Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.130
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Trends Genet ; 40(7): 601-612, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777691

RESUMO

With broad genetic diversity and as a source of key agronomic traits, wild grape species (Vitis spp.) are crucial to enhance viticulture's climatic resilience and sustainability. This review discusses how recent breakthroughs in the genome assembly and analysis of wild grape species have led to discoveries on grape evolution, from wild species' adaptation to environmental stress to grape domestication. We detail how diploid chromosome-scale genomes from wild Vitis spp. have enabled the identification of candidate disease-resistance and flower sex determination genes and the creation of the first Vitis graph-based pangenome. Finally, we explore how wild grape genomics can impact grape research and viticulture, including aspects such as data sharing, the development of functional genomics tools, and the acceleration of genetic improvement.


Assuntos
Genoma de Planta , Genômica , Vitis , Vitis/genética , Genômica/métodos , Genoma de Planta/genética , Variação Genética , Resistência à Doença/genética , Domesticação , Evolução Molecular
2.
Proc Natl Acad Sci U S A ; 121(10): e2310464121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412122

RESUMO

The ALOG (Arabidopsis LIGHT-DEPENDENT SHORT HYPOCOTYLS 1 (LSH1) and Oryza G1) proteins are conserved plant-specific Transcription Factors (TFs). They play critical roles in the development of various plant organs (meristems, inflorescences, floral organs, and nodules) from bryophytes to higher flowering plants. Despite the fact that the first members of this family were originally discovered in Arabidopsis, their role in this model plant has remained poorly characterized. Moreover, how these transcriptional regulators work at the molecular level is unknown. Here, we study the redundant function of the ALOG proteins LSH1,3,4 from Arabidopsis. We uncover their role in the repression of bract development and position them within a gene regulatory network controlling this process and involving the floral regulators LEAFY, BLADE-ON-PETIOLE, and PUCHI. Next, using in vitro genome-wide studies, we identified the conserved DNA motif bound by ALOG proteins from evolutionarily distant species (the liverwort Marchantia polymorpha and the flowering plants Arabidopsis, tomato, and rice). Resolution of the crystallographic structure of the ALOG DNA-binding domain in complex with DNA revealed the domain is a four-helix bundle with a disordered NLS and a zinc ribbon insertion between helices 2 and 3. The majority of DNA interactions are mediated by specific contacts made by the third alpha helix and the NLS. Taken together, this work provides the biochemical and structural basis for DNA-binding specificity of an evolutionarily conserved TF family and reveals its role as a key player in Arabidopsis flower development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Embriófitas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Embriófitas/genética , Inflorescência/metabolismo , DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Flores , Proteínas Nucleares/metabolismo
3.
Dev Biol ; 505: 1-10, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37838025

RESUMO

Flower color diversity is a key taxonomic trait in Meconopsis species, enhancing their appeal as ornamental flowers. However, knowledge of the molecular mechanisms of flower color formation in Meconopsis species is still limited. M. wilsonii subsp. australis (Australis) and M. wilsonii subsp. orientalis (Orientalis) have a developmental stage presenting red-purple flowers, while Orientalis also presents blue coloration at the full-bloom period, making them an important model for exploring the mechanism of blue flower formation in M. wilsonii. In this study, we collected petals from Australis and Orientalis at different developmental stages to compare the coloration differences between the two species and detect the molecular mechanisms of blue color in Orientalis. We identified that cyanidin was the main anthocyanin in the flowers of both species, and the blue color in Orientalis primarily arises from anthocyanins (Cyanidin-3-O-sambubioside). RNA sequencing analysis was performed to detect the gene expression in the anthocyanin biosynthesis pathway, and the results suggested that gene regulation for anthocyanin biosynthesis may not be the direct reason for blue color formation in Orientalis. In addition, the growth solid of Orientalis was rich in Fe and Mg ions, and a large amount of Fe and Mg ions accumulated in the petals of Orientalis. Combined with the gene functional enrichment results, we found that the purple and red-purple colors of these two species were presented by different glycosylation levels of cyanidin, while the violet color of Orientalis might be the results of metalloanthocyanins by Fe and Mg ions, which also relieved the toxicity caused by the high content of Fe and Mg ions in its cells. The environmental adaptation-related genes were highly expressed of in both species, such as adaptation to desiccation, water deprivation, freezing, etc. Our results revealed the coloration differences between Australis and Orientalis and described the molecular mechanisms of blue coloration in Orientalis. The data in our analysis could enrich the genetic resources for M. wilsonii for further studies.


Assuntos
Antocianinas , Papaveraceae , Antocianinas/metabolismo , Papaveraceae/metabolismo , Fenótipo , Íons/metabolismo , Flores , Pigmentação/genética , Cor , Regulação da Expressão Gênica de Plantas
4.
Plant J ; 118(3): 802-822, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38305492

RESUMO

Floral patterns are unique to rice and contribute significantly to its reproductive success. SL1 encodes a C2H2 transcription factor that plays a critical role in flower development in rice, but the molecular mechanism regulated by it remains poorly understood. Here, we describe interactions of the SL1 with floral homeotic genes, SPW1, and DL in specifying floral organ identities and floral meristem fate. First, the sl1 spw1 double mutant exhibited a stamen-to-pistil transition similar to that of sl1, spw1, suggesting that SL1 and SPW1 may located in the same pathway regulating stamen development. Expression analysis revealed that SL1 is located upstream of SPW1 to maintain its high level of expression and that SPW1, in turn, activates the B-class genes OsMADS2 and OsMADS4 to suppress DL expression indirectly. Secondly, sl1 dl displayed a severe loss of floral meristem determinacy and produced amorphous tissues in the third/fourth whorl. Expression analysis revealed that the meristem identity gene OSH1 was ectopically expressed in sl1 dl in the fourth whorl, suggesting that SL1 and DL synergistically terminate the floral meristem fate. Another meristem identity gene, FON1, was significantly decreased in expression in sl1 background mutants, suggesting that SL1 may directly activate its expression to regulate floral meristem fate. Finally, molecular evidence supported the direct genomic binding of SL1 to SPW1 and FON1 and the subsequent activation of their expression. In conclusion, we present a model to illustrate the roles of SL1, SPW1, and DL in floral organ specification and regulation of floral meristem fate in rice.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Meristema , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas , Mutação
5.
Plant J ; 118(6): 2188-2201, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581688

RESUMO

Moving from sole cropping to intercropping is a transformative change in agriculture, contributing to yield. Soybeans adapt to light conditions in intercropping by adjusting the onset of reproduction and the inflorescence architecture to optimize reproductive success. Maize-soybean strip intercropping (MS), maize-soybean relay strip intercropping (IS), and sole soybean (SS) systems are typical soybean planting systems with significant differences in light environments during growth periods. To elucidate the effect of changes in the light environment on soybean flowering processes and provide a theoretical basis for selecting suitable varieties in various planting systems to improve yields, field experiments combining planting systems (IS, MS, and SS) and soybean varieties (GQ8, GX7, ND25, and NN996) were conducted in 2021 and 2022. Results showed that growth recovery in the IS resulted in a balance in the expression of TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS T (FT) in the meristematic tissues of soybeans, which promoted the formation of new branches or flowers. IS prolonged the flowering time (2-7 days) and increased the number of forming flowers compared with SS (93.0 and 169%) and MS (67.3 and 103.3%) at the later soybean flowering stage. The higher carbon and nitrogen content in the middle and bottom canopies of soybean contributed to decreased flower abscission by 26.7 and 30.2%, respectively, compared with SS. Canopy light environment recovery promoted branch and flower formation and transformation of flowers into pods with lower flower-pod abscission, which contributed to elevating soybean yields in late-maturing and multibranching varieties (ND25) in IS.


Assuntos
Flores , Glycine max , Luz , Zea mays , Glycine max/fisiologia , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Zea mays/fisiologia , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Flores/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Agricultura/métodos , Produção Agrícola/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Produtos Agrícolas/crescimento & desenvolvimento
6.
Plant J ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972041

RESUMO

Diurnal flower-opening time (DFOT), the time of spikelet opening during the day, is an important trait for hybrid rice (Oryza sativa L.) seed production. Hybrids between indica and japonica rice varieties have strong heterosis, but the parental lines usually have different, nonoverlapping DFOTs. This reduces the success of hybrid seed production in crosses between indica and japonica subspecies, thus hindering the utilization of indica and japonica inter-subspecies heterosis. However, little is known about the molecular mechanisms regulating DFOT in rice. Here, we obtained japonica rice lines with a DFOT 1.5 h earlier than the wild type by overexpressing OsMYC2, a gene encoding a key transcription factor in the jasmonate (JA) signaling pathway. OsMYC2 is activated by JA signaling and directly regulates the transcription of genes related to JA biosynthesis and cell wall metabolism. Overexpressing OsMYC2 led to significantly increased JA contents and decreased cellulose and hemicellulose contents in lodicule cells, as well as the softening of lodicule cell walls. This may facilitate the swelling of lodicules, resulting in early diurnal flower-opening. These results suggest that the OsMYC2-JA feedback loop regulates DFOT in rice via cell wall remodeling. These findings shed light on the understanding of regulatory mechanism of the DFOT of plants, which should promote the development of indica and japonica varieties suitable for hybrid rice breeding.

7.
Plant J ; 117(4): 979-998, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38102881

RESUMO

Many plants can terminate their flowering process in response to unfavourable environments, but the mechanisms underlying this response are poorly understood. In this study, we observed that the lotus flower buds were susceptible to abortion under shaded conditions. The primary cause of abortion was excessive autophagic cell death (ACD) in flower buds. Blockade of autophagic flux in lotus flower buds consistently resulted in low levels of ACD and improved flowering ability under shaded conditions. Further evidence highlights the importance of the NnSnRK1-NnATG1 signalling axis in inducing ACD in lotus flower buds and culminating in their timely abortion. Under shaded conditions, elevated levels of NnSnRK1 activated NnATG1, which subsequently led to the formation of numerous autophagosome structures in lotus flower bud cells. Excessive autophagy levels led to the bulk degradation of cellular material, which triggered ACD and the abortion of flower buds. NnSnRK1 does not act directly on NnATG1. Other components, including TOR (target of rapamycin), PI3K (phosphatidylinositol 3-kinase) and three previously unidentified genes, appeared to be pivotal for the interaction between NnSnRK1 and NnATG1. This study reveals the role of autophagy in regulating the abortion of lotus flower buds, which could improve reproductive success and act as an energy-efficient measure in plants.


Assuntos
Morte Celular Autofágica , Lotus , Flores/genética , Fosfatidilinositol 3-Quinases , Transdução de Sinais
8.
Plant Physiol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046113

RESUMO

Many organisms have complex pigmentation patterns. However, how these patterns are formed remains largely unknown. In wild carrot (Daucus carota subsp. carota), which is also known as Queen Anne's lace, one or several purple central flowers occur in white umbels. Here, we investigated the unique central flower pigmentation pattern in wild carrot umbels. Using wild and cultivated carrot (Daucus carota subsp. sativus L.) accessions, transcriptome analysis, protein interaction, stable transformation, and CRISPR/Cas9-mediated knockout, a anthocyanin-activating R2R3-myeloblastosis (MYB) gene, Purple Central Flower (DcPCF), was identified as the causal gene that triggers only central flowers to possess the purple phenotype. The expression of DcPCF was only detected in tiny central flowers. We propose that the transition from purple to nonpurple flowers in the center of the umbel occurred after three separate adverse events: insertion of transposons in the promoter region, premature termination of the coding sequence (caused by a C-T substitution in the open reading frame), and the emergence of unknown anthocyanin suppressors. These three events could have occurred either consecutively or independently. The intriguing purple central flower pattern and its underlying mechanism may provide evidence that it is a remnant of ancient conditions of the species, reflecting the original appearance of Umbelliferae (also called Apiaceae) when a single flower was present.

9.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34996873

RESUMO

Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1;ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form.


Assuntos
Flores/crescimento & desenvolvimento , Flores/genética , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Sequência de Aminoácidos , Apoptose , Flores/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Inflorescência , Meristema/genética , Meristema/crescimento & desenvolvimento , Monoéster Fosfórico Hidrolases , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
J Biol Chem ; 299(8): 104945, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348560

RESUMO

Human Flower (hFWE) isoforms hFWE1-4 are putative transmembrane (TM) proteins that reportedly mediate fitness comparisons during cell competition through extracellular display of their C-terminal tails. Isoform topology, subcellular localization, and duration of plasma membrane presentation are essential to this function. However, disagreement persists regarding the structure of orthologous fly and mouse FWEs, and experimental evidence for hFWE isoform subcellular localization or membrane structure is lacking. Here, we used AlphaFold2 and subsequent molecular dynamics-based structural predictions to construct epitope-tagged hFWE3 and hFWE4, the most abundant human isoforms, for experimental determination of their structure and internalization dynamics. We demonstrate that hFWE3 resides in the membrane of the endoplasmic reticulum (ER), while hFWE4 partially colocalizes with Rab4-, Rab5-, and Rab11-positive vesicles as well as with the plasma membrane. An array of imaging techniques revealed that hFWE4 positions both N- and C-terminal tails and a loop between second and third TM segments within the cytosol, while small (4-12aa) loops between the first and second and the third and fourth TM segments are either exposed to the extracellular space or within the lumen of cytoplasmic vesicles. Similarly, we found hFWE3 positions both N- and C-terminal tails in the cytosol, while a short loop between TM domains extends into the ER lumen. Finally, we demonstrate that hFWE4 exists only transiently at the cell surface and is rapidly internalized in an AP-2- and dynamin-1-dependent manner. Collectively, these data are consistent with a conserved role for hFWE4 in endocytic processes.


Assuntos
Retículo Endoplasmático , Modelos Moleculares , Humanos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Endocitose , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestrutura , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Clatrina/metabolismo , Células HEK293
11.
Plant J ; 115(5): 1428-1442, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37248638

RESUMO

Auxin plays an essential role in plant growth and development, particularly in fruit development. The YUCCA (YUC) genes encode flavin monooxygenases that catalyze a rate-limiting step in auxin biosynthesis. Mutations that disrupt YUC gene function provide useful tools for dissecting general and specific functions of auxin during plant development. In woodland strawberry (Fragaria vesca), two ethyl methanesulfonate mutants, Y422 and Y1011, have been identified that exhibit severe defects in leaves and flowers. In particular, the width of the leaf blade is greatly reduced, and each leaflet in the mutants has fewer and deeper serrations. In addition, the number and shape of the floral organs are altered, resulting in smaller fruits. Mapping by sequencing revealed that both mutations reside in the FveYUC4 gene, and were therefore renamed as yuc4-1 and yuc4-2. Consistent with a role for FveYUC4 in auxin synthesis, free auxin and its metabolites are significantly reduced in the yuc4 leaves and flowers. This role of FveYUC4 in leaf and flower development is supported by its high and specific expression in young leaves and flower buds using GUS reporters. Furthermore, germline transformation of pYUC4::YUC4, which resulted in elevated expression of FveYUC4 in yuc4 mutants, not only rescued the leaf and flower defects but also produced parthenocarpic fruits. Taken together, our data demonstrate that FveYUC4 is essential for leaf and flower morphogenesis in woodland strawberry by providing auxin hormone at the proper time and in the right tissues.


Assuntos
Flores , Fragaria , Folhas de Planta , Proteínas de Plantas , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Clonagem Molecular , Perfilação da Expressão Gênica , Frutas
12.
Plant J ; 114(6): 1338-1352, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932949

RESUMO

Ethylene-responsive factors (ERFs) have diverse functions in the regulation of various plant developmental processes. Here, we demonstrate the dual role of an Arabidopsis ERF gene, AtERF19, in regulating reproductive meristem activity and flower organ size through the regulation of genes involved in CLAVATA-WUSCHEL (CLV-WUS) and auxin signaling, respectively. We found that AtERF19 stimulated the formation of flower primordia and controlled the number of flowers produced by activating WUS and was negatively regulated by CLV3. 35S::AtERF19 expression resulted in significantly more flowers, whereas 35S::AtERF19 + SRDX dominant-negative mutants produced fewer flowers. In addition, AtERF19 also functioned to control flower organ size by promoting the division/expansion of the cells through activating Small Auxin Up RNA Gene 32 (SAUR32), which positively regulated MYB21/24 in the auxin signaling pathway. 35S::AtERF19 and 35S::SAUR32 resulted in similarly larger flowers, whereas 35S::AtERF19 + SRDX and 35S::SAUR32-RNAi mutants produced smaller flowers than the wild type. The functions of AtERF19 were confirmed by the production of similarly more and larger flowers in 35S::AtERF19 transgenic tobacco (Nicotiana benthamiana) and in transgenic Arabidopsis which ectopically expressed the orchid gene (Nicotiana benthamiana) PaERF19 than in wild-type plants. The finding that AtERF19 regulates genes involved in both CLV-WUS and auxin signaling during flower development significantly expands the current knowledge of the multifunctional evolution of ERF genes in plants. The results presented in this work indicate a dual role for the transcription factor AtERF19 in controlling the number of flowers produced and flower organ size through the regulation of genes involved in CLV-WUS and auxin signaling, respectively. Our findings expand the knowledge of the roles of ERF genes in the regulation of reproductive development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Meristema , Tamanho do Órgão/genética , Flores , Ácidos Indolacéticos , Regulação da Expressão Gênica de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Plant J ; 113(6): 1122-1145, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36582168

RESUMO

High yield and stress resistance are the major prerequisites for successful crop cultivation, and can be achieved by modifying plant architecture. Evolutionarily conserved growth-regulating factors (GRFs) control the growth of different tissues and organs of plants. Here, we provide a systematic overview of the expression patterns of GRF genes and the structural features of GRF proteins in different plant species. Moreover, we illustrate the conserved and divergent roles of GRFs, microRNA396 (miR396), and GRF-interacting factors (GIFs) in leaf, root, and flower development. We also describe the molecular networks involving the miR396-GRF-GIF module, and illustrate how this module coordinates with different signaling molecules and transcriptional regulators to control development of different plant species. GRFs promote leaf growth, accelerate grain filling, and increase grain size and weight. We also provide some molecular insight into how coordination between GRFs and other signaling modules enhances crop productivity; for instance, how the GRF-DELLA interaction confers yield-enhancing dwarfism while increasing grain yield. Finally, we discuss how the GRF-GIF chimera substantially improves plant transformation efficiency by accelerating shoot formation. Overall, we systematically review the conserved and divergent roles of GRFs and the miR396-GRF-GIF module in growth regulation, and also provide insights into how GRFs can be utilized to improve the productivity and nutrient content of crop plants.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Vegetal/genética , Folhas de Planta/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
14.
Plant J ; 114(4): 783-804, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36861314

RESUMO

A level of redundancy and interplay among the transcriptional regulators of floral development safeguards a plant's reproductive success and ensures crop production. In the present study, an additional layer of complexity in the regulation of floral meristem (FM) identity and flower development is elucidated linking carotenoid biosynthesis and metabolism to the regulation of determinate flowering. The accumulation and subsequent cleavage of a diverse array of ζ-carotenes in the chloroplast biogenesis 5 (clb5) mutant of Arabidopsis results in the reprogramming of meristematic gene regulatory networks establishing FM identity mirroring that of the FM identity master regulator, APETALA1 (AP1). The immediate transition to floral development in clb5 requires long photoperiods in a GIGANTEA-independent manner, whereas AP1 is essential for the floral organ development of clb5. The elucidation of this link between carotenoid metabolism and floral development translates to tomato exposing a regulation of FM identity redundant to and initiated by AP1 and proposed to be dependent on the E class floral initiation and organ identity regulator, SEPALLATA3 (SEP3).


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/metabolismo , Solanum lycopersicum/genética , Meristema , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carotenoides/metabolismo , Flores
15.
Plant J ; 113(4): 698-715, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36564995

RESUMO

Carnation (Dianthus caryophyllus L.) is one of the most famous and ethylene-sensitive cut flowers worldwide, but how ethylene interacts with other plant hormones and factors to regulate petal senescence in carnation is largely unknown. Here we found that a gene encoding WRKY family transcription factor, DcWRKY33, was significantly upregulated upon ethylene treatment. Silencing and overexpression of DcWRKY33 could delay and accelerate the senescence of carnation petals, respectively. Abscisic acid (ABA) and H2 O2 treatments could also accelerate the senescence of carnation petals by inducing the expression of DcWRKY33. Further, DcWRKY33 can bind directly to the promoters of ethylene biosynthesis genes (DcACS1 and DcACO1), ABA biosynthesis genes (DcNCED2 and DcNCED5), and the reactive oxygen species (ROS) generation gene DcRBOHB to activate their expression. Lastly, relationships are existed between ethylene, ABA and ROS. This study elucidated that DcWRKY33 promotes petal senescence by activating genes involved in the biosynthesis of ethylene and ABA and accumulation of ROS in carnation, supporting the development of new strategies to prolong the vase life of cut carnation.


Assuntos
Dianthus , Syzygium , Ácido Abscísico/metabolismo , Dianthus/genética , Espécies Reativas de Oxigênio/metabolismo , Syzygium/metabolismo , Etilenos/metabolismo , Flores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Plant J ; 114(3): 636-650, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36808165

RESUMO

Carnation (Dianthus caryophyllus L.) is a respiratory climacteric flower, comprising one of the most important cut flowers that is extremely sensitive to plant hormone ethylene. Ethylene signaling core transcription factor DcEIL3-1 plays a key role in ethylene induced petal senescence in carnation. However, how the dose of DcEIL3-1 is regulated in the carnation petal senescence process is still not clear. Here, we screened out two EBF (EIN3 Binding F-box) genes, DcEBF1 and DcEBF2, which showed quick elevation by ethylene treatment according to the ethylene induced carnation petal senescence transcriptome. Silencing of DcEBF1 and DcEBF2 accelerated, whereas overexpression of DcEBF1 and DcEBF2 delayed, ethylene induced petal senescence in carnation by influencing DcEIL3-1 downstream target genes but not DcEIL3-1 itself. Furthermore, DcEBF1 and DcEBF2 interact with DcEIL3-1 to degrade DcEIL3-1 via an ubiquitination pathway in vitro and in vivo. Finally, DcEIL3-1 binds to the promoter regions of DcEBF1 and DcEBF2 to activate their expression. In conclusion, the present study reveals the mutual regulation between DcEBF1/2 and DcEIL3-1 during ethylene induced petal senescence in carnation, which not only expands our understanding about ethylene signal regulation network in the carnation petal senescence process, but also provides potential targets with respect to breeding a cultivar of long-lived cut carnation.


Assuntos
Dianthus , Syzygium , Dianthus/genética , Syzygium/metabolismo , Melhoramento Vegetal , Etilenos/metabolismo , Flores/genética , Flores/metabolismo
17.
Plant J ; 114(3): 519-533, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36786729

RESUMO

Flowering cherry is a very popular species around the world. High-quality genome resources for different elite cultivars are needed, and the understanding of their origins and the regulation of key ornamental traits are limited for this tree. Here, a high-quality chromosome-scale genome of Prunus campanulata 'Plena' (PCP), which is a native and elite flowering cherry cultivar in China, was generated. The contig N50 of the genome was 18.31 Mb, and 99.98% of its contigs were anchored to eight chromosomes. Furthermore, a total of 306 accessions of flowering cherry germplasm and six lines of outgroups were collected. Resequencing of these 312 lines was performed, and 761 267 high-quality genomic variants were obtained. The origins of flowering cherry were predicted, and these 306 accessions could be classified into three clades, A, B and C. According to phylogenetic analysis, we predicted two origins of flowering cherry. Flowering cherry in clade A originated in southern China, such as in the Himalayan Mountains, while clades B and C originated in northeastern China. Finally, a genome-wide association study of flower colour was performed for all 312 accessions of flowering cherry germplasm. A total of seven quantitative trait loci (QTLs) were identified. One gene encoding glycosylate transferase was predicted as the candidate gene for one QTL. Taken together, our results provide a valuable genomic resource and novel insights into the origin, evolution and flower colour variations of flowering cherry.


Assuntos
Estudo de Associação Genômica Ampla , Prunus avium , Filogenia , Cor , Prunus avium/genética , Flores/genética
18.
Emerg Infect Dis ; 30(8): 1531-1541, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38935978

RESUMO

Azole-resistant Aspergillus fumigatus (ARAf) fungi have been found inconsistently in the environment in Denmark since 2010. During 2018-2020, nationwide surveillance of clinical A. fumigatus fungi reported environmental TR34/L98H or TR46/Y121F/T289A resistance mutations in 3.6% of isolates, prompting environmental sampling for ARAf and azole fungicides and investigation for selection of ARAf in field and microcosmos experiments. ARAf was ubiquitous (20% of 366 samples; 16% TR34/L98H- and 4% TR46/Y121F/T289A-related mechanisms), constituting 4.2% of 4,538 A. fumigatus isolates. The highest proportions were in flower- and compost-related samples but were not correlated with azole-fungicide application concentrations. Genotyping showed clustering of tandem repeat-related ARAf and overlaps with clinical isolates in Denmark. A. fumigatus fungi grew poorly in the field experiment with no postapplication change in ARAf proportions. However, in microcosmos experiments, a sustained complete (tebuconazole) or partial (prothioconazole) inhibition against wild-type A. fumigatus but not ARAf indicated that, under some conditions, azole fungicides may favor growth of ARAf in soil.


Assuntos
Antifúngicos , Aspergillus fumigatus , Azóis , Farmacorresistência Fúngica , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/isolamento & purificação , Azóis/farmacologia , Dinamarca/epidemiologia , Antifúngicos/farmacologia , Humanos , Aspergilose/epidemiologia , Aspergilose/microbiologia , Aspergilose/tratamento farmacológico , Testes de Sensibilidade Microbiana , Mutação , Fungicidas Industriais/farmacologia , Genótipo
19.
Plant Cell Physiol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635460

RESUMO

JOINTLESS (J) was isolated in tomato (Solanum lycopersicum) from mutants lacking a flower pedicel abscission zone (AZ), and encodes a MADS-box protein of the SVP/AGL24 sub-family. The loss of J function also causes the return to leaf initiation in the inflorescences, indicating a pivotal role in inflorescence meristem identity. Here, we compared j mutants in different accessions that exhibit either an indeterminate shoot growth, producing regular sympodial segments, or a determinate shoot growth, due to the reduction of sympodial segments and causal mutation of the SELF PRUNING (SP) gene. We observed that the inflorescence phenotype of j mutants is stronger in indeterminate (SP) accessions such as Ailsa Craig (AC), than in determinate (sp) ones, such as Heinz (Hz). Moreover, RNA-seq analysis revealed that the return to vegetative fate in j mutants is accompanied by expression of SP, which supports conversion of the inflorescence meristem to sympodial shoot meristem in j inflorescences. Other markers of vegetative meristems such as APETALA2c, and branching genes such as BRANCHED 1 (BRC1a/b) were differentially expressed in the inflorescences of j(AC) mutants. We also found in the indeterminate AC accession that J represses homeotic genes of B- and C-classes, and that its overexpression causes an oversized leafy calyx phenotype and has a dominant negative effect on AZ formation. A model is therefore proposed where J, by repressing shoot fate and influencing reproductive organ formation, acts as a key determinant of inflorescence meristems.

20.
BMC Biotechnol ; 24(1): 19, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609923

RESUMO

BACKGROUND: Flavonoids are one of the bioactive ingredients of Lonicera macranthoides (L. macranthoides), however, their biosynthesis in the flower is still unclear. In this study, combined transcriptomic and targeted metabolomic analyses were performed to clarify the flavonoids biosynthesis during flowering of L. macranthoides. RESULTS: In the three sample groups, GB_vs_WB, GB_vs_WF and GB_vs_GF, there were 25, 22 and 18 differentially expressed genes (DEGs) in flavonoids biosynthetic pathway respectively. A total of 339 flavonoids were detected and quantified at four developmental stages of flower in L. macranthoides. In the three sample groups, 113, 155 and 163 differentially accumulated flavonoids (DAFs) were detected respectively. Among the DAFs, most apigenin derivatives in flavones and most kaempferol derivatives in flavonols were up-regulated. Correlation analysis between DEGs and DAFs showed that the down-regulated expressions of the CHS, DFR, C4H, F3'H, CCoAOMT_32 and the up-regulated expressions of the two HCTs resulted in down-regulated levels of dihydroquercetin, epigallocatechin and up-regulated level of kaempferol-3-O-(6''-O-acetyl)-glucoside, cosmosiin and apigenin-4'-O-glucoside. The down-regulated expressions of F3H and FLS decreased the contents of 7 metabolites, including naringenin chalcone, proanthocyanidin B2, B3, B4, C1, limocitrin-3,7-di-O-glucoside and limocitrin-3-O-sophoroside. CONCLUSION: The findings are helpful for genetic improvement of varieties in L.macranthoides.


Assuntos
Lonicera , Lonicera/genética , Apigenina , Quempferóis , Perfilação da Expressão Gênica , Flavonoides , Flores/genética , Glucosídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA