Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.406
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(26): 5719-5738.e28, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38056463

RESUMO

Tumor-associated hydrocephalus (TAH) is a common and lethal complication of brain metastases. Although other factors beyond mechanical obstructions have been suggested, the exact mechanisms are unknown. Using single-nucleus RNA sequencing and spatial transcriptomics, we find that a distinct population of mast cells locate in the choroid plexus and dramatically increase during TAH. Genetic fate tracing and intracranial mast-cell-specific tryptase knockout showed that choroid plexus mast cells (CPMCs) disrupt cilia of choroid plexus epithelia via the tryptase-PAR2-FoxJ1 pathway and consequently increase cerebrospinal fluid production. Mast cells are also found in the human choroid plexus. Levels of tryptase in cerebrospinal fluid are closely associated with clinical severity of TAH. BMS-262084, an inhibitor of tryptase, can cross the blood-brain barrier, inhibit TAH in vivo, and alleviate mast-cell-induced damage of epithelial cilia in a human pluripotent stem-cell-derived choroid plexus organoid model. Collectively, we uncover the function of CPMCs and provide an attractive therapy for TAH.


Assuntos
Neoplasias Encefálicas , Plexo Corióideo , Hidrocefalia , Mastócitos , Humanos , Neoplasias Encefálicas/secundário , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Mastócitos/metabolismo , Mastócitos/patologia , Triptases/líquido cefalorraquidiano , Metástase Neoplásica/patologia
2.
Cell ; 186(4): 764-785.e21, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36803604

RESUMO

The choroid plexus (ChP) is the blood-cerebrospinal fluid (CSF) barrier and the primary source of CSF. Acquired hydrocephalus, caused by brain infection or hemorrhage, lacks drug treatments due to obscure pathobiology. Our integrated, multi-omic investigation of post-infectious hydrocephalus (PIH) and post-hemorrhagic hydrocephalus (PHH) models revealed that lipopolysaccharide and blood breakdown products trigger highly similar TLR4-dependent immune responses at the ChP-CSF interface. The resulting CSF "cytokine storm", elicited from peripherally derived and border-associated ChP macrophages, causes increased CSF production from ChP epithelial cells via phospho-activation of the TNF-receptor-associated kinase SPAK, which serves as a regulatory scaffold of a multi-ion transporter protein complex. Genetic or pharmacological immunomodulation prevents PIH and PHH by antagonizing SPAK-dependent CSF hypersecretion. These results reveal the ChP as a dynamic, cellularly heterogeneous tissue with highly regulated immune-secretory capacity, expand our understanding of ChP immune-epithelial cell cross talk, and reframe PIH and PHH as related neuroimmune disorders vulnerable to small molecule pharmacotherapy.


Assuntos
Plexo Corióideo , Hidrocefalia , Humanos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Plexo Corióideo/metabolismo , Hidrocefalia/líquido cefalorraquidiano , Hidrocefalia/imunologia , Imunidade Inata , Síndrome da Liberação de Citocina/patologia
3.
Cell ; 185(26): 5028-5039.e13, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36516855

RESUMO

Cerebrospinal fluid (CSF) contains a tightly regulated immune system. However, knowledge is lacking about how CSF immunity is altered with aging or neurodegenerative disease. Here, we performed single-cell RNA sequencing on CSF from 45 cognitively normal subjects ranging from 54 to 82 years old. We uncovered an upregulation of lipid transport genes in monocytes with age. We then compared this cohort with 14 cognitively impaired subjects. In cognitively impaired subjects, downregulation of lipid transport genes in monocytes occurred concomitantly with altered cytokine signaling to CD8 T cells. Clonal CD8 T effector memory cells upregulated C-X-C motif chemokine receptor 6 (CXCR6) in cognitively impaired subjects. The CXCR6 ligand, C-X-C motif chemokine ligand 16 (CXCL16), was elevated in the CSF of cognitively impaired subjects, suggesting CXCL16-CXCR6 signaling as a mechanism for antigen-specific T cell entry into the brain. Cumulatively, these results reveal cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Ligantes , Encéfalo , Envelhecimento , Lipídeos , Biomarcadores
4.
Cell ; 185(8): 1356-1372.e26, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35395179

RESUMO

Tumor-resident intracellular microbiota is an emerging tumor component that has been documented for a variety of cancer types with unclear biological functions. Here, we explored the functional significance of these intratumor bacteria, primarily using a murine spontaneous breast-tumor model MMTV-PyMT. We found that depletion of intratumor bacteria significantly reduced lung metastasis without affecting primary tumor growth. During metastatic colonization, intratumor bacteria carried by circulating tumor cells promoted host-cell survival by enhancing resistance to fluid shear stress by reorganizing actin cytoskeleton. We further showed that intratumor administration of selected bacteria strains isolated from tumor-resident microbiota promoted metastasis in two murine tumor models with significantly different levels of metastasis potential. Our findings suggest that tumor-resident microbiota, albeit at low biomass, play an important role in promoting cancer metastasis, intervention of which might therefore be worth exploring for advancing oncology care.


Assuntos
Neoplasias da Mama , Microbiota , Metástase Neoplásica , Animais , Neoplasias da Mama/microbiologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Células Neoplásicas Circulantes/patologia
5.
Cell ; 184(11): 3056-3074.e21, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33932339

RESUMO

The choroid plexus (ChP) in each brain ventricle produces cerebrospinal fluid (CSF) and forms the blood-CSF barrier. Here, we construct a single-cell and spatial atlas of each ChP in the developing, adult, and aged mouse brain. We delineate diverse cell types, subtypes, cell states, and expression programs in epithelial and mesenchymal cells across ages and ventricles. In the developing ChP, we predict a common progenitor pool for epithelial and neuronal cells, validated by lineage tracing. Epithelial and fibroblast cells show regionalized expression by ventricle, starting at embryonic stages and persisting with age, with a dramatic transcriptional shift with maturation, and a smaller shift in each aged cell type. With aging, epithelial cells upregulate host-defense programs, and resident macrophages upregulate interleukin-1ß (IL-1ß) signaling genes. Our atlas reveals cellular diversity, architecture and signaling across ventricles during development, maturation, and aging of the ChP-brain barrier.


Assuntos
Plexo Corióideo/embriologia , Plexo Corióideo/metabolismo , Fatores Etários , Envelhecimento/fisiologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiologia , Encefalopatias/genética , Encefalopatias/fisiopatologia , Diferenciação Celular/genética , Linhagem da Célula/genética , Plexo Corióideo/fisiologia , Células Epiteliais/metabolismo , Feminino , Masculino , Camundongos/embriologia , Camundongos Endogâmicos C57BL , Transdução de Sinais , Análise de Célula Única
6.
Cell ; 183(2): 411-428.e16, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32970988

RESUMO

The colon is primarily responsible for absorbing fluids. It contains a large number of microorganisms including fungi, which are enriched in its distal segment. The colonic mucosa must therefore tightly regulate fluid influx to control absorption of fungal metabolites, which can be toxic to epithelial cells and lead to barrier dysfunction. How this is achieved remains unknown. Here, we describe a mechanism by which the innate immune system allows rapid quality check of absorbed fluids to avoid intoxication of colonocytes. This mechanism relies on a population of distal colon macrophages that are equipped with "balloon-like" protrusions (BLPs) inserted in the epithelium, which sample absorbed fluids. In the absence of macrophages or BLPs, epithelial cells keep absorbing fluids containing fungal products, leading to their death and subsequent loss of epithelial barrier integrity. These results reveal an unexpected and essential role of macrophages in the maintenance of colon-microbiota interactions in homeostasis. VIDEO ABSTRACT.


Assuntos
Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Animais , Colo/metabolismo , Células Epiteliais/metabolismo , Epitélio , Feminino , Homeostase , Imunidade Inata/imunologia , Mucosa Intestinal/microbiologia , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Transdução de Sinais
7.
Cell ; 172(5): 1108-1121.e15, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29474910

RESUMO

The extracellular space (ECS) of the brain has an extremely complex spatial organization, which has defied conventional light microscopy. Consequently, despite a marked interest in the physiological roles of brain ECS, its structure and dynamics remain largely inaccessible for experimenters. We combined 3D-STED microscopy and fluorescent labeling of the extracellular fluid to develop super-resolution shadow imaging (SUSHI) of brain ECS in living organotypic brain slices. SUSHI enables quantitative analysis of ECS structure and reveals dynamics on multiple scales in response to a variety of physiological stimuli. Because SUSHI produces sharp negative images of all cellular structures, it also enables unbiased imaging of unlabeled brain cells with respect to their anatomical context. Moreover, the extracellular labeling strategy greatly alleviates problems of photobleaching and phototoxicity associated with traditional imaging approaches. As a straightforward variant of STED microscopy, SUSHI provides unprecedented access to the structure and dynamics of live brain ECS and neuropil.


Assuntos
Encéfalo/diagnóstico por imagem , Espaço Extracelular/metabolismo , Imageamento Tridimensional , Animais , Movimento Celular , Corantes/metabolismo , Fenômenos Eletrofisiológicos , Epilepsia/patologia , Epilepsia/fisiopatologia , Feminino , Glutamatos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Neurópilo , Osmose , Sinapses/metabolismo
8.
Cell ; 168(6): 1101-1113.e13, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28283064

RESUMO

We molecularly dissected leptomeningeal metastasis, or spread of cancer to the cerebrospinal fluid (CSF), which is a frequent and fatal condition mediated by unknown mechanisms. We selected lung and breast cancer cell lines for the ability to infiltrate and grow in CSF, a remarkably acellular, mitogen-poor metastasis microenvironment. Complement component 3 (C3) was upregulated in four leptomeningeal metastatic models and proved necessary for cancer growth within the leptomeningeal space. In human disease, cancer cells within the CSF produced C3 in correlation with clinical course. C3 expression in primary tumors was predictive of leptomeningeal relapse. Mechanistically, we found that cancer-cell-derived C3 activates the C3a receptor in the choroid plexus epithelium to disrupt the blood-CSF barrier. This effect allows plasma components, including amphiregulin, and other mitogens to enter the CSF and promote cancer cell growth. Pharmacologic interference with C3 signaling proved therapeutically beneficial in suppressing leptomeningeal metastasis in these preclinical models.


Assuntos
Complemento C3/metabolismo , Neoplasias Meníngeas/secundário , Metástase Neoplásica/patologia , Animais , Neoplasias da Mama/patologia , Líquido Cefalorraquidiano , Plexo Corióideo/irrigação sanguínea , Complemento C3/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Pulmonares/patologia , Antígeno de Macrófago 1/metabolismo , Camundongos , Transdução de Sinais , Microambiente Tumoral , Regulação para Cima
9.
Physiol Rev ; 103(1): 919-956, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36173801

RESUMO

Studies of the choroid plexus lag behind those of the more widely known blood-brain barrier, despite a much longer history. This review has two overall aims. The first is to outline long-standing areas of research where there are unanswered questions, such as control of cerebrospinal fluid (CSF) secretion and blood flow. The second aim is to review research over the past 10 years where the focus has shifted to the idea that there are choroid plexuses located in each of the brain's ventricles that make specific contributions to brain development and function through molecules they generate for delivery via the CSF. These factors appear to be particularly important for aspects of normal brain growth. Most research carried out during the twentieth century dealt with the choroid plexus, a brain barrier interface making critical contributions to the composition and stability of the brain's internal environment throughout life. More recent research in the twenty-first century has shown the importance of choroid plexus-generated CSF in neurogenesis, influence of sex and other hormones on choroid plexus function, and choroid plexus involvement in circadian rhythms and sleep. The advancement of technologies to facilitate delivery of brain-specific therapies via the CSF to treat neurological disorders is a rapidly growing area of research. Conversely, understanding the basic mechanisms and implications of how maternal drug exposure during pregnancy impacts the developing brain represents another key area of research.


Assuntos
Barreira Hematoencefálica , Plexo Corióideo , Humanos , Barreira Hematoencefálica/fisiologia , Encéfalo , Transporte Biológico/fisiologia , Ventrículos Cerebrais
10.
Immunity ; 54(1): 164-175.e6, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33382973

RESUMO

Patients suffering from Coronavirus disease 2019 (COVID-19) can develop neurological sequelae, such as headache and neuroinflammatory or cerebrovascular disease. These conditions-termed here as Neuro-COVID-are more frequent in patients with severe COVID-19. To understand the etiology of these neurological sequelae, we utilized single-cell sequencing and examined the immune cell profiles from the cerebrospinal fluid (CSF) of Neuro-COVID patients compared with patients with non-inflammatory and autoimmune neurological diseases or with viral encephalitis. The CSF of Neuro-COVID patients exhibited an expansion of dedifferentiated monocytes and of exhausted CD4+ T cells. Neuro-COVID CSF leukocytes featured an enriched interferon signature; however, this was less pronounced than in viral encephalitis. Repertoire analysis revealed broad clonal T cell expansion and curtailed interferon response in severe compared with mild Neuro-COVID patients. Collectively, our findings document the CSF immune compartment in Neuro-COVID patients and suggest compromised antiviral responses in this setting.


Assuntos
COVID-19/imunologia , Monócitos/imunologia , Doenças do Sistema Nervoso/imunologia , Linfócitos T/imunologia , COVID-19/líquido cefalorraquidiano , COVID-19/complicações , COVID-19/patologia , Diferenciação Celular , Líquido Cefalorraquidiano/imunologia , Encefalite Viral/líquido cefalorraquidiano , Encefalite Viral/imunologia , Perfilação da Expressão Gênica , Humanos , Interferons/genética , Interferons/imunologia , Leucócitos/imunologia , Ativação Linfocitária , Doenças do Sistema Nervoso/líquido cefalorraquidiano , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/patologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , SARS-CoV-2/imunologia , Análise de Célula Única
11.
Mol Cell ; 82(12): 2201-2214, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35675815

RESUMO

Macromolecular phase separation is being recognized for its potential importance and relevance as a driver of spatial organization within cells. Here, we describe a framework based on synergies between networking (percolation or gelation) and density (phase separation) transitions. Accordingly, the phase transitions in question are referred to as phase separation coupled to percolation (PSCP). The condensates that result from PSCP are viscoelastic network fluids. Such systems have sequence-, composition-, and topology-specific internal network structures that give rise to time-dependent interplays between viscous and elastic properties. Unlike pure phase separation, the process of PSCP gives rise to sequence-, chemistry-, and structure-specific distributions of clusters that can form at concentrations that lie well below the threshold concentration for phase separation. PSCP, influenced by specific versus solubility-determining interactions, also provides a bridge between different observations and helps answer questions and address challenges that have arisen regarding the role of macromolecular phase separation in biology.

12.
Physiol Rev ; 102(2): 1025-1151, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949874

RESUMO

The brain harbors a unique ability to, figuratively speaking, shift its gears. During wakefulness, the brain is geared fully toward processing information and behaving, while homeostatic functions predominate during sleep. The blood-brain barrier establishes a stable environment that is optimal for neuronal function, yet the barrier imposes a physiological problem; transcapillary filtration that forms extracellular fluid in other organs is reduced to a minimum in brain. Consequently, the brain depends on a special fluid [the cerebrospinal fluid (CSF)] that is flushed into brain along the unique perivascular spaces created by astrocytic vascular endfeet. We describe this pathway, coined the term glymphatic system, based on its dependency on astrocytic vascular endfeet and their adluminal expression of aquaporin-4 water channels facing toward CSF-filled perivascular spaces. Glymphatic clearance of potentially harmful metabolic or protein waste products, such as amyloid-ß, is primarily active during sleep, when its physiological drivers, the cardiac cycle, respiration, and slow vasomotion, together efficiently propel CSF inflow along periarterial spaces. The brain's extracellular space contains an abundance of proteoglycans and hyaluronan, which provide a low-resistance hydraulic conduit that rapidly can expand and shrink during the sleep-wake cycle. We describe this unique fluid system of the brain, which meets the brain's requisites to maintain homeostasis similar to peripheral organs, considering the blood-brain-barrier and the paths for formation and egress of the CSF.


Assuntos
Sistema Glinfático , Peptídeos beta-Amiloides/metabolismo , Transporte Biológico , Barreira Hematoencefálica , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Sistema Glinfático/metabolismo , Humanos
13.
Physiol Rev ; 101(4): 1873-1979, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33829868

RESUMO

A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Exercício Físico/fisiologia , Transtornos de Estresse por Calor/fisiopatologia , Resposta ao Choque Térmico , Água/metabolismo , Aclimatação/fisiologia , Animais , Temperatura Alta , Humanos , Desempenho Psicomotor , Sudorese , Perda Insensível de Água
14.
EMBO J ; 43(15): 3175-3191, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38886581

RESUMO

Endothelial cell responses to fluid shear stress from blood flow are crucial for vascular development, function, and disease. A complex of PECAM-1, VE-cadherin, VEGF receptors (VEGFRs), and Plexin D1 located at cell-cell junctions mediates many of these events. However, available evidence suggests that another mechanosensor upstream of PECAM-1 initiates signaling. Hypothesizing that GPCR and Gα proteins may serve this role, we performed siRNA screening of Gα subunits and found that Gαi2 and Gαq/11 are required for activation of the junctional complex. We then developed a new activation assay, which showed that these G proteins are activated by flow. We next mapped the Gα residues required for activation and developed an affinity purification method that used this information to identify latrophilin-2 (Lphn2/ADGRL2) as the upstream GPCR. Latrophilin-2 is required for all PECAM-1 downstream events tested. In both mice and zebrafish, latrophilin-2 is required for flow-dependent angiogenesis and artery remodeling. Furthermore, endothelial-specific knockout demonstrates that latrophilin plays a role in flow-dependent artery remodeling. Human genetic data reveal a correlation between the latrophilin-2-encoding Adgrl2 gene and cardiovascular disease. Together, these results define a pathway that connects latrophilin-dependent G protein activation to subsequent endothelial signaling, vascular physiology, and disease.


Assuntos
Junções Intercelulares , Mecanotransdução Celular , Receptores Acoplados a Proteínas G , Receptores de Peptídeos , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Junções Intercelulares/metabolismo , Junções Intercelulares/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/metabolismo , Receptores de Peptídeos/genética , Estresse Mecânico , Peixe-Zebra/metabolismo , Peixe-Zebra/genética
15.
Physiol Rev ; 100(3): 1077-1117, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999507

RESUMO

Seminal fluid is often assumed to have just one function in mammalian reproduction, delivering sperm to fertilize oocytes. But seminal fluid also transmits signaling agents that interact with female reproductive tissues to facilitate conception and .pregnancy. Upon seminal fluid contact, female tissues initiate a controlled inflammatory response that affects several aspects of reproductive function to ultimately maximize the chances of a male producing healthy offspring. This effect is best characterized in mice, where the female response involves several steps. Initially, seminal fluid factors cause leukocytes to infiltrate the female reproductive tract, and to selectively target and eliminate excess sperm. Other signals stimulate ovulation, induce an altered transcriptional program in female tract tissues that modulates embryo developmental programming, and initiate immune adaptations to promote receptivity to implantation and placental development. A key result is expansion of the pool of regulatory T cells that assist implantation by suppressing inflammation, mediating tolerance to male transplantation antigens, and promoting uterine vascular adaptation and placental development. Principal signaling agents in seminal fluid include prostaglandins and transforming growth factor-ß. The balance of male signals affects the nature of the female response, providing a mechanism of ?cryptic female choiceË® that influences female reproductive investment. Male-female seminal fluid signaling is evident in all mammalian species investigated including human, and effects of seminal fluid in invertebrates indicate evolutionarily conserved mechanisms. Understanding the female response to seminal fluid will shed new light on infertility and pregnancy disorders and is critical to defining how events at conception influence offspring health.


Assuntos
Genitália Feminina/fisiologia , Reprodução/fisiologia , Sêmen/fisiologia , Animais , Feminino , Inflamação , Masculino , Transdução de Sinais
16.
EMBO J ; 42(17): e111515, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37427561

RESUMO

Accumulating evidence indicates that gut microbiota dysbiosis is associated with increased blood-brain barrier (BBB) permeability and contributes to Alzheimer's disease (AD) pathogenesis. In contrast, the influence of gut microbiota on the blood-cerebrospinal fluid (CSF) barrier has not yet been studied. Here, we report that mice lacking gut microbiota display increased blood-CSF barrier permeability associated with disorganized tight junctions (TJs), which can be rescued by recolonization with gut microbiota or supplementation with short-chain fatty acids (SCFAs). Our data reveal that gut microbiota is important not only for the establishment but also for the maintenance of a tight barrier. Also, we report that the vagus nerve plays an important role in this process and that SCFAs can independently tighten the barrier. Administration of SCFAs in AppNL-G-F mice improved the subcellular localization of TJs at the blood-CSF barrier, reduced the ß-amyloid (Aß) burden, and affected microglial phenotype. Altogether, our results suggest that modulating the microbiota and administering SCFAs might have therapeutic potential in AD via blood-CSF barrier tightening and maintaining microglial activity and Aß clearance.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Microbiota , Camundongos , Animais , Barreira Hematoencefálica/patologia , Microbioma Gastrointestinal/fisiologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Ácidos Graxos Voláteis
17.
Proc Natl Acad Sci U S A ; 121(32): e2402252121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39074268

RESUMO

Drop-fiber interactions are fundamental to the operation of technologies such as atmospheric fog capture, oil filtration, refrigeration, and dehumidification. We demonstrate that by twisting together two fibers, a sliding drop's flow path can be controlled by tuning the ratio between its size and the twist wavelength. We find both experimentally and numerically that twisted fiber systems are able to asymmetrically stabilize drops, both enhancing drop transport speeds and creating a rich array of new flow patterns. We show that the passive flow control generated by twisting fibers allows for woven nets that can be "programmed" with junctions that predetermine drop interactions and can be anticlogging. Furthermore, it is shown that twisted fiber structures are significantly more effective at capturing atmospheric fog compared to straight fibers.

18.
Proc Natl Acad Sci U S A ; 121(11): e2311798121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442164

RESUMO

An unstable density stratification between two fluids mixes spontaneously under the effect of gravity, a phenomenon known as Rayleigh-Taylor (RT) turbulence. If the two fluids are immiscible, for example, oil and water, surface tension prevents intermixing at the molecular level. However, turbulence fragments one fluid into the other, generating an emulsion in which the typical droplet size decreases over time as a result of the competition between the rising kinetic energy and the surface energy density. Even though the first phenomenological theory describing this emulsification process was derived many years ago, it has remained elusive to experimental verification, hampering our ability to predict the fate of oil in applications such as deep-water spills. Here, we provide the first experimental and numerical verification of the immiscible RT turbulence theory, unveiling a unique turbulent state that originates at the oil-water interface due to the interaction of multiple capillary waves. We show that a single, non-dimensional, and time-independent parameter controls the range of validity of the theory. Our findings have wide-ranging implications for the understanding of the mixing of immiscible fluids. This includes in particular oil spills, where our work enables the prediction of the oil-water interface dynamics that ultimately determine the rate of oil biodegradation by marine bacteria.

19.
Proc Natl Acad Sci U S A ; 121(7): e2311049121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38319973

RESUMO

Intrathecal synthesis of central nervous system (CNS)-reactive autoantibodies is observed across patients with autoimmune encephalitis (AE), who show multiple residual neurobehavioral deficits and relapses despite immunotherapies. We leveraged two common forms of AE, mediated by leucine-rich glioma inactivated-1 (LGI1) and contactin-associated protein-like 2 (CASPR2) antibodies, as human models to comprehensively reconstruct and profile cerebrospinal fluid (CSF) B cell receptor (BCR) characteristics. We hypothesized that the resultant observations would both inform the observed therapeutic gap and determine the contribution of intrathecal maturation to pathogenic B cell lineages. From the CSF of three patients, 381 cognate-paired IgG BCRs were isolated by cell sorting and scRNA-seq, and 166 expressed as monoclonal antibodies (mAbs). Sixty-two percent of mAbs from singleton BCRs reacted with either LGI1 or CASPR2 and, strikingly, this rose to 100% of cells in clonal groups with ≥4 members. These autoantigen-reactivities were more concentrated within antibody-secreting cells (ASCs) versus B cells (P < 0.0001), and both these cell types were more differentiated than LGI1- and CASPR2-unreactive counterparts. Despite greater differentiation, autoantigen-reactive cells had acquired few mutations intrathecally and showed minimal variation in autoantigen affinities within clonal expansions. Also, limited CSF T cell receptor clonality was observed. In contrast, a comparison of germline-encoded BCRs versus the founder intrathecal clone revealed marked gains in both affinity and mutational distances (P = 0.004 and P < 0.0001, respectively). Taken together, in patients with LGI1 and CASPR2 antibody encephalitis, our results identify CSF as a compartment with a remarkably high frequency of clonally expanded autoantigen-reactive ASCs whose BCR maturity appears dominantly acquired outside the CNS.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Encefalite , Glioma , Doença de Hashimoto , Humanos , Leucina , Peptídeos e Proteínas de Sinalização Intracelular , Recidiva Local de Neoplasia , Autoanticorpos , Autoantígenos
20.
Proc Natl Acad Sci U S A ; 121(27): e2314702121, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38916997

RESUMO

Enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles (cerebral ventriculomegaly), the cardinal feature of congenital hydrocephalus (CH), is increasingly recognized among patients with autism spectrum disorders (ASD). KATNAL2, a member of Katanin family microtubule-severing ATPases, is a known ASD risk gene, but its roles in human brain development remain unclear. Here, we show that nonsense truncation of Katnal2 (Katnal2Δ17) in mice results in classic ciliopathy phenotypes, including impaired spermatogenesis and cerebral ventriculomegaly. In both humans and mice, KATNAL2 is highly expressed in ciliated radial glia of the fetal ventricular-subventricular zone as well as in their postnatal ependymal and neuronal progeny. The ventriculomegaly observed in Katnal2Δ17 mice is associated with disrupted primary cilia and ependymal planar cell polarity that results in impaired cilia-generated CSF flow. Further, prefrontal pyramidal neurons in ventriculomegalic Katnal2Δ17 mice exhibit decreased excitatory drive and reduced high-frequency firing. Consistent with these findings in mice, we identified rare, damaging heterozygous germline variants in KATNAL2 in five unrelated patients with neurosurgically treated CH and comorbid ASD or other neurodevelopmental disorders. Mice engineered with the orthologous ASD-associated KATNAL2 F244L missense variant recapitulated the ventriculomegaly found in human patients. Together, these data suggest KATNAL2 pathogenic variants alter intraventricular CSF homeostasis and parenchymal neuronal connectivity by disrupting microtubule dynamics in fetal radial glia and their postnatal ependymal and neuronal descendants. The results identify a molecular mechanism underlying the development of ventriculomegaly in a genetic subset of patients with ASD and may explain persistence of neurodevelopmental phenotypes in some patients with CH despite neurosurgical CSF shunting.


Assuntos
Cílios , Hidrocefalia , Microtúbulos , Animais , Feminino , Humanos , Masculino , Camundongos , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/metabolismo , Cílios/metabolismo , Cílios/patologia , Epêndima/metabolismo , Epêndima/patologia , Hidrocefalia/genética , Hidrocefalia/patologia , Hidrocefalia/metabolismo , Katanina/metabolismo , Katanina/genética , Microtúbulos/metabolismo , Neurônios/metabolismo , Células Piramidais/metabolismo , Células Piramidais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA