'-cyclic GMP-AMP (cGAMP) and epithelial-derived IL-18. Thus, a tissue-reinforced metabolic switch encodes durable immune tolerance in the gut and may enable reconstructing compromised immune tolerance in chronic inflammation.


Assuntos
Tolerância Imunológica , Interleucina-18 , Macrófagos , Nucleotídeos Cíclicos , Interleucina-18/metabolismo , Interleucina-18/imunologia , Animais , Camundongos , Nucleotídeos Cíclicos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Camundongos Knockout , Ácidos Graxos/metabolismo , Intestinos/imunologia , Imunidade Inata , Inflamação/imunologia , Inflamação/metabolismo , Glicólise , Oxirredução
20.
Immunity ; 57(9): 2122-2139.e9, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39208806

RESUMO

The tumor microenvironment (TME) promotes metabolic reprogramming and dysfunction in immune cells. Here, we examined the impact of the TME on phospholipid metabolism in CD8+ T cells. In lung cancer, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were lower in intratumoral CD8+ T cells than in circulating CD8+ T cells. Intratumoral CD8+ T cells exhibited decreased expression of phospholipid phosphatase 1 (PLPP1), which catalyzes PE and PC synthesis. T cell-specific deletion of Plpp1 impaired antitumor immunity and promoted T cell death by ferroptosis. Unsaturated fatty acids in the TME stimulated ferroptosis of Plpp1-/- CD8+ T cells. Mechanistically, programmed death-1 (PD-1) signaling in CD8+ T cells induced GATA1 binding to the promoter region Plpp1 and thereby suppressed Plpp1 expression. PD-1 blockade increased Plpp1 expression and restored CD8+ T cell antitumor function but did not rescue dysfunction of Plpp1-/- CD8+ T cells. Thus, PD-1 signaling regulates phospholipid metabolism in CD8+ T cells, with therapeutic implications for immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Ferroptose , Receptor de Morte Celular Programada 1 , Transdução de Sinais , Microambiente Tumoral , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Animais , Camundongos , Transdução de Sinais/imunologia , Ferroptose/imunologia , Microambiente Tumoral/imunologia , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA