Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroinflammation ; 21(1): 53, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383441

RESUMO

BACKGROUND: Parkinson's disease (PD) is a common and costly progressive neurodegenerative disease of unclear etiology. A disease-modifying approach that can directly stop or slow its progression remains a major unmet need in the treatment of PD. A clinical pharmacology-based drug repositioning strategy is a useful approach for identifying new drugs for PD. METHODS: We analyzed claims data obtained from the National Health Insurance Service (NHIS), which covers a significant portion of the South Korean population, to investigate the association between antihistamines, a class of drugs commonly used to treat allergic symptoms by blocking H1 receptor, and PD in a real-world setting. Additionally, we validated this model using various animal models of PD such as the 6-hydroxydopmaine (6-OHDA), α-synuclein preformed fibrils (PFF) injection, and Caenorhabditis elegans (C. elegans) models. Finally, whole transcriptome data and Ingenuity Pathway Analysis (IPA) were used to elucidate drug mechanism pathways. RESULTS: We identified fexofenadine as the most promising candidate using National Health Insurance claims data in the real world. In several animal models, including the 6-OHDA, PFF injection, and C. elegans models, fexofenadine ameliorated PD-related pathologies. RNA-seq analysis and the subsequent experiments suggested that fexofenadine is effective in PD via inhibition of peripheral immune cell infiltration into the brain. CONCLUSION: Fexofenadine shows promise for the treatment of PD, identified through clinical data and validated in diverse animal models. This combined clinical and preclinical approach offers valuable insights for developing novel PD therapeutics.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Terfenadina/análogos & derivados , Animais , Doença de Parkinson/patologia , Caenorhabditis elegans/metabolismo , Doenças Neurodegenerativas/metabolismo , Oxidopamina , Modelos Animais de Doenças , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos
2.
Pharm Res ; 41(3): 595-607, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383934

RESUMO

PURPOSE: Wet granulation (WG) is one of the most versatile processes to improve blend properties for processing. However, due to its need for moisture and heat, it is often considered not amenable to active pharmaceutical ingredients (APIs) prone to forming hydrates. Despite this claim, little literature exists evaluating the extent to which polymorphic form conversions occur for such API when processed with WG. This work sets out to explore two common WG methods, high-shear (HSG) and fluid-bed (FBG), and two drying processes, tray-drying (TD) and fluid-bed drying (FBD), and evaluate the risk they pose to hydrate form conversion. METHODS: The progression of anhydrous to hydrate form conversion of two model compounds with vastly different solubilities, fexofenadine hydrochloride and carbamazepine, was monitored throughout the various processes using powder X-ray diffraction. The resultant granules were characterized using thermogravimetric analysis, differential scanning calorimetry, BET adsorption, and sieve analysis. RESULTS: FBG and FBD processing resulted in the preservation of the original form of both APIs, while HSG+TD resulted in the complete conversion of the API. The FBD of fexofenadine and carbamazepine granules prepared with HSG resulted in partial and complete re-conversion back to the original anhydrous forms, respectively. CONCLUSION: The drying process is a critical factor in anhydrous form conservation. FBG and FBD yielded better preservation of the initial anhydrous forms. HSG could be an acceptable granulation method for API susceptible to hydrate formation if the API solubility is low. Selecting an FBG+FBD process minimizes API hydrate formation and preserves the original anhydrous form.


Assuntos
Química Farmacêutica , Temperatura Alta , Química Farmacêutica/métodos , Difração de Raios X , Dessecação , Solubilidade , Carbamazepina
3.
Luminescence ; 39(7): e4818, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39004769

RESUMO

Fexofenadine (FEX) is a non-sedating antihistamine commonly used for the treatment of allergic conditions such as seasonal rhinitis and chronic idiopathic urticaria. This study describes the tuning "ON" the intrinsic fluorescence of FEX by switching "OFF" its intramolecular photoinduced electron transfer (PET) through the protonation of the piperidinyl nitrogen atom using sulfuric acid. The resulting fluorescence was utilized as a basis for the development of a highly sensitive microwell spectrofluorimetric assay (MW-SFA) for the one-step determination of FEX in pharmaceutical tablets and plasma. The linear range of the assay was 10-500 ng ml-1, and its limit of quantitation was 25.9 ng ml-1. The proposed MW-SFA was successfully applied to analyze FEX in pharmaceutical tablets and plasma samples, demonstrating good accuracy and precision. The greenness of the assay was confirmed using three metric assessment tools. In conclusion, the MW-SFA is a straightforward, single-step analysis that requires no experimental adjustments. It offers high sensitivity, efficient sample processing, and environmental sustainability. This assay is highly recommended for pharmaceutical quality control and clinical lab use, particularly for measuring FEX levels.


Assuntos
Espectrometria de Fluorescência , Comprimidos , Terfenadina , Terfenadina/análogos & derivados , Terfenadina/sangue , Terfenadina/análise , Terfenadina/química , Transporte de Elétrons , Humanos , Fluorescência , Processos Fotoquímicos , Ensaios de Triagem em Larga Escala , Estrutura Molecular
4.
Chem Biodivers ; 21(8): e202400704, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38781003

RESUMO

Thirteen novel hydrazone-Schiff bases (3-15) of fexofenadine were succesfully synthesized, structurally deduced and finally assessed their capability to inhibit urease enzyme (in vitro). In the series, six compounds 12 (IC50=10.19±0.16 µM), 11 (IC50=15.05±1.11 µM), 10 (IC50=17.01±1.23 µM), 9 (IC50=17.22±0.81 µM), 13 (IC50=19.31±0.18 µM), and 14 (IC50=19.62±0.21 µM) displayed strong inhibitory action better than the standard thiourea (IC50=21.14±0.24 µM), while the remaining compounds displayed significant to less inhibition. LUMO and HOMO showed the transferring of charges from molecules to biological transfer and MEP map showed the chemically reactive zone appropriate for drug action are calculated using DFT. AIM charges, non-bonding orbitals, and ELF are also computed. The urease protein binding analysis benefited from the docking studies.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Hidrazonas , Simulação de Acoplamento Molecular , Bases de Schiff , Terfenadina , Urease , Urease/antagonistas & inibidores , Urease/metabolismo , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Bases de Schiff/química , Bases de Schiff/farmacologia , Bases de Schiff/síntese química , Terfenadina/análogos & derivados , Terfenadina/química , Terfenadina/metabolismo , Terfenadina/farmacologia , Terfenadina/síntese química , Teoria da Densidade Funcional , Estrutura Molecular , Relação Estrutura-Atividade , Canavalia/enzimologia
5.
Ann Pharm Fr ; 82(3): 433-445, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37832935

RESUMO

BACKGROUND: Fexofenadine is a poorly water-soluble drug, which limit its bioavailability and ultimately therapeutic efficacy. Liquid self-nano emulsifying drug delivery system (L-SNEDDs) is an approach that can enhance the solubility of fexofenadine by increasing its surface area and reducing the particle size, which increases the rate and extent of drug dissolution. METHOD: In this investigation, L-SNEDDs of fexofenadine was made up using surfactants and co-surfactant. The SNEDDS formulation was optimized using a pseudo-ternary phase diagram and characterized. RESULTS: The optimized L-SNEDDS incorporated fexofenadine were thermodynamically stable and showed mean droplet size and zeta potential of 155nm and -18mV, respectively unaffected by the media pH. In addition, the viscosity, and refractive index were observed 18.4 and 1.49 cps, respectively for optimized L-SNEDDS fortified fexofenadine. The results of Fourier transform infrared spectroscopy revealed an insignificant interaction between the fexofenadine and excipients. A drug loading efficiency of 94.20% resulted with a complete in vitro drug release in 2h, compared with the pure drug, which demonstrate significant improvement in the efficacy. Moreover, these results signify that on further in vivo assessment L-SNEDDS fortified fexofenadine can indicate improvement in pharmacokinetic and clinical outcome. CONCLUSION: Thus, the investigation revealed that, the L-SNEDDs incorporated fexofenadine was most effective with a mixture of surfactant and co-surfactant with improved solubility intend to relieve pain associated with inflammation with single-dose oral administration.

6.
Pharmacol Res ; 190: 106724, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907287

RESUMO

Organic anion transporting polypeptide 2B1 (OATP2B1/SLCO2B1) facilitates uptake transport of structurally diverse endogenous and exogenous compounds. To investigate the roles of OATP2B1 in physiology and pharmacology, we established and characterized Oatp2b1 knockout (single Slco2b1-/- and combination Slco1a/1b/2b1-/-) and humanized hepatic and intestinal OATP2B1 transgenic mouse models. While viable and fertile, these strains exhibited a modestly increased body weight. In males, unconjugated bilirubin levels were markedly reduced in Slco2b1-/- compared to wild-type mice, whereas bilirubin monoglucuronide levels were modestly increased in Slco1a/1b/2b1-/- compared to Slco1a/1b-/- mice. Single Slco2b1-/- mice showed no significant changes in oral pharmacokinetics of several tested drugs. However, markedly higher or lower plasma exposure of pravastatin and the erlotinib metabolite OSI-420, respectively, were found in Slco1a/1b/2b1-/- compared to Slco1a/1b-/- mice, while oral rosuvastatin and fluvastatin behaved similarly between the strains. In males, humanized OATP2B1 strains showed lower conjugated and unconjugated bilirubin levels than control Slco1a/1b/2b1-deficient mice. Moreover, hepatic expression of human OATP2B1 partially or completely rescued the impaired hepatic uptake of OSI-420, rosuvastatin, pravastatin, and fluvastatin in Slco1a/1b/2b1-/- mice, establishing an important role in hepatic uptake. Expression of human OATP2B1 in the intestine was basolateral and markedly reduced the oral availability of rosuvastatin and pravastatin, but not of OSI-420 and fluvastatin. Neither lack of Oatp2b1, nor overexpression of human OATP2B1 had any effect on fexofenadine oral pharmacokinetics. While these mouse models still have limitations for human translation, with additional work we expect they will provide powerful tools to further understand the physiological and pharmacological roles of OATP2B1.


Assuntos
Bilirrubina , Transportadores de Ânions Orgânicos , Masculino , Camundongos , Humanos , Animais , Rosuvastatina Cálcica , Fluvastatina , Pravastatina , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Camundongos Transgênicos , Peptídeos/metabolismo , Ânions/metabolismo , Camundongos Knockout
7.
Luminescence ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098178

RESUMO

An innovative, simple, accurate, sensitive, and eco-friendly synchronous fluorescence spectrofluorimetric method has been developed for the simultaneous analysis of montelukast sodium (MON) and fexofenadine hydrochloride (FEX). The method relies on measuring the relative synchronous fluorescence intensity of both drugs using Δλ of 60 nm in methanol at 405 nm for MON and 288 nm for FEX. The experimental parameters influencing the developed method were investigated and optimized. The method was linear over the ranges 0.1-2.0 and 2.0-20.0 µg/ml for MON and FEX, respectively. The limits of detection were 0.018 and 0.441 µg/ml, and the limits of quantitation were 0.055 and 1.336 µg/ml for MON and FEX, respectively. The developed method was applied successfully for the determination of the two drugs in their newly released fixed-dose combination prescribed for the treatment of allergic rhinitis. The mean per cent recoveries were found to be 100.680 ± 0.890 and 100.110 ± 0.940 for MON and FEX, respectively. Furthermore, the method was found to be eco-friendly green as was evaluated according to the Green Analytical Procedure Index tool guidelines and analytical eco-scale.

8.
Molecules ; 28(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36985529

RESUMO

Immune checkpoint blockade (ICB) is an important strategy for cancer treatment and has achieved remarkable clinical results. Further enhancement of the efficacy of ICB therapy with a new technical approach is of potential medical importance. In this study, we constructed a novel nanotherapeutic agent (PDL1-NP-FEXO) for cancer immunotherapy by attaching PD-L1 aptamers to albumin nanoparticles that were loaded with H1-antihitamine fexofenadine (FEXO). FEXO has been reported to enhance the immunotherapy response by reducing the immunosuppressive M2-like macrophages in the tumor microenvironment. The albumin nanoparticle was fabricated using a self-assembly method. A dynamic light scattering (DLS) study revealed that the average size of PD-L1 aptamer-modified nanoparticle without FEXO (PDL1-NP) was 135.5 nm, while that of PDL1-NP-FEXO was 154.6 nm. Similar to free PD-L1 aptamer, PDL1-NP could also bind with PD-L1-expressing tumor cells (MDA-MB-231). Of note, compared with free PD-L1 aptamer, PDL1-NP significantly boosted tumor inhibition in CT26-bearing mice. Moreover, PDL1-NP-FEXO further enhanced the antitumor efficacy vs. PDL1-NP in an animal model, without raising systemic toxicity. These results indicate that PDL1-NP-FEXO represents a promising strategy to improve ICB efficacy and may have application potential in cancer immunotherapy.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Antígeno B7-H1/metabolismo , Imunoterapia , Albuminas , Linhagem Celular Tumoral , Microambiente Tumoral , Neoplasias/tratamento farmacológico
9.
Bull Exp Biol Med ; 174(4): 431-434, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36881284

RESUMO

The level P-glycoprotein (Pgp) in organs of pregnant rabbits and its content and activity in the placental barrier at different stages of pregnancy were studied. An increase in Pgp content in the jejunum on days 7, 14, 21, and 28 of pregnancy in comparison with this parameter non-pregnant females was revealed by ELISA; in the liver, Pgp content was higher on day 7 and tended to increase on day 14; in the kidney and cerebral cortex, Pgp content was higher on day 28 of pregnancy in parallel with an increase in serum progesterone concentration. We also observed a decrease in Pgp content in the placenta on days 21 and 28 of pregnancy in comparison with day 14 and a decrease in Pgp activity in the placental barrier, which was confirmed by enhanced penetration of fexofenadine (Pgp substrate) through the barrier.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Placenta , Animais , Gravidez , Coelhos , Feminino , Subfamília B de Transportador de Cassetes de Ligação de ATP , Progesterona
10.
Nanomedicine ; 44: 102576, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714922

RESUMO

Targeting microglial activation is emerging as a clinically promising drug target for neuropathic pain treatment. Fexofenadine, a histamine receptor 1 antagonist, is a clinical drug for the management of allergic reactions as well as pain and inflammation. However, the effect of fexofenadine on microglial activation and pain behaviors remains elucidated. Here, we investigated nanomedicinal approach that targets more preferentially microglia and long-term analgesics. Fexofenadine significantly abolished histamine-induced microglial activation. The fexofenadine-encapsulated poly(lactic-co-glycolic acid) nanoparticles (Fexo NPs) injection reduced the pain sensitivity of spinal nerve ligation rats in a dose-dependent manner. This alleviation was sustained for 4 days, whereas the effective period by direct fexofenadine injection was 3 h. Moreover, Fexo NPs inhibited microglial activation, inflammatory signaling, cytokine release, and a macrophage phenotype shift towards the alternative activated state in the spinal cord. These results show that Fexo NPs exhibit drug repositioning promise as a long-term treatment modality for neuropathic pain.


Assuntos
Nanopartículas , Neuralgia , Animais , Microglia , Neuralgia/genética , Ratos , Medula Espinal , Nervos Espinhais , Terfenadina/análogos & derivados
11.
Pharm Res ; 38(4): 647-655, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33825113

RESUMO

PURPOSE: Fexofenadine is a well-identified in vivo probe substrate of P-glycoprotein (P-gp) and/or organic anion transporting polypeptide (OATP). This work aimed to investigate the transplacental pharmacokinetics of fexofenadine enantiomers with and without the selective P-gp inhibitor fluoxetine. METHODS: The chiral transplacental pharmacokinetics of fexofenadine-fluoxetine interaction was determined using the ex vivo human placenta perfusion model (n = 4). In the Control period, racemic fexofenadine (75 ng of each enantiomer/ml) was added in the maternal circuit. In the Interaction period, racemic fluoxetine (50 ng of each enantiomer/mL) and racemic fexofenadine (75 ng of each enantiomer/mL) were added to the maternal circulation. In both periods, maternal and fetal perfusate samples were taken over 90 min. RESULTS: The (S)-(-)- and (R)-(+)-fexofenadine fetal-to-maternal ratio values in Control and Interaction periods were similar (~0.18). The placental transfer rates were similar between (S)-(-)- and (R)-(+)-fexofenadine in both Control (0.0024 vs 0.0019 min-1) and Interaction (0.0019 vs 0.0021 min-1) periods. In both Control and Interaction periods, the enantiomeric fexofenadine ratios [R-(+)/S-(-)] were approximately 1. CONCLUSIONS: Our study showed a low extent, slow rate of non-enantioselective placental transfer of fexofenadine enantiomers, indicating a limited fetal fexofenadine exposure mediated by placental P-gp and/or OATP2B1. The fluoxetine interaction did not affect the non-enantioselective transplacental transfer of fexofenadine. The ex vivo placental perfusion model accurately predicts in vivo placental transfer of fexofenadine enantiomers with remarkably similar values (~0.17), and thus estimates the limited fetal exposure.


Assuntos
Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacocinética , Troca Materno-Fetal/efeitos dos fármacos , Placenta/metabolismo , Terfenadina/análogos & derivados , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Área Sob a Curva , Interações Medicamentosas , Feminino , Fluoxetina/administração & dosagem , Fluoxetina/farmacocinética , Antagonistas não Sedativos dos Receptores H1 da Histamina/administração & dosagem , Humanos , Perfusão/instrumentação , Perfusão/métodos , Gravidez , Complicações na Gravidez/tratamento farmacológico , Complicações na Gravidez/imunologia , Estereoisomerismo , Terfenadina/administração & dosagem , Terfenadina/farmacocinética
12.
Xenobiotica ; 51(3): 366-372, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33256506

RESUMO

Breviscapine (BRE) is usually used for long-term use in patients with cardiovascular diseases such as coronary heart disease, angina pectoris, and cerebral thrombosis. It is possible to combine it with P-glycoprotein (P-gp) substrates in clinic. At present, little is known about whether the simultaneous use of BRE affects the disposal of P-gp substrates. The aim of this study was to evaluate the effect of BRE on the pharmacokinetics of fexofenadine (FEX), a P-gp probe substrate and its associations with the MDR1 C3435T genetic polymorphism in healthy volunteers. In this randomised, open-label, placebo-controlled, two-phase crossover clinical study, drug interactions were evaluated in healthy volunteers. FEX was used as a phenotypic probe for P-gp. In each phase, 18 volunteers were given daily doses of 120 mg (40 mg, three times a day) of BRE tablet or a placebo for 14 days. On day 15, a single oral dose of 120 mg FEX hydrochloride was given orally. Blood samples were collected at predefined time intervals, and plasma levels of FEX were determined by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The pharmacokinetic parameters were calculated by non-compartmental method, and bioequivalence was evaluated. Results showed that BRE pretreatment did not significantly affect the pharmacokinetics of FEX. The peak maximum plasma concentration (C max) and the area under the plasma concentration-time curve from zero to infinity (AUCinf) mean value of FEX with BRE and placebo-treated groups were 699 ng/mL vs. 710 ng/mL and 2972.5 ng⋅h/mL vs. 3460.5 ng⋅h/mL, respectively. The geometric mean ratios (90% confidence intervals) for FEX C max and AUCinf were within the pre-specified range of 0.8-1.25, indicating that FEX in the two pretreatment phases were bioequivalent. Pharmacokinetic parameters of FEX showed no statistically significant difference between MDR1 C3435T CC, CT and TT genotype, revealing that BRE and MDR1 C3435T gene polymorphisms did not affect the pharmacokinetics of FEX in healthy volunteers.


Assuntos
Flavonoides/farmacologia , Polimorfismo Genético , Terfenadina/análogos & derivados , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Área Sob a Curva , Estudos Cross-Over , Voluntários Saudáveis , Humanos , Espectrometria de Massas em Tandem , Terfenadina/farmacocinética
13.
Allergol Immunopathol (Madr) ; 49(4): 15-25, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34224214

RESUMO

INTRODUCTION AND OBJECTIVES: Allergic rhinitis is a condition with high global prevalence most effectively treated with antihistamines and antileukotrienes. This study aimed to evaluate the bioequivalence of fexofenadine and montelukast in a fixed-dose combination tablet versus the components administered simultaneously. MATERIALS AND METHODS: An open, randomized, 2×2 crossover study was performed in 78 healthy volunteers. Fexofenadine-montelukast tablets containing 120 mg and 10 mg, respectively, were used as the test treatment, and 120 mg fexofenadine tablets and 10 mg montelukast tablets were used as the reference treatment. Concentrations of fexofenadine and montelukast in plasma were determined by protein precipitation and analysis by liquid chromatography/mass spectrometry or liquid chromatography tandem mass spectrometry. RESULTS: The 90% confidence intervals (CIs) obtained for fexofenadine were 87.612-102.144 for area under the curve of the plasma concentration after administration to the last concentration (AUC0-t), 88.471-102.282 for the AUC of the plasma concentration extrapolated to infinity (AUC0-∞), and 91.413-108.544 for the maximum plasma concentration (Cmax). For montelukast, they were 96.418-108.416 for AUC0-t, 93.273-106.642 for AUC0-∞ and 94.749-110.178 for Cmax. The ratio and CIs of the values subjected to logarithmic transformation for each parameter were within the range of acceptability of 80%-125%, demonstrating the bioequivalence of the combined fixed-dose tablet to the components administered separately at the same doses. No adverse events were recorded during the study. CONCLUSIONS: This study has shown the bioequivalence of the combined fixed-dose tablet, which may be considered a new alternative for the treatment of allergic rhinitis.


Assuntos
Disponibilidade Biológica , Acetatos , Área Sob a Curva , Estudos Cross-Over , Ciclopropanos , Humanos , Quinolinas , Rinite Alérgica/tratamento farmacológico , Sulfetos , Comprimidos , Terfenadina/análogos & derivados
14.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681815

RESUMO

Inflammatory Bowel Disease (IBD) is an autoimmune condition with complicated pathology and diverse clinical signs. TNFα is believed to play a crucial role in the pathogenesis of IBD. We recently identified fexofenadine, a well-known antagonist of histamine H1 receptor, as a novel inhibitor of TNFα signaling. Additionally, cytosolic phospholipase A2 (cPLA2) was isolated as a binding target of fexofenadine, and fexofenadine-mediated anti-TNF activity relied on cPLA2 in vitro. The objective of this study is to determine whether fexofenadine is therapeutic against chemically-induced murine IBD model and whether cPLA2 and/or histamine H1 receptor is important for fexofenadine's anti-inflammatory activity in vivo by leveraging various genetically modified mice and chemically induced murine IBD models. Both dextran sulfate sodium- and 2, 4, 6-trinitrobenzene sulfonic acid-induced murine IBD models revealed that orally delivered fexofenadine was therapeutic against IBD, evidenced by mitigated clinical symptoms, decreased secretions of the proinflammatory cytokine IL-6 and IL-1ß, lowered intestinal inflammation, and reduced p-p65 and p-IĸBα. Intriguingly, Fexofenadine-mediated protective effects against IBD were lost in cPLA2 deficient mice but not in histamine H1 receptor-deficient mice. Collectively, these findings demonstrate the therapeutic effects of over-the-counter drug Fexofenadine in treating DSS-induced IBD murine and provide first in vivo evidence showing that cPLA2 is required for fexofenadine's therapeutic effects in murine IBD model and probably other inflammatory and autoimmune diseases as well.


Assuntos
Doenças Inflamatórias Intestinais/tratamento farmacológico , Fosfolipases A2 Citosólicas/fisiologia , Terfenadina/análogos & derivados , Animais , Biomarcadores Farmacológicos , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipases A2 Citosólicas/genética , Terfenadina/uso terapêutico
15.
Pharm Res ; 37(7): 131, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32557079

RESUMO

BACKGROUND AND OBJECTIVE: Fluoxetine, antidepressant widely-used during pregnancy, is a selective inhibitor for P-glycoprotein (P-gp). Fexofenadine, an in vivo P-gp probe, is an antihistamine drug for seasonal allergic rhinitis and chronic urticaria treatment during pregnancy and it is available as a racemic mixture. This study evaluated the chiral discrimination of P-gp investigating the effect of fluoxetine on maternal-fetal pharmacokinetics of fexofenadine. METHODS: Healthy parturient women received either a single oral dose of 60 mg racemic fexofenadine (Control group; n = 8) or a single oral dose of 40 mg racemic fluoxetine 3 h before a single oral dose of 60 mg racemic fexofenadine (Interaction group; n = 8). Maternal blood and urine samples were collected up to 48 h after fexofenadine administration. At delivery, maternal-placental-fetal blood samples were collected. RESULTS: The maternal pharmacokinetics of fexofenadine was enantioselective (AUC0-∞R-(+)/S-(-) ~ 1.5) in both control and interaction groups. Fluoxetine increased AUC0-∞ (267.7 vs 376.1 ng.h/mL) and decreased oral total clearance (105.1 vs 74.4 L/h) only of S-(-)-fexofenadine, whereas the renal clearance were reduced for both enantiomers, suggesting that the intestinal P-gp-mediated transport of S-(-)-fexofenadine is influenced by fluoxetine to a greater extent that the R-(+)-fexofenadine. However, the transplacental transfer of fexofenadine is low (~16%), non-enantioselective and non-influenced by fluoxetine. CONCLUSIONS: A single oral dose of 40 mg fluoxetine inhibited the intestinal P-gp mediated transport of S-(-)-fexofenadine to a greater extent than R-(+)-fexofenadine in parturient women. However, the placental P-gp did not discriminate fexofenadine enantiomers and was not inhibited by fluoxetine.


Assuntos
Antidepressivos de Segunda Geração/administração & dosagem , Fluoxetina/administração & dosagem , Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacocinética , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Parto , Terfenadina/análogos & derivados , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Adulto , Antidepressivos de Segunda Geração/efeitos adversos , Estudos de Casos e Controles , Interações Medicamentosas , Feminino , Sangue Fetal/metabolismo , Fluoxetina/efeitos adversos , Antagonistas não Sedativos dos Receptores H1 da Histamina/administração & dosagem , Antagonistas não Sedativos dos Receptores H1 da Histamina/sangue , Humanos , Mucosa Intestinal/metabolismo , Troca Materno-Fetal , Circulação Placentária , Gravidez , Terfenadina/administração & dosagem , Terfenadina/sangue , Terfenadina/farmacocinética , Adulto Jovem
16.
Ann Rheum Dis ; 78(11): 1524-1535, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31302596

RESUMO

OBJECTIVE: Tumour necrosis factor alpha (TNF-α) signalling plays a central role in the pathogenesis of various autoimmune diseases, particularly inflammatory arthritis. This study aimed to repurpose clinically approved drugs as potential inhibitors of TNF-α signalling in treatment of inflammatory arthritis. METHODS: In vitro and in vivo screening of an Food and Drug Administration (FDA)-approved drug library; in vitro and in vivo assays for examining the blockade of TNF actions by fexofenadine: assays for defining the anti-inflammatory activity of fexofenadine using TNF-α transgenic (TNF-tg) mice and collagen-induced arthritis in DBA/1 mice. Identification and characterisation of the binding of fexofenadine to cytosolic phospholipase A2 (cPLA2) using drug affinity responsive target stability assay, proteomics, cellular thermal shift assay, information field dynamics and molecular dynamics; various assays for examining fexofenadine inhibition of cPLA2 as well as the dependence of fexofenadine's anti-TNF activity on cPLA2. RESULTS: Serial screenings of a library composed of FDA-approved drugs led to the identification of fexofenadine as an inhibitor of TNF-α signalling. Fexofenadine potently inhibited TNF/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) signalling in vitro and in vivo, and ameliorated disease symptoms in inflammatory arthritis models. cPLA2 was isolated as a novel target of fexofenadine. Fexofenadine blocked TNF-stimulated cPLA2 activity and arachidonic acid production through binding to catalytic domain 2 of cPLA2 and inhibition of its phosphorylation on Ser-505. Further, deletion of cPLA2 abolished fexofenadine's anti-TNF activity. CONCLUSION: Collectively, these findings not only provide new insights into the understanding of fexofenadine action and underlying mechanisms but also provide new therapeutic interventions for various TNF-α and cPLA2-associated pathologies and conditions, particularly inflammatory rheumatic diseases.


Assuntos
Artrite Experimental/tratamento farmacológico , Fosfolipases A2 Citosólicas/efeitos dos fármacos , Terfenadina/análogos & derivados , Inibidores do Fator de Necrose Tumoral/farmacologia , Animais , Camundongos , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Transdução de Sinais/efeitos dos fármacos , Terfenadina/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores
17.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626077

RESUMO

Antihistamines targeting the histamine H1 receptor play an important role in improving and maintaining the quality of life of patients with allergic rhinitis. For more effective and safer use of second-generation drugs, which are recommended by various guidelines, a classification based on their detailed characteristics is necessary. Antihistamines for first-line therapy should not have central depressant/sedative activities. Sedative properties (drowsiness and impaired performance) are associated with the inhibition of central histamine neurons. Brain H1 receptor occupancy (H1RO) is a useful index shown to be correlated with indices based on clinical findings. Antihistamines are classified into non-sedating (<20%), less-sedating (20⁻50%), and sedating (≥50%) groups based on H1RO. Among the non-sedating group, fexofenadine and bilastine are classified into "non-brain-penetrating antihistamines" based on the H1RO. These two drugs have many common chemical properties. However, bilastine has more potent binding affinity to the H1 receptor, and its action tends to last longer. In well-controlled studies using objective indices, bilastine does not affect psychomotor or driving performance even at twice the usual dose (20 mg). Upon selecting antihistamines for allergic rhinitis, various situations should be taken into our consideration. This review summarizes that the non-brain-penetrating antihistamines should be chosen for the first-line therapy of mild allergic rhinitis.


Assuntos
Antagonistas dos Receptores Histamínicos/uso terapêutico , Antagonistas não Sedativos dos Receptores H1 da Histamina/uso terapêutico , Rinite Alérgica/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Antagonistas dos Receptores Histamínicos/química , Antagonistas dos Receptores Histamínicos/farmacologia , Antagonistas não Sedativos dos Receptores H1 da Histamina/química , Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacologia , Humanos , Receptores Histamínicos/metabolismo
18.
Biomed Chromatogr ; 32(7): e4217, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29601646

RESUMO

Enantioselective analysis of (RS)-fexofenadine was carried out by achiral HPLC via a derivatization approach using N-hydroxy-benzotriazolyl-(S)-naproxen ester (synthesized for this purpose) and three chirally pure amines as chiral derivatizing reagents. There occurred formation of amide and anhydride types of diastereomeric derivatives. These were separated and isolated by HPLC (analytical and preparative). The structures and configurations were verified via recording full-scan product ion mass spectra using LC-MS, 1 HNMR spectra, Chem3D Pro 12.0 software and the software Gaussian 09 Rev.A.02 program and hybrid density functional B3LYP with 6-31G basis set supplemented with polarimetry. Experimental conditions for synthesis and separations were optimized and the elution order was established. Analytical separation was performed on a C18 analytical column with different ratios of MeCN-TEAP buffer and MeOH-TEAP buffer (v/v) adjusted to pH 7.5 as mobile phase at a flow rate of 0.7 mL min-1 . Detection was performed via UV absorbance at 225 nm. The method was validated in accordance with International Conference on Harmonization guidelines. The detection limits were 6.25 and 7.87 ng mL-1 for first and second eluting diastereomeric derivatives, respectively.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Terfenadina/análogos & derivados , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Estereoisomerismo , Terfenadina/análise , Terfenadina/química , Terfenadina/isolamento & purificação
19.
J Vet Pharmacol Ther ; 41(6): 805-814, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30020547

RESUMO

Thirty-two Collies were used to determine the impact of ABCB1 genotype and phenotype on the plasma pharmacokinetics of fexofenadine's (Fex) R- and S-enantiomers after bolus Fex administration, as human P-gp exhibits stereoselectivity. Each Collie's ABCB1 genotype and ivermectin (IVM) sensitivity (phenotype) was determined prior to study enrolment. Wild-type (WT) Collies had lower plasma concentrations of the individual enantiomers as compared to heterozygous IVM nonsensitive (HNS), heterozygous IVM-sensitive (HS) and homozygous mutant (MUT) Collies. Based on pairwise statistical comparison, WT Collies had statistically significantly lower (AUC0-last ) and peak (Cmax ) values compared to HS, HNS and MUT Collies. Tmax was not influenced by genotype/phenotype. Inter-individual variability in PK metrics tended to be largest for WT Collies. Although the influence of genotype/phenotype on Fex PK occurred with the individual isomers, impairment of S-Fex absorption, particularly in the MUT dogs, exceeded that associated with R-Fex. Since Fex elimination occurs primarily via biliary excretion via a transporter other than P-glycoprotein, and based upon our understanding of Fex absorption kinetics, we attributed these differences primarily to the absorption portion of the profile. These differences are expressed in a stereo-specific manner. These results demonstrate the potential negative impact on estimates of drug effectiveness and toxicity, especially for P-gp substrates that do not exhibit Central Nervous System toxicities.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Antialérgicos/farmacocinética , Cães/genética , Genótipo , Terfenadina/análogos & derivados , Animais , Antialérgicos/sangue , Área Sob a Curva , Cães/metabolismo , Feminino , Meia-Vida , Masculino , Terfenadina/sangue , Terfenadina/farmacocinética
20.
Eur J Clin Pharmacol ; 73(3): 343-349, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27981349

RESUMO

PURPOSE: Piperine (PIP) has been found to inhibit P-glycoprotein (P-gp) function in rats, suggesting that it may have the potential to modulate P-gp-mediated drug efflux in humans. The aim of this study was to evaluate the effect of PIP on the pharmacokinetics of fexofenadine (FEX), a P-gp substrate, in healthy volunteers. METHODS: An open-label, two-period, sequential study involving 12 healthy volunteers was conducted. A single oral dose of FEX 120 mg was given to volunteers during the control phase and after the treatment phase. A once-daily oral dose of PIP 20 mg was given to volunteers during the treatment phase (10 days). Blood samples were collected at predefined time intervals, and plasma samples containing FEX were analyzed by liquid chromatography-tandem mass spectrometry. RESULTS: Treatment with PIP significantly increased maximum plasma concentration of FEX [406.9 (control) vs. 767 ng/mL (treatment)] and area under the plasma concentration-time curve [3403.7 (control) vs. 5724.7 ng.h/mL (treatment)] when compared to the control phase. In contrast, PIP treatment significantly decreased apparent oral clearance of FEX [35.4 (control) vs. 20.7 L/h (treatment)] as compared to the control. There was no significant change observed in the half life and renal clearance of FEX between the treatment phase and control phase. CONCLUSIONS: The results suggest that altered pharmacokinetics and enhanced bioavailability of FEX might be attributed to PIP-mediated inhibition of P-gp drug efflux. Therefore, intake of PIP or dietary supplements containing PIP may potentially enhance the absorption or bioavailability of P-gp substrate drugs in addition to FEX.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos dos fármacos , Alcaloides/farmacologia , Benzodioxóis/farmacologia , Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacocinética , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Terfenadina/análogos & derivados , Adulto , Área Sob a Curva , Disponibilidade Biológica , Meia-Vida , Voluntários Saudáveis , Antagonistas não Sedativos dos Receptores H1 da Histamina/farmacologia , Humanos , Masculino , Terfenadina/farmacocinética , Terfenadina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA