Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 36(1): e2305424, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37541659

RESUMO

All-polymer solar cells (all-PSCs) possess excellent operation stability and mechanical robustness than other types of organic solar cells, thereby attracting considerable attention for wearable flexible electron devices. However, the power conversion efficiencies (PCEs) of all-PSCs are still lagging behind those of small-molecule-acceptor-based systems owing to the limitation of photoactive materials and unsatisfactory blend morphology. In this work, a novel terpolymer, denoted as PBDB-TFCl (poly4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b″]dithiophene-1,3-bis(2-ethylhexyl)-5,7-di(thiophen-2-yl)-4H,8H-benzo[1,2-c:4,5-c″]dithiophene-4,8-dione-4,8-bis(4-chloro-5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene), is used as an electron donor coupled with a ternary strategy to optimize the performance of all-PSCs. The addition of PBDB-TCl unit deepens the highest occupied molecular orbital energy level, reducing voltage losses. Moreover, the introduction of the guest donor (D18-Cl) effectively regulates the phase-transition kinetics of PBDB-TFCl:D18-Cl:PY-IT during the film formation, leading to ideal size of aggregations and enhanced crystallinity. PBDB-TFCl:D18-Cl:PY-IT devices exhibit a PCE of 18.6% (certified as 18.3%), judged as the highest value so far obtained with all-PSCs. Besides, based on the ternary active layer, the manufactured 36 cm2 flexible modules exhibit a PCE of 15.1%. Meanwhile, the ternary PSCs exhibit superior photostability and mechanical stability. In summary, the proposed strategy, based on molecular design and the ternary strategy, allows optimization of the all-polymer blend morphology and improvement of the photovoltaic performance for stable large-scale flexible PSCs.

2.
ACS Appl Mater Interfaces ; 11(9): 9259-9264, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30789698

RESUMO

Organic photovoltaics (OPVs) that perform more efficiently under artificial indoor lighting conditions than they do under sunlight are attracting growing interest as they can potentially serve as ambient energy harvesters for powering low-power electronics and portable devices for the Internet of Things. Herein, solution-processed small-molecule OPVs are demonstrated to exhibit high power conversion efficiencies exceeding 16% under white LED illumination, delivering high output power densities of up to 12.4 and 65.3 µW cm-2 at 200 and 1000 lx, respectively. Increasing the open-circuit voltage ( Voc) of OPVs is a critical factor for achieving higher indoor photovoltaic performance. Toward real applications, this small-molecule OPV system is adopted to fabricate six series-connected modules with an active area of ∼10 cm2 that are capable of generating a high output power surpassing 100 µW and a high Voc of over 4.2 V even under dimly lit indoor conditions of 200 lx. These results indicate that OPVs are promising as indoor electric power sources for self-sustainable electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA