Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.507
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(2): 283-298.e17, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35021065

RESUMO

Gasdermins are a family of structurally related proteins originally described for their role in pyroptosis. Gasdermin B (GSDMB) is currently the least studied, and while its association with genetic susceptibility to chronic mucosal inflammatory disorders is well established, little is known about its functional relevance during active disease states. Herein, we report increased GSDMB in inflammatory bowel disease, with single-cell analysis identifying epithelial specificity to inflamed colonocytes/crypt top colonocytes. Surprisingly, mechanistic experiments and transcriptome profiling reveal lack of inherent GSDMB-dependent pyroptosis in activated epithelial cells and organoids but instead point to increased proliferation and migration during in vitro wound closure, which arrests in GSDMB-deficient cells that display hyper-adhesiveness and enhanced formation of vinculin-based focal adhesions dependent on PDGF-A-mediated FAK phosphorylation. Importantly, carriage of disease-associated GSDMB SNPs confers functional defects, disrupting epithelial restitution/repair, which, altogether, establishes GSDMB as a critical factor for restoration of epithelial barrier function and the resolution of inflammation.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/patologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptose , Sequência de Bases , Estudos de Casos e Controles , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Epiteliais/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Células HEK293 , Células HT29 , Humanos , Doenças Inflamatórias Intestinais/genética , Metotrexato/farmacologia , Mutação/genética , Fosforilação/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Piroptose/efeitos dos fármacos , Piroptose/genética , Reprodutibilidade dos Testes , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Regulação para Cima/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Cicatrização/genética
2.
Cell ; 179(1): 120-131.e13, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31539492

RESUMO

Focal adhesions (FAs) are protein machineries essential for cell adhesion, migration, and differentiation. Talin is an integrin-activating and tension-sensing FA component directly connecting integrins in the plasma membrane with the actomyosin cytoskeleton. To understand how talin function is regulated, we determined a cryoelectron microscopy (cryo-EM) structure of full-length talin1 revealing a two-way mode of autoinhibition. The actin-binding rod domains fold into a 15-nm globular arrangement that is interlocked by the integrin-binding FERM head. In turn, the rod domains R9 and R12 shield access of the FERM domain to integrin and the phospholipid PIP2 at the membrane. This mechanism likely ensures synchronous inhibition of integrin, membrane, and cytoskeleton binding. We also demonstrate that compacted talin1 reversibly unfolds to an ∼60-nm string-like conformation, revealing interaction sites for vinculin and actin. Our data explain how fast switching between active and inactive conformations of talin could regulate FA turnover, a process critical for cell adhesion and signaling.


Assuntos
Adesões Focais/metabolismo , Domínios e Motivos de Interação entre Proteínas , Talina/química , Talina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Sítios de Ligação , Adesão Celular/fisiologia , Microscopia Crioeletrônica , Citoesqueleto/metabolismo , Dimerização , Escherichia coli/metabolismo , Humanos , Integrinas/metabolismo , Modelos Moleculares , Ligação Proteica , Transdução de Sinais/fisiologia , Vinculina/metabolismo
3.
Cell ; 167(6): 1571-1585.e18, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27839864

RESUMO

Cell migration in confined 3D tissue microenvironments is critical for both normal physiological functions and dissemination of tumor cells. We discovered a cytoskeletal structure that prevents damage to the nucleus during migration in confined microenvironments. The formin-family actin filament nucleator FMN2 associates with and generates a perinuclear actin/focal adhesion (FA) system that is distinct from previously characterized actin/FA structures. This system controls nuclear shape and positioning in cells migrating on 2D surfaces. In confined 3D microenvironments, FMN2 promotes cell survival by limiting nuclear envelope damage and DNA double-strand breaks. We found that FMN2 is upregulated in human melanomas and showed that disruption of FMN2 in mouse melanoma cells inhibits their extravasation and metastasis to the lung. Our results indicate a critical role for FMN2 in generating a perinuclear actin/FA system that protects the nucleus and DNA from damage to promote cell survival during confined migration and thus promote cancer metastasis.


Assuntos
Núcleo Celular/metabolismo , Adesões Focais , Neoplasias Pulmonares/secundário , Melanoma/patologia , Proteínas dos Microfilamentos/metabolismo , Metástase Neoplásica , Proteínas Nucleares/metabolismo , Actinas/metabolismo , Animais , Quebras de DNA de Cadeia Dupla , Embrião de Mamíferos/citologia , Matriz Extracelular/metabolismo , Feminino , Forminas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso
4.
Physiol Rev ; 103(3): 2321-2347, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796098

RESUMO

The local environment surrounding airway smooth muscle (ASM) cells has profound effects on the physiological and phenotypic properties of ASM tissues. ASM is continually subjected to the mechanical forces generated during breathing and to the constituents of its surrounding extracellular milieu. The smooth muscle cells within the airways continually modulate their properties to adapt to these changing environmental influences. Smooth muscle cells connect to the extracellular cell matrix (ECM) at membrane adhesion junctions that provide mechanical coupling between smooth muscle cells within the tissue. Membrane adhesion junctions also sense local environmental signals and transduce them to cytoplasmic and nuclear signaling pathways in the ASM cell. Adhesion junctions are composed of clusters of transmembrane integrin proteins that bind to ECM proteins outside the cell and to large multiprotein complexes in the submembranous cytoplasm. Physiological conditions and stimuli from the surrounding ECM are sensed by integrin proteins and transduced by submembranous adhesion complexes to signaling pathways to the cytoskeleton and nucleus. The transmission of information between the local environment of the cells and intracellular processes enables ASM cells to rapidly adapt their physiological properties to modulating influences in their extracellular environment: mechanical and physical forces that impinge on the cell, ECM constituents, local mediators, and metabolites. The structure and molecular organization of adhesion junction complexes and the actin cytoskeleton are dynamic and constantly changing in response to environmental influences. The ability of ASM to rapidly accommodate to the ever-changing conditions and fluctuating physical forces within its local environment is essential for its normal physiological function.


Assuntos
Contração Muscular , Músculo Liso , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Miócitos de Músculo Liso , Fenótipo , Integrinas/metabolismo
5.
Annu Rev Cell Dev Biol ; 32: 469-490, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27501447

RESUMO

Cell migration is central to a multitude of physiological processes, including embryonic development, immune surveillance, and wound healing, and deregulated migration is key to cancer dissemination. Decades of investigations have uncovered many of the molecular and physical mechanisms underlying cell migration. Together with protrusion extension and cell body retraction, adhesion to the substrate via specific focal adhesion points has long been considered an essential step in cell migration. Although this is true for cells moving on two-dimensional substrates, recent studies have demonstrated that focal adhesions are not required for cells moving in three dimensions, in which confinement is sufficient to maintain a cell in contact with its substrate. Here, we review the investigations that have led to challenging the requirement of specific adhesions for migration, discuss the physical mechanisms proposed for cell body translocation during focal adhesion-independent migration, and highlight the remaining open questions for the future.


Assuntos
Movimento Celular , Adesões Focais/metabolismo , Animais , Fenômenos Biomecânicos , Humanos , Modelos Biológicos
6.
Trends Biochem Sci ; 49(6): 494-505, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38565496

RESUMO

Autophagy - a highly regulated intracellular degradation process - is pivotal in maintaining cellular homeostasis. Liquid-liquid phase separation (LLPS) is a fundamental mechanism regulating the formation and function of membrane-less compartments. Recent research has unveiled connections between LLPS and autophagy, suggesting that phase separation events may orchestrate the spatiotemporal organization of autophagic machinery and cargo sequestration. The Unc-51-like kinase (ULK)/autophagy-related 1 (Atg1) family of proteins is best known for its regulatory role in initiating autophagy, but there is growing evidence that the functional spectrum of ULK/Atg1 extends beyond autophagy regulation. In this review, we explore the spatial and temporal regulation of the ULK/Atg1 family of kinases, focusing on their recruitment to LLPS-driven compartments, and highlighting their multifaceted functions beyond their traditional role.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Autofagia , Humanos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/química
7.
EMBO J ; 43(13): 2715-2732, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769437

RESUMO

Microtubules regulate cell polarity and migration via local activation of focal adhesion turnover, but the mechanism of this process is insufficiently understood. Molecular complexes containing KANK family proteins connect microtubules with talin, the major component of focal adhesions. Here, local optogenetic activation of KANK1-mediated microtubule/talin linkage promoted microtubule targeting to an individual focal adhesion and subsequent withdrawal, resulting in focal adhesion centripetal sliding and rapid disassembly. This sliding is preceded by a local increase of traction force due to accumulation of myosin-II and actin in the proximity of the focal adhesion. Knockdown of the Rho activator GEF-H1 prevented development of traction force and abolished sliding and disassembly of focal adhesions upon KANK1 activation. Other players participating in microtubule-driven, KANK-dependent focal adhesion disassembly include kinases ROCK, PAK, and FAK, as well as microtubules/focal adhesion-associated proteins kinesin-1, APC, and αTAT. Based on these data, we develop a mathematical model for a microtubule-driven focal adhesion disruption involving local GEF-H1/RhoA/ROCK-dependent activation of contractility, which is consistent with experimental data.


Assuntos
Adesões Focais , Cinesinas , Microtúbulos , Fatores de Troca de Nucleotídeo Guanina Rho , Adesões Focais/metabolismo , Microtúbulos/metabolismo , Humanos , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Cinesinas/metabolismo , Cinesinas/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Miosina Tipo II/metabolismo , Talina/metabolismo , Talina/genética , Animais
8.
Mol Cell ; 79(5): 782-796.e6, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32780989

RESUMO

Enzymes or enzyme complexes can be concentrated in different cellular loci to modulate distinct functional processes in response to specific signals. How cells condense and compartmentalize enzyme complexes for spatiotemporally distinct cellular events is not well understood. Here we discover that specific and tight association of GIT1 and ß-Pix, a pair of GTPase regulatory enzymes, leads to phase separation of the complex without additional scaffolding molecules. GIT1/ß-Pix condensates are modular in nature and can be positioned at distinct cellular compartments, such as neuronal synapses, focal adhesions, and cell-cell junctions, by upstream adaptors. Guided by the structure of the GIT/PIX complex, we specifically probed the role of phase separation of the enzyme complex in cell migration and synapse formation. Our study suggests that formation of modular enzyme complex condensates via phase separation can dynamically concentrate limited quantities of enzymes to distinct cellular compartments for specific and optimal signaling.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Animais , Proteínas de Ciclo Celular/química , Proteínas Ativadoras de GTPase/química , Células HEK293 , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Paxilina/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo
9.
J Cell Sci ; 137(8)2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38563084

RESUMO

Angiogenesis is a tightly controlled dynamic process demanding a delicate equilibrium between pro-angiogenic signals and factors that promote vascular stability. The spatiotemporal activation of the transcriptional co-factors YAP (herein referring to YAP1) and TAZ (also known WWTR1), collectively denoted YAP/TAZ, is crucial to allow for efficient collective endothelial migration in angiogenesis. The focal adhesion protein deleted-in-liver-cancer-1 (DLC1) was recently described as a transcriptional downstream target of YAP/TAZ in endothelial cells. In this study, we uncover a negative feedback loop between DLC1 expression and YAP activity during collective migration and sprouting angiogenesis. In particular, our study demonstrates that signaling via the RhoGAP domain of DLC1 reduces nuclear localization of YAP and its transcriptional activity. Moreover, the RhoGAP activity of DLC1 is essential for YAP-mediated cellular processes, including the regulation of focal adhesion turnover, traction forces, and sprouting angiogenesis. We show that DLC1 restricts intracellular cytoskeletal tension by inhibiting Rho signaling at the basal adhesion plane, consequently reducing nuclear YAP localization. Collectively, these findings underscore the significance of DLC1 expression levels and its function in mitigating intracellular tension as a pivotal mechanotransductive feedback mechanism that finely tunes YAP activity throughout the process of sprouting angiogenesis.


Assuntos
Adesões Focais , Proteínas Ativadoras de GTPase , Mecanotransdução Celular , Proteínas Supressoras de Tumor , Proteínas de Sinalização YAP , Animais , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Movimento Celular , Retroalimentação Fisiológica , Adesões Focais/metabolismo , Adesões Focais/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Mecanotransdução Celular/genética , Neovascularização Fisiológica , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAP/metabolismo
10.
J Cell Sci ; 137(9)2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587458

RESUMO

Talin (herein referring collectively to talin 1 and 2) couples the actomyosin cytoskeleton to integrins and transmits tension to the extracellular matrix. Talin also interacts with numerous additional proteins capable of modulating the actin-integrin linkage and thus downstream mechanosignaling cascades. Here, we demonstrate that the scaffold protein Caskin2 interacts directly with the R8 domain of talin through its C-terminal LD motif. Caskin2 also associates with the WAVE regulatory complex to promote cell migration in an Abi1-dependent manner. Furthermore, we demonstrate that the Caskin2-Abi1 interaction is regulated by growth factor-induced phosphorylation of Caskin2 on serine 878. In MCF7 and UACC893 cells, which contain an amplification of CASKIN2, Caskin2 localizes in plasma membrane-associated plaques and around focal adhesions in cortical microtubule stabilization complexes. Taken together, our results identify Caskin2 as a novel talin-binding protein that might not only connect integrin-mediated adhesion to actin polymerization but could also play a role in crosstalk between integrins and microtubules.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Movimento Celular , Proteínas do Citoesqueleto , Ligação Proteica , Talina , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Adesões Focais/metabolismo , Integrinas/metabolismo , Células MCF-7 , Microtúbulos/metabolismo , Fosforilação , Talina/metabolismo
11.
J Cell Sci ; 137(14)2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-39034922

RESUMO

Focal adhesion kinase (FAK; encoded by PTK2) was discovered over 30 years ago as a cytoplasmic protein tyrosine kinase that is localized to cell adhesion sites, where it is activated by integrin receptor binding to extracellular matrix proteins. FAK is ubiquitously expressed and functions as a signaling scaffold for a variety of proteins at adhesions and in the cell cytoplasm, and with transcription factors in the nucleus. FAK expression and intrinsic activity are essential for mouse development, with molecular connections to cell motility, cell survival and gene expression. Notably, elevated FAK tyrosine phosphorylation is common in tumors, including pancreatic and ovarian cancers, where it is associated with decreased survival. Small molecule and orally available FAK inhibitors show on-target inhibition in tumor and stromal cells with effects on chemotherapy resistance, stromal fibrosis and tumor microenvironment immune function. Herein, we discuss recent insights regarding mechanisms of FAK activation and signaling, its roles as a cytoplasmic and nuclear scaffold, and the tumor-intrinsic and -extrinsic effects of FAK inhibitors. We also discuss results from ongoing and advanced clinical trials targeting FAK in low- and high-grade serous ovarian cancers, where FAK acts as a master regulator of drug resistance. Although FAK is not known to be mutationally activated, preventing FAK activity has revealed multiple tumor vulnerabilities that support expanding clinical combinatorial targeting possibilities.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal , Neoplasias , Transdução de Sinais , Humanos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Animais , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Feminino , Microambiente Tumoral , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
12.
J Cell Sci ; 137(2)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277157

RESUMO

S100A11 is a small Ca2+-activatable protein known to localize along stress fibers (SFs). Analyzing S100A11 localization in HeLa and U2OS cells further revealed S100A11 enrichment at focal adhesions (FAs). Strikingly, S100A11 levels at FAs increased sharply, yet transiently, just before FA disassembly. Elevating intracellular Ca2+ levels with ionomycin stimulated both S100A11 recruitment and subsequent FA disassembly. However, pre-incubation with the non-muscle myosin II (NMII) inhibitor blebbistatin or with an inhibitor of the stretch-activatable Ca2+ channel Piezo1 suppressed S100A11 recruitment, implicating S100A11 in an actomyosin-driven FA recruitment mechanism involving Piezo1-dependent Ca2+ influx. Applying external forces on peripheral FAs likewise recruited S100A11 to FAs even if NMII activity was inhibited, corroborating the mechanosensitive recruitment mechanism of S100A11. However, extracellular Ca2+ and Piezo1 function were indispensable, indicating that NMII contraction forces act upstream of Piezo1-mediated Ca2+ influx, in turn leading to S100A11 activation and FA recruitment. S100A11-knockout cells display enlarged FAs and had delayed FA disassembly during cell membrane retraction, consistent with impaired FA turnover in these cells. Our results thus demonstrate a novel function for S100A11 in promoting actomyosin contractility-driven FA disassembly.


Assuntos
Actomiosina , Adesões Focais , Humanos , Adesões Focais/metabolismo , Actomiosina/metabolismo , Cálcio/metabolismo , Proteínas do Citoesqueleto/metabolismo , Miosina Tipo II/metabolismo , Proteínas S100/genética , Proteínas S100/metabolismo
13.
Proc Natl Acad Sci U S A ; 120(26): e2218116120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339195

RESUMO

Integrin-mediated adhesion is essential for metazoan life. Integrin binding to ligand requires an activation step prior to binding ligand that depends on direct binding of talin and kindlin to the ß-integrin cytoplasmic tail and the transmission of force from the actomyosin via talin to the integrin-ligand bonds. However, the affinity of talin for integrin tails is low. It is therefore still unclear how such low-affinity bonds are reinforced to transmit forces up to 10 to 40 pN. In this study, we use single-molecule force spectroscopy by optical tweezers to investigate the mechanical stability of the talin•integrin bond in the presence and absence of kindlin. While talin and integrin alone form a weak and highly dynamic slip bond, the addition of kindlin-2 induces a force-independent, ideal talin•integrin bond, which relies on the steric proximity of and the intervening amino acid sequences between the talin- and kindlin-binding sites in the ß-integrin tail. Our findings show how kindlin cooperates with talin to enable transmission of high forces required to stabilize cell adhesion.


Assuntos
Integrinas , Talina , Animais , Talina/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Adesão Celular
14.
Proc Natl Acad Sci U S A ; 120(15): e2303037120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011205

RESUMO

Biomolecular condensates are nonmembranous structures that are mainly formed through liquid-liquid phase separation. Tensins are focal adhesion (FA) proteins linking the actin cytoskeleton to integrin receptors. Here, we report that GFP-tagged tensin-1 (TNS1) proteins phase-separate to form biomolecular condensates in cells. Live-cell imaging showed that new TNS1 condensates are budding from the disassembling ends of FAs, and the presence of these condensates is cell cycle dependent. TNS1 condensates dissolve immediately prior to mitosis and rapidly reappear while postmitotic daughter cells establish new FAs. TNS1 condensates contain selected FA proteins and signaling molecules such as pT308Akt but not pS473Akt, suggesting previously unknown roles of TNS1 condensates in disassembling FAs, as the storage of core FA components and the signaling intermediates.


Assuntos
Adesões Focais , Transdução de Sinais , Tensinas , Adesões Focais/metabolismo , Proteínas , Divisão Celular , Adesão Celular
15.
J Biol Chem ; 300(6): 107380, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762178

RESUMO

Cancer testis antigens (CTAs) are a collection of proteins whose expression is normally restricted to the gamete but abnormally activated in a wide variety of tumors. The CTA, Testis-specific serine kinase 6 (TSSK6), is essential for male fertility in mice. The functional relevance of TSSK6 to cancer, if any, has not previously been investigated. Here we find that TSSK6 is frequently anomalously expressed in colorectal cancer and patients with elevated TSSK6 expression have reduced relapse-free survival. Depletion of TSSK6 from colorectal cancer cells attenuates anchorage-independent growth, invasion, and growth in vivo. Conversely, overexpression of TSSK6 enhances anchorage independence and invasion in vitro as well as in vivo tumor growth. Notably, ectopic expression of TSSK6 in semi-transformed human colonic epithelial cells is sufficient to confer anchorage independence and enhance invasion. In somatic cells, TSSK6 co-localizes with and enhances the formation of paxillin and tensin-positive foci at the cell periphery, suggesting a function in focal adhesion formation. Importantly, TSSK6 kinase activity is essential to induce these tumorigenic behaviors. Our findings establish that TSSK6 exhibits oncogenic activity when abnormally expressed in colorectal cancer cells. Thus, TSSK6 is a previously unrecognized intervention target for therapy, which could exhibit an exceptionally broad therapeutic window.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases , Animais , Humanos , Masculino , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Adesões Focais/metabolismo , Adesões Focais/genética , Invasividade Neoplásica , Paxilina/metabolismo , Paxilina/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Tensinas/metabolismo , Tensinas/genética
16.
J Biol Chem ; 300(6): 107409, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38796063

RESUMO

About 18% of all human cancers carry a mutation in the KRAS gene making it among the most sought-after anticancer targets. However, mutant KRas protein has proved remarkably undruggable. The recent approval of the first generation of RAS inhibitors therefore marks a seminal milestone in the history of cancer research. It also raises the predictable challenges of limited drug efficacies and acquired resistance. Hence, new approaches that improve our understanding of the tumorigenic mechanisms of oncogenic RAS within more physiological settings continue to be essential. Here, we have used the near-diploid hTERT RPE-1 cells to generate isogenic cell lines in which one of the endogenous KRAS alleles carries an oncogenic KRAS mutation at glycine 12. Cells with a KRASG12V/+, KRASG12C/+, or KRASG12D/+ genotype, together with WT KRASG12G(WT)/+ cells, reveal that oncogenic KRAS.G12X mutations increase cell proliferation rate and cell motility and reduced focal adhesions in KRASG12V/+ cells. Epidermal growth factor -induced phosphorylation of ERK and AKT was comparable between KRASG12V/+, KRASG12C/+, KRASG12D/+, and KRASG12G(WT)/+ cells. Interestingly, KRASG12X/+ cells showed varying responses to distinct inhibitors with the KRASG12V/+ and KRASG12D/+ cells more sensitive to hydroxyurea and MEK inhibitors, U0126 and trametinib, but more resistant to PI3K inhibitor, PIK-90, than the KRASG12G(WT)/+ cells. A combination of low doses of hydroxyurea and U0126 showed an additive inhibition on growth rate that was greater in KRASG12V/+ than WT cells. Collectively, these cell lines will be a valuable resource for studying oncogenic RAS signaling and developing effective anti-KRAS reagents with minimum cytotoxicity on WT cells.


Assuntos
Movimento Celular , Proliferação de Células , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Movimento Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proliferação de Células/efeitos dos fármacos , Telomerase/genética , Telomerase/metabolismo , Proteínas ras/metabolismo , Proteínas ras/genética , Pirimidinonas/farmacologia , Piridonas/farmacologia , Mutação de Sentido Incorreto , Linhagem Celular , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Nitrilas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Butadienos/farmacologia , Substituição de Aminoácidos , Mutação
17.
J Biol Chem ; 300(8): 107605, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39059492

RESUMO

TNIP1 has been increasingly recognized as a security check to finely adjust the rate of mitophagy by disrupting the recycling of the Unc-51-like kinase complex during autophagosome formation. Through tank-binding kinase 1-mediated phosphorylation of the TNIP1 FIP200 interacting region (FIR) motif, the binding affinity of TNIP1 for FIP200, a component of the Unc-51-like kinase complex, is enhanced, allowing TNIP1 to outcompete autophagy receptors. Consequently, FIP200 is released from the autophagosome, facilitating further autophagosome expansion. However, the molecular basis by which FIP200 utilizes its claw domain to distinguish the phosphorylation status of residues in the TNIP1 FIR motif for recognition is not well understood. Here, we elucidated multiple crystal structures of the complex formed by the FIP200 claw domain and various phosphorylated TNIP1 FIR peptides. Structural and isothermal titration calorimetry analyses identified the crucial residues in the FIP200 claw domain responsible for the specific recognition of phosphorylated TNIP1 FIR peptides. Additionally, utilizing structural comparison and molecular dynamics simulation data, we demonstrated that the C-terminal tail of TNIP1 peptide affected its binding to the FIP200 claw domain. Moreover, the phosphorylation of TNIP1 Ser123 enabled the peptide to effectively compete with the peptide p-CCPG1 (the FIR motif of the autophagy receptor CCPG1) for binding with the FIP200 claw domain. Overall, our work provides a comprehensive understanding of the specific recognition of phosphorylated TNIP1 by the FIP200 claw domain, marking an initial step toward fully understanding the molecular mechanism underlying the TNIP1-dependent inhibition of mitophagy.


Assuntos
Proteínas Relacionadas à Autofagia , Mitofagia , Ligação Proteica , Humanos , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/genética , Fosforilação , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Domínios Proteicos
18.
EMBO J ; 40(14): e106871, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34124795

RESUMO

Low-density lipoprotein (LDL)-cholesterol delivery from late endosomes to the plasma membrane regulates focal adhesion dynamics and cell migration, but the mechanisms controlling it are poorly characterized. Here, we employed auxin-inducible rapid degradation of oxysterol-binding protein-related protein 2 (ORP2/OSBPL2) to show that endogenous ORP2 mediates the transfer of LDL-derived cholesterol from late endosomes to focal adhesion kinase (FAK)-/integrin-positive recycling endosomes in human cells. In vitro, cholesterol enhances membrane association of FAK to PI(4,5)P2 -containing lipid bilayers. In cells, ORP2 stimulates FAK activation and PI(4,5)P2 generation in endomembranes, enhancing cell adhesion. Moreover, ORP2 increases PI(4,5)P2 in NPC1-containing late endosomes in a FAK-dependent manner, controlling their tubulovesicular trafficking. Together, these results provide evidence that ORP2 controls FAK activation and LDL-cholesterol plasma membrane delivery by promoting bidirectional cholesterol/PI(4,5)P2 exchange between late and recycling endosomes.


Assuntos
Transporte Biológico/fisiologia , LDL-Colesterol/metabolismo , Endossomos/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de Esteroides/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Humanos
19.
J Cell Sci ; 136(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37470177

RESUMO

Cellular functions, such as differentiation and migration, are regulated by the extracellular microenvironment, including the extracellular matrix (ECM). Cells adhere to ECM through focal adhesions (FAs) and sense the surrounding microenvironments. Although FA proteins have been actively investigated, little is known about the lipids in the plasma membrane at FAs. In this study, we examine the lipid composition at FAs with imaging and biochemical approaches. Using the cholesterol-specific probe D4 with total internal reflection fluorescence microscopy and super-resolution microscopy, we show an enrichment of cholesterol at FAs simultaneously with FA assembly. Furthermore, we establish a method to isolate the lipid from FA-rich fractions, and biochemical quantification of the lipids reveals that there is a higher content of cholesterol and phosphatidylcholine with saturated fatty acid chains in the lipids of the FA-rich fraction than in either the plasma membrane fraction or the whole-cell membrane. These results demonstrate that plasma membrane at FAs has a locally distinct lipid composition compared to the bulk plasma membrane.


Assuntos
Adesões Focais , Fosfatidilcolinas , Adesões Focais/metabolismo , Fosfatidilcolinas/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Matriz Extracelular/metabolismo
20.
Development ; 149(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35587444

RESUMO

Cell-extracellular matrix interactions have been studied extensively using cells cultured in vitro. These studies indicate that focal adhesion (FA)-based cell-extracellular matrix interactions are essential for cell anchoring and cell migration. Whether FAs play a similarly important role in vivo is less clear. Here, we summarize the formation and function of FAs in cultured cells and review how FAs transmit and sense force in vitro. Using examples from animal studies, we also describe the role of FAs in cell anchoring during morphogenetic movements and cell migration in vivo. Finally, we conclude by discussing similarities and differences in how FAs function in vitro and in vivo.


Assuntos
Matriz Extracelular , Adesões Focais , Animais , Adesão Celular , Linhagem Celular , Movimento Celular , Matriz Extracelular/metabolismo , Adesões Focais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA