RESUMO
Flavin-dependent enzymes catalyze a panoply of chemical transformations essential for living organisms. Through oxygen activation, flavoenzymes could generate diverse flavin-oxygen species that mediate numerous redox and non-redox transformations. In this review, we highlight the extensive oxygen activation chemistry at two sites of the flavin cofactor: C4a and N5 sites. Oxygen activation at the C4a site generates flavin-C4aOO(H) species for various monooxygenation reactions, while activation at the N5 site produces negatively charged flavin-N5OOH species, which act as highly reactive nucleophiles or bases. The selective oxygen activation at either the C4a or N5 site depends on the nature of substrates and is controlled by the active site architecture. These insights have expanded our understanding of oxygen activation chemistry in flavoenzymes and will serve as a foundation for future efforts in enzyme engineering and redesign.
RESUMO
Flavoenzymes can mediate a large variety of oxidation reactions through the activation of oxygen. However, the O2 activation chemistry of flavin enzymes is not yet fully exploited. Normally, the O2 activation occurs at the C4a site of the flavin cofactor, yielding the flavin C4a-(hydro)hydroperoxyl species in monooxygenases or oxidases. Using extensive MD simulations, QM/MM calculations and QM calculations, our studies reveal the formation of the common nucleophilic species, Flavin-N5OOH, in two distinct flavoenzymes (RutA and EncM). Our studies show that Flavin-N5OOH acts as a powerful nucleophile that promotes C-N cleavage of uracil in RutA, and a powerful base in the deprotonation of substrates in EncM. We reason that Flavin-N5OOH can be a common reactive species in the superfamily of flavoenzymes, which accomplish generally selective general base catalysis and C-X (X=N, S, Cl, O) cleavage reactions that are otherwise challenging with solvated hydroxide ion base. These results expand our understanding of the chemistry and catalysis of flavoenzymes.
Assuntos
Flavinas , Oxigenases de Função Mista , Flavinas/metabolismo , Oxigenases de Função Mista/metabolismo , Oxirredução , Oxirredutases , Compostos OrgânicosRESUMO
Chitin, the most abundant amino polysaccharide in Nature, has many applications in different fields. However, processing of this recalcitrant biopolymer in an environmentally friendly manner remains a major challenge. In this context, lytic polysaccharide monooxygenases (LPMOs) are of interest, as they can act on the most recalcitrant parts of chitin and related insoluble biopolymers such as cellulose. Efficient LPMO catalysis can be achieved by feeding reactions with H2 O2 , but careful control of H2 O2 is required to avoid autocatalytic enzyme inactivation. Herein, we present a coupled enzyme system in which a choline oxidase from Arthrobacter globiformis is employed for controlled inâ situ generation of H2 O2 that fuels LPMO-catalyzed oxidative degradation of chitin. We show that the rate, stability and extent of the LPMO reaction can be manipulated by varying the amount of choline oxidase and/or its substrate, choline chloride, and that efficient peroxygenase reactions may be achieved using sub-µM concentrations of the H2 O2 -generating enzyme. This coupled system requires only sub-stoichiometric amounts of the reductant that is needed to keep the LPMO in its active, reduced state. It is conceivable that this enzyme system may be used for bioprocessing of chitin in choline-based natural deep eutectic solvents.
Assuntos
Oxigenases de Função Mista , Polissacarídeos , Polissacarídeos/metabolismo , Oxigenases de Função Mista/metabolismo , Oxirredução , Quitina/metabolismoRESUMO
Most in vitro iron mobilization studies from ferritin have been performed in aqueous buffered solutions using a variety of reducing substances. The kinetics of iron mobilization from ferritin in a medium that resembles the complex milieu of cells could dramatically differ from those in aqueous solutions, and to our knowledge, no such studies have been performed. Here, we have studied the kinetics of iron release from ferritin in fresh yeast cell lysates and examined the effect of cellular metabolites on this process. Our results show that iron release from ferritin in buffer is extremely slow compared to cell lysate under identical experimental conditions, suggesting that certain cellular metabolites present in yeast cell lysate facilitate the reductive release of ferric iron from the ferritin core. Using filtration membranes with different molecular weight cut-offs (3, 10, 30, 50, and 100 kDa), we demonstrate that a cellular component >50 kDa is implicated in the reductive release of iron. When the cell lysate was washed three times with buffer, or when NADPH was omitted from the solution, a dramatic decrease in iron mobilization rates was observed. The addition of physiological concentrations of free flavins, such as FMN, FAD, and riboflavin showed about a two-fold increase in the amount of released iron. Notably, all iron release kinetics occurred while the solution oxygen level was still high. Altogether, our results indicate that in addition to ferritin proteolysis, there exists an auxiliary iron reductive mechanism that involves long-range electron transfer reactions facilitated by the ferritin shell. The physiological implications of such iron reductive mechanisms are discussed.
Assuntos
Ferritinas , Ferro , Transporte de Elétrons , Ferritinas/metabolismo , Ferro/metabolismo , Cinética , Riboflavina/metabolismo , Saccharomyces cerevisiae/metabolismoRESUMO
Flavin-dependent enzymes enable a broad range of redox transformations and generally act as monofunctional and stereoselective catalysts. Herein, we report the investigation of a multifunctional and non-stereoselective FMN-dependent oxidoreductase RubE7 from the rubrolone biosynthetic pathway. Our study outlines a single RubE7-catalysed sequential reduction of three spatially distinct bonds in a tropolone ring and a reversible double-bond reduction and dehydrogenation. The crystal structure of IstO (a RubE7 homologue) with 2.0â Å resolution reveals the location of the active site at the interface of two monomers, and the size of active site is large enough to permit both flipping and free rotation of the substrate, resulting in multiple nonselective reduction reactions. Molecular docking and site mutation studies demonstrate that His106 is oriented towards the substrate and is important for the reverse dehydrogenation reaction.
Assuntos
Flavinas , Oxirredutases , Catálise , Simulação de Acoplamento Molecular , OxirreduçãoRESUMO
The fungal natural product CJ-12662 is a structurally complex terpene-amino acid hybrid, and is a potent anthelmintic compound. The biosynthetic pathway of CJ-12662 is elucidated based on metabolite analysis from heterologous expression. We demonstrate the terpene portion is derived from successive P450-catalyzed oxidations of amorpha-4,11-diene, while three flavin-dependent enzymes are involved in morphing the esterified tryptophan into a chlorinated pyrrolobenzoxazine, utilizing a cascaded [1,2]-Meisenheimer rearrangement.
Assuntos
Alquil e Aril Transferases , Produtos Biológicos , Benzoxazinas , Pirróis , Terpenos/químicaRESUMO
The opportunistic pathogen Pseudomonas aeruginosa can utilize unusual carbon sources, like sodium dodecyl sulfate (SDS) and alkanes. Whereas the initiating enzymatic steps of the corresponding degradation pathways have been characterized in detail, the oxidation of the emerging long-chain alcohols has received little attention. Recently, the genes for the Lao (long-chain-alcohol/aldehyde oxidation) system were discovered to be involved in the oxidation of long-chain alcohols derived from SDS and alkane degradation. In the Lao system, LaoA is predicted to be an alcohol dehydrogenase/oxidase; however, according to genetic studies, efficient long-chain-alcohol oxidation additionally required the Tat-dependent protein LaoB. In the present study, the Lao system was further characterized. In vivo analysis revealed that the Lao system complements the substrate spectrum of the well-described Exa system, which is required for growth with ethanol and other short-chain alcohols. Mutational analysis revealed that the Tat site of LaoB was required for long-chain-alcohol oxidation activity, strongly suggesting a periplasmic localization of the complex. Purified LaoA was fully active only when copurified with LaoB. Interestingly, in vitro activity of the purified LaoAB complex also depended on the presence of the Tat site. The copurified LaoAB complex contained a flavin cofactor and preferentially oxidized a range of saturated, unbranched primary alcohols. Furthermore, the LaoAB complex could reduce cytochrome c550-type redox carriers like ExaB, a subunit of the Exa alcohol dehydrogenase system. LaoAB complex activity was stimulated by rhamnolipids in vitro. In summary, LaoAB constitutes an unprecedented protein complex with specific properties apparently required for oxidizing long-chain alcohols. IMPORTANCE Pseudomonas aeruginosa is a major threat to public health. Its ability to thrive in clinical settings, water distribution systems, or even jet fuel tanks is linked to detoxification and degradation of diverse hydrophobic substrates that are metabolized via alcohol intermediates. Our study illustrates a novel flavoprotein long-chain-alcohol dehydrogenase consisting of a facultative two-subunit complex, which is unique among related enzymes, while the homologs of the corresponding genes are found in numerous bacterial genomes. Understanding the catalytic and compartmentalization processes involved is of great interest for biotechnological and hygiene research, as it may be a potential starting point for rationally designing novel antibacterial substances with high specificity against this opportunistic pathogen.
Assuntos
Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/enzimologia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Álcoois/química , Álcoois/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Cinética , Oxirredução , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismoRESUMO
The subfamily of sarcosine oxidase is a set of enzymes within the larger family of amine oxidases. It is ubiquitously distributed among different kingdoms of life. The member enzymes catalyze the oxidization of an N-methyl amine bond of amino acids to yield unstable imine species that undergo subsequent spontaneous non-enzymatic reactions, forming an array of different products. These products range from demethylated simple species to complex alkaloids. The enzymes belonging to the sarcosine oxidase family, namely, monomeric and heterotetrameric sarcosine oxidase, l-pipecolate oxidase, N-methyltryptophan oxidase, NikD, l-proline dehydrogenase, FsqB, fructosamine oxidase and saccharopine oxidase have unique features differentiating them from other amine oxidases. This review highlights the key attributes of the sarcosine oxidase family enzymes, in terms of their substrate binding motif, type of oxidation reaction mediated and FAD regeneration, to define the boundaries of this group and demarcate these enzymes from other amine oxidase families.
Assuntos
Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Sarcosina Oxidase/química , Sarcosina Oxidase/metabolismo , Catálise , OxirreduçãoRESUMO
Nitroaromatic compounds (ArNO2) maintain their importance in relation to industrial processes, environmental pollution, and pharmaceutical application. The manifestation of toxicity/therapeutic action of nitroaromatics may involve their single- or two-electron reduction performed by various flavoenzymes and/or their physiological redox partners, metalloproteins. The pivotal and still incompletely resolved questions in this area are the identification and characterization of the specific enzymes that are involved in the bioreduction of ArNO2 and the establishment of their contribution to cytotoxic/therapeutic action of nitroaromatics. This review addresses the following topics: (i) the intrinsic redox properties of ArNO2, in particular, the energetics of their single- and two-electron reduction in aqueous medium; (ii) the mechanisms and structure-activity relationships of reduction in ArNO2 by flavoenzymes of different groups, dehydrogenases-electrontransferases (NADPH:cytochrome P-450 reductase, ferredoxin:NADP(H) oxidoreductase and their analogs), mammalian NAD(P)H:quinone oxidoreductase, bacterial nitroreductases, and disulfide reductases of different origin (glutathione, trypanothione, and thioredoxin reductases, lipoamide dehydrogenase), and (iii) the relationships between the enzymatic reactivity of compounds and their activity in mammalian cells, bacteria, and parasites.
Assuntos
Bactérias/enzimologia , Proteínas de Bactérias , Citotoxinas , Elétrons , Flavoproteínas , Nitrocompostos , Oxirredutases , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Citotoxinas/química , Citotoxinas/farmacologia , Flavoproteínas/química , Flavoproteínas/metabolismo , Humanos , Nitrocompostos/química , Nitrocompostos/farmacologia , Oxirredução , Oxirredutases/química , Oxirredutases/metabolismoRESUMO
Monoamine oxidases (MAOs) catalyze the degradation of a very broad range of biogenic and dietary amines including many neurotransmitters in the brain, whose imbalance is extensively linked with the biochemical pathology of various neurological disorders, and are, accordingly, used as primary pharmacological targets to treat these debilitating cognitive diseases. Still, despite this practical significance, the precise molecular mechanism underlying the irreversible MAO inhibition with clinically used propargylamine inhibitors rasagiline and selegiline is still not unambiguously determined, which hinders the rational design of improved inhibitors devoid of side effects current drugs are experiencing. To address this challenge, we present empirical valence bond QM/MM simulations of the rate-limiting step of the MAO inhibition involving the hydride anion transfer from the inhibitor α-carbon onto the N5 atom of the flavin adenin dinucleotide (FAD) cofactor. The proposed mechanism is strongly supported by the obtained free energy profiles, which confirm a higher reactivity of selegiline over rasagiline, while the calculated difference in the activation Gibbs energies of ΔΔG = 3.1 kcal mol-1 is found to be in very good agreement with that from the measured literature kinact values that predict a 1.7 kcal mol-1 higher selegiline reactivity. Given the similarity with the hydride transfer mechanism during the MAO catalytic activity, these results verify that both rasagiline and selegiline are mechanism-based irreversible inhibitors and offer guidelines in designing new and improved inhibitors, which are all clinically employed in treating a variety of neuropsychiatric and neurodegenerative conditions.
Assuntos
Indanos/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Selegilina/farmacologia , Domínio Catalítico/efeitos dos fármacos , Simulação por Computador , Transferência de Energia , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Indanos/química , Modelos Moleculares , Estrutura Molecular , Monoaminoxidase/química , Inibidores da Monoaminoxidase/química , Conformação Proteica , Selegilina/químicaRESUMO
Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are essential cofactors for enzymes, which catalyze a broad spectrum of vital reactions. This paper intends to compile all potential FAD/FMN-binding proteins encoded by the genome of Arabidopsis thaliana. Several computational approaches were applied to group the entire flavoproteome according to (i) different catalytic reactions in enzyme classes, (ii) the localization in subcellular compartments, (iii) different protein families and subclasses, and (iv) their classification to structural properties. Subsequently, the physiological significance of several of the larger flavoprotein families was highlighted. It is conclusive that plants, such as Arabidopsis thaliana, use many flavoenzymes for plant-specific and pivotal metabolic activities during development and for signal transduction pathways in response to biotic and abiotic stress. Thereby, often two up to several homologous genes are found encoding proteins with high protein similarity. It is proposed that these gene families for flavoproteins reflect presumably their need for differential transcriptional control or the expression of similar proteins with modified flavin-binding properties or catalytic activities.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flavoproteínas/metabolismo , Proteoma/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mononucleotídeo de Flavina/genética , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Flavoproteínas/genética , Proteoma/genéticaRESUMO
Riboflavin is the biological precursor of two important flavin cofactors-flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN)-that are critical prosthetic groups in several redox enzymes. While dietary supplementation with riboflavin is a recognized support therapy in several inborn errors of metabolism, it has yet unproven benefits in several other pathologies affecting flavoproteins. This is the case for glutaric aciduria type I (GA-I), a rare neurometabolic disorder associated with mutations in the GCDH gene, which encodes for glutaryl-coenzyme A (CoA) dehydrogenase (GCDH). Although there are a few reported clinical cases that have responded to riboflavin intake, there is still not enough molecular evidence supporting therapeutic recommendation. Hence, it is necessary to elucidate the molecular basis in favor of riboflavin supplementation in GA-I patients. Here, using a combination of biochemical and biophysical methodologies, we investigate the clinical variant GCDH-p.Val400Met as a model for a phenotype associated with severe deflavinylation. Through a systematic analysis, we establish that recombinant human GCDH-p.Val400Met is expressed in a nonfunctional apo form, which is mainly monomeric rather than tetrameric. However, we show that exogenous FAD is a driver for structural reorganization of the mutant enzyme with concomitant functional recovery, improved thermolability, and resistance to trypsin digestion. Overall, these results establish proof of principle for the beneficial effects of riboflavin supplementation in GA-I patients.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Encefalopatias Metabólicas , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Riboflavina , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encefalopatias Metabólicas/metabolismo , Glutaril-CoA Desidrogenase/química , Glutaril-CoA Desidrogenase/efeitos dos fármacos , Glutaril-CoA Desidrogenase/metabolismo , Humanos , Mutação , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteínas Recombinantes , Riboflavina/farmacologiaRESUMO
The flavoprotein methylenetetrahydrofolate reductase (MTHFR) from Escherichia coli catalyzes a ping-pong reaction with NADH and 5,10-methylenetetrahydrofolate (CH2-H4folate) to produce NAD+ and 5-methyltetrahydrofolate (CH3-H4folate). This work focuses on the function of the invariant, active-site aminoacyl residue Gln183. X-ray structures of the enzyme complexes Ered(wild-type)â¢NADH and Eox(Glu28Gln)â¢CH3-H4folate indicate that Gln183 makes key hydrogen-bonding interactions with both NADH and folate in their respective half-reactions, suggesting roles in binding each substrate. We propose that the polarity of Gln183 may also aid in stabilizing the proposed 5-iminium cation intermediate during catalysis in the oxidative half-reaction with folate. We have prepared mutants Gln183Ala and Gln183Glu, which we hypothesize to have altered charge/polarity and hydrogen bonding properties. We have examined the enzymes by steady-state and stopped-flow kinetics and by measurement of the flavin redox potentials. In the reductive half-reaction, NADH binding affinity and the rate of flavin reduction have not been hindered by either mutation. By contrast, our results support a minor role for Gln183 in the oxidative half-reaction. The Gln183Ala variant exhibited a 6-10 fold lower rate of folate reduction and bound CH2-H4folate with 7-fold lower affinity, whereas the Gln183Glu mutant displayed catalytic constants within 3-fold of the wild-type enzyme.
Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Ácido Fólico/metabolismo , Glutamina/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Catálise , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Cinética , Metilenotetra-Hidrofolato Redutase (NADPH2)/química , Modelos Moleculares , NAD/metabolismo , Oxirredução , Conformação Proteica , Especificidade por SubstratoRESUMO
Reactive oxygen species (ROS) play key roles in many physiological processes. In particular, the sterilization mechanism of bacteria using ROS in macrophages is a very important function for biological defense. Xanthine dehydrogenase (XDH) and aldehyde oxidase (AOX), members of the molybdo-flavoenzyme subfamily, are known to generate ROS. Although these enzymes occur in many vertebrates, some insects, and plants, little research has been conducted on XDHs and AOXs in crustaceans. Here, we cloned the entire cDNA sequences of XDH (MjXDH: 4328 bp) and AOX (MjAOX: 4425 bp) from Marsupenaeus japonicus (kuruma shrimp) using reverse transcriptase-polymerase chain reaction (RT-PCR) and random amplification of cDNA ends (RACE). Quantitative real-time RT-PCR transcriptional analysis revealed that MjXDH mRNA is highly expressed in heart and stomach tissues, whereas MjAOX mRNA is highly expressed in the lymphoid organ and intestinal tissues. Furthermore, expression of MjAOX was determined to be up-regulated in the lymphoid organ in response to Vibrio penaeicida at 48 and 72 h after injection; in contrast, hydrogen peroxide (H2O2) concentrations increased significantly at 6, 12, 48, and 72 h after injection with white spot syndrome virus (WSSV) and at 72 h after injection with V. penaeicida. To the best of our knowledge, this study is the first to have identified and cloned XDH and AOX from a crustacean species.
Assuntos
Aldeído Oxidase/genética , Penaeidae/metabolismo , Xantina Desidrogenase/genética , Aldeído Oxidase/metabolismo , Aldeído Oxidase/fisiologia , Sequência de Aminoácidos/genética , Animais , Sequência de Bases/genética , Clonagem Molecular , DNA Complementar , Perfilação da Expressão Gênica/métodos , Peróxido de Hidrogênio/análise , Imunidade Inata/genética , Penaeidae/genética , Penaeidae/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Frutos do Mar , Vibrio/patogenicidade , Vírus da Síndrome da Mancha Branca 1/patogenicidade , Xantina Desidrogenase/metabolismo , Xantina Desidrogenase/fisiologiaRESUMO
Mammalian aldehyde oxidases (AOXs; EC1.2.3.1) are a group of conserved proteins belonging to the family of molybdo-flavoenzymes along with the structurally related xanthine dehydrogenase enzyme. AOXs are characterized by broad substrate specificity, oxidizing not only aromatic and aliphatic aldehydes into the corresponding carboxylic acids, but also hydroxylating a series of heteroaromatic rings. The number of AOX isoenzymes expressed in different vertebrate species is variable. The two extremes are represented by humans, which express a single enzyme (AOX1) in many organs and mice or rats which are characterized by tissue-specific expression of four isoforms (AOX1, AOX2, AOX3, and AOX4). In vertebrates each AOX isoenzyme is the product of a distinct gene consisting of 35 highly conserved exons. The extant species-specific complement of AOX isoenzymes is the result of a complex evolutionary process consisting of a first phase characterized by a series of asynchronous gene duplications and a second phase where the pseudogenization and gene deletion events prevail. In the last few years remarkable advances in the elucidation of the structural characteristics and the catalytic mechanisms of mammalian AOXs have been made thanks to the successful crystallization of human AOX1 and mouse AOX3. Much less is known about the physiological function and physiological substrates of human AOX1 and other mammalian AOX isoenzymes, although the importance of these proteins in xenobiotic metabolism is fairly well established and their relevance in drug development is increasing. This review article provides an overview and a discussion of the current knowledge on mammalian AOX.
Assuntos
Aldeído Oxidase/química , Aldeído Oxidase/metabolismo , Evolução Molecular , Aldeído Oxidase/genética , Aldeído Oxirredutases/química , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Animais , Catálise , Cristalografia por Raios X , Escherichia coli/genética , Humanos , Inativação Metabólica , Mamíferos , Polimorfismo de Nucleotídeo Único , Xenobióticos/metabolismo , Xenobióticos/farmacocinéticaRESUMO
Flavins and their associated proteins have recently emerged as compelling players in the landscape of cancer biology. Flavins, encompassing flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), serve as coenzymes in a multitude of cellular processes, such as metabolism, apoptosis, and cell proliferation. Their involvement in oxidative phosphorylation, redox homeostasis, and enzymatic reactions has long been recognized. However, recent research has unveiled an extended role for flavins in the context of cancer. In parallel, riboflavin transporters (RFVTs), FAD synthase (FADS), and riboflavin kinase (RFK) have gained prominence in cancer research. These proteins, responsible for riboflavin uptake, FAD biosynthesis, and FMN generation, are integral components of the cellular machinery that governs flavin homeostasis. Dysregulation in the expression/function of these proteins has been associated with various cancers, underscoring their potential as diagnostic markers, therapeutic targets, and key determinants of cancer cell behavior. This review embarks on a comprehensive exploration of the multifaceted role of flavins and of the flavoproteins involved in nucleus-mitochondria crosstalk in cancer. We journey through the influence of flavins on cancer cell energetics, the modulation of RFVTs in malignant transformation, the diagnostic and prognostic significance of FADS, and the implications of RFK in drug resistance and apoptosis. This review also underscores the potential of these molecules and processes as targets for novel diagnostic and therapeutic strategies, offering new avenues for the battle against this relentless disease.
Assuntos
Flavinas , Homeostase , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Flavinas/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Animais , Apoptose , Fosfotransferases (Aceptor do Grupo Álcool)RESUMO
Biological magnetic field sensing that gives rise to physiological responses is of considerable importance in quantum biology. The radical pair mechanism (RPM) is a fundamental quantum process that can explain some of the observed biological magnetic effects. In magnetically sensitive radical pair (RP) reactions, coherent spin dynamics between singlet and triplet pairs are modulated by weak magnetic fields. The resulting singlet and triplet reaction products lead to distinct biological signaling channels and cellular outcomes. A prevalent RP in biology is between flavin semiquinone and superoxide (O2 â¢-) in the biological activation of molecular oxygen. This RP can result in a partitioning of reactive oxygen species (ROS) products to form either O2 â¢- or hydrogen peroxide (H2O2). Here, we examine magnetic sensing of recombinant human electron transfer flavoenzyme (ETF) reoxidation by selectively measuring O2 â¢- and H2O2 product distributions. ROS partitioning was observed between two static magnetic fields at 20 nT and 50 µT, with a 13% decrease in H2O2 singlet products and a 10% increase in O2 â¢- triplet products relative to 50 µT. RPM product yields were calculated for a realistic flavin/superoxide RP across the range of static magnetic fields, in agreement with experimental results. For a triplet born RP, the RPM also predicts about three times more O2 â¢- than H2O2, with experimental results exhibiting about four time more O2 â¢- produced by ETF. The method presented here illustrates the potential of a novel magnetic flavoprotein biological sensor that is directly linked to mitochondria bioenergetics and can be used as a target to study cell physiology.
RESUMO
Low-molecular-weight (LMW) thiols are involved in many processes in all organisms, playing a protective role against reactive species, heavy metals, toxins and antibiotics. Actinobacteria, such as Mycobacterium tuberculosis, use the LMW thiol mycothiol (MSH) to buffer the intracellular redox environment. The NADPH-dependent FAD-containing oxidoreductase mycothiol disulfide reductase (Mtr) is known to reduce oxidized mycothiol disulfide (MSSM) to MSH, which is crucial to maintain the cellular redox balance. In this work, the first crystal structures of Mtr are presented, expanding the structural knowledge and understanding of LMW thiol reductases. The structural analyses and docking calculations provide insight into the nature of Mtrs, with regard to the binding and reduction of the MSSM substrate, in the context of related oxidoreductases. The putative binding site for MSSM suggests a similar binding to that described for the homologous glutathione reductase and its respective substrate glutathione disulfide, but with distinct structural differences shaped to fit the bulkier MSSM substrate, assigning Mtrs as uniquely functioning reductases. As MSH has been acknowledged as an attractive antitubercular target, the structural findings presented in this work may contribute towards future antituberculosis drug development.
Assuntos
Actinobacteria , Glicopeptídeos , Inositol , NADH NADPH Oxirredutases , Oxirredutases , Oxirredutases/metabolismo , Compostos de Sulfidrila/química , Cisteína/química , Cisteína/metabolismo , OxirreduçãoRESUMO
FLAD1, along with its FAD synthase (FADS, EC 2.7.7.2) product, is crucial for flavin homeostasis and, due to its role in the mitochondrial respiratory chain and nuclear epigenetics, is closely related to cellular metabolism. Therefore, it is not surprising that it could be correlated with cancer. To our knowledge, no previous study has investigated FLAD1 prognostic significance in pancreatic ductal adenocarcinoma (PDAC). Thus, in the present work, the FAD synthesis process was evaluated in two PDAC cell lines: (a) PANC-1- and PANC-1-derived cancer stem cells (CSCs), presenting the R273H mutation in the oncosuppressor p53, and (b) MiaPaca2 and MiaPaca2-derived CSCs, presenting the R248W mutation in p53. As a control, HPDE cells expressing wt-p53 were used. FADS expression/activity increase was found with malignancy and even more with stemness. An increased FAD synthesis rate in cancer cell lines is presumably demanded by the increase in the FAD-dependent lysine demethylase 1 protein amount as well as by the increased expression levels of the flavoprotein subunit of complex II of the mitochondrial respiratory chain, namely succinate dehydrogenase. With the aim of proposing FADS as a novel target for cancer therapy, the inhibitory effect of Chicago Sky Blue on FADS enzymatic activity was tested on the recombinant 6His-hFADS2 (IC50 = 1.2 µm) and PANC-1-derived CSCs' lysate (IC50 = 2-10 µm). This molecule was found effective in inhibiting the growth of PANC-1 and even more of its derived CSC line, thus assessing its role as a potential chemotherapeutic drug.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Células-Tronco Neoplásicas/patologia , Expressão Gênica , Linhagem Celular Tumoral , Neoplasias PancreáticasRESUMO
Flavoproteins are a diverse class of proteins that are mostly enzymes and contain as cofactors flavin mononucleotide (FMN) and/or flavin adenine dinucleotide (FAD), which enable them to participate in a wide range of physiological reactions. We have compiled 78 potential proteins building the flavoproteome of Brucella ovis (B. ovis), the causative agent of ovine brucellosis. The curated list of flavoproteins here reported is based on (i) the analysis of sequence, structure and function of homologous proteins, and their classification according to their structural domains, clans, and expected enzymatic functions; (ii) the constructed phylogenetic trees of enzyme functional classes using 19 Brucella strains and 26 pathogenic and/or biotechnological relevant alphaproteobacteria together with B. ovis; and (iii) the evaluation of the genetic context for each entry. Candidates account for â¼2.7% of the B. ovis proteome, and 75% of them use FAD as cofactor. Only 55% of these flavoproteins belong to the core proteome of Brucella and contribute to B. ovis processes involved in maintenance activities, survival and response to stress, virulence, and/or infectivity. Several of the predicted flavoproteins are highly divergent in Brucella genus from revised proteins and for them it is difficult to envisage a clear function. This might indicate modified catalytic activities or even divergent processes and mechanisms still not identified. We have also detected the lack of some functional flavoenzymes in B. ovis, which might contribute to it being nonzoonotic. Finally, potentiality of B. ovis flavoproteome as the source of antimicrobial targets or biocatalyst is discussed. IMPORTANCE Some microorganisms depend heavily on flavin-dependent activities, but others maintain them at a minimum. Knowledge about flavoprotein content and functions in different microorganisms will help to identify their metabolic requirements, as well as to benefit either industry or health. Currently, most flavoproteins from the sheep pathogen Brucella ovis are only automatically annotated in databases, and only two have been experimentally studied. Indeed, certain homologues with unknown function are not characterized, and they might relate to still not identified mechanisms or processes. Our research has identified 78 members that comprise its flavoproteome, 76 of them flavoenzymes, which mainly relate to bacteria survival, virulence, and/or infectivity. The list of flavoproteins here presented allows us to better understand the peculiarities of Brucella ovis and can be applied as a tool to search for candidates as new biocatalyst or antimicrobial targets.