Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Arch Microbiol ; 206(6): 246, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704767

RESUMO

Shake-flask culture, an aerobic submerged culture, has been used in various applications involving cell cultivation. However, it is not designed for forced aeration. Hence, this study aimed to develop a small-scale submerged shaking culture system enabling forced aeration into the medium. A forced aeration control system for multiple vessels allows shaking, suppresses volatilization, and is attachable externally to existing shaking tables. Using a specially developed plug, medium volatilization was reduced to less than 10%, even after 45 h of continuous aeration (~ 60 mL/min of dry air) in a 50 mL working volume. Escherichia coli IFO3301 cultivation with aeration was completed within a shorter period than that without aeration, with a 35% reduction in the time-to-reach maximum bacterial concentration (26.5 g-dry cell/L) and a 1.25-fold increase in maximum concentration. The maximum bacterial concentration achieved with aeration was identical to that obtained using the Erlenmeyer flask, with a 65% reduction in the time required to reach it.


Assuntos
Meios de Cultura , Escherichia coli , Escherichia coli/crescimento & desenvolvimento , Volatilização , Meios de Cultura/química , Reatores Biológicos/microbiologia , Técnicas Bacteriológicas/métodos
2.
J Environ Manage ; 233: 39-53, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30554023

RESUMO

Hazardous and odorous gas emissions from composting and methanization plants are an issue of public concern. Odor and chemical monitoring are thus critical steps in providing suitable strategies for air pollution control at waste treatment units. In this study, 141 gas samples were extensively analyzed to characterize the odor and chemical emissions released upon the aerobic treatment of 10 raw substrates and five digestates. For this purpose, agricultural wastes, biowastes, green wastes, sewage sludge, and municipal solid waste (MSW) were composted in 300 L pilots under forced aeration. Gas exhausts were evaluated through dynamic olfactometry and analytical methods (i.e., GC/MS) to determine their odor concentration (OC in OUE m-3) and chemical composition. A total of 60 chemical compounds belonging to 9 chemical families were identified and quantified. Terpenes, oxygenated compounds, and ammonia exhibited the largest cumulative mass emission. Odor emission rates (OUE h-1) were computed based on OC measurements and related to the initial amount of organic matter composted and the process time to provide odor emission factors (OEFs in OUE g-1OM0). The composting process of solid wastes accounted for OEFs ranging from 65 to 3089 OUE g-1OM0, whereas digestates composting showed a lower odor emission potential with OEF fluctuating from 8.6 to 30.5 OUE g-1OM0. Moreover, chemical concentrations of single compounds were weighted with their corresponding odor detection thresholds (ODTs) to yield odor activities values (OAVs) and odor contribution (POi, %). Volatile sulfur compounds were the main odorants (POi = 54-99%) regardless of the operational composting conditions or substrate treated. Notably, methanethiol was the leading odorant for 73% of the composting experiments.


Assuntos
Compostagem , Odorantes , Esgotos , Resíduos Sólidos , Compostos de Enxofre
3.
Appl Microbiol Biotechnol ; 102(17): 7239-7255, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29938320

RESUMO

Flavour and fragrance compounds are extremely important for food, feed, cosmetic and pharmaceutical industries. In the last decades, due to the consumer's increased trend towards natural products, a great interest in natural aroma compounds has arisen to the detriment of chemically synthesised ones. Recently, solid state fermentation (SSF) has been applied in the production of many metabolites. Aroma compounds can be produced by SSF with a higher yield compared to submerged fermentation (SmF). In SSF processes, aroma compounds can be produced in the solid matrix or in the headspace, but they can be lost or stripped when aeration is required. This review focuses on the production of aroma compounds by SSF processes with a special highlight on in situ systems to recover the volatiles released in the gaseous phase and stripped due to aeration. Following a brief presentation of specificities of SSF processes concerning the choice of microorganisms and the solid matrix used for the production of aroma compounds, bioreactor aspects, factors affecting production of aroma compounds and in situ gas phase aroma recovery systems in aerated SSF bioreactors are discussed.


Assuntos
Reatores Biológicos , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Fermentação , Gases/química , Compostos Orgânicos Voláteis/isolamento & purificação , Odorantes
4.
J Environ Manage ; 184(Pt 3): 528-534, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27793478

RESUMO

During four months of practical composting examination, common aeration techniques including forced aeration static pile, pile turning, natural ventilation static pile and a combination of pile turning and natural ventilation static pile were investigated to determine the most appropriate method for a full-scale composting procedure using the organic fraction of Tehran's municipal solid wastes. The results of measured parameters such as temperature, pH, electrical conductivity (EC), C/N, and main nutrients including nitrogen, phosphorus and potassium suggested that both forced aeration and pile turning have efficacy in terms of final compost quality although pile turning showed better results for agricultural applications nevertheless significant energy consumption and pollutant emissions were associated with them. The combination of pile turning and natural ventilation could solve the problem of long degradation time and concurrently guarantee the acceptable quality of finished compost for agricultural purposes. Furthermore, this combinative method showed a specific energy consumption as low as 0.218 MJ per kg-dry and had a potential to save 288.8 kg-CO2/ha by applying the achieved compost on the farm in order to replace the chemical fertilizers.


Assuntos
Eliminação de Resíduos/métodos , Solo , Resíduos Sólidos , Carbono/análise , Condutividade Elétrica , Irã (Geográfico) , Nitrogênio/análise , Fósforo/análise , Potássio/análise , Solo/química , Temperatura
5.
J Environ Sci (China) ; 31: 124-32, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25968266

RESUMO

The aim of this study was to uncover ways to mitigate greenhouse gas (GHG) emissions and reduce energy consumption during the composting process. We assessed the effects of different aeration rates (0, 0.18, 0.36, and 0.54 L/(kg dry matter (dm)·min)) and methods (continuous and intermittent) on GHG emissions. Pig feces and corn stalks were mixed at a ratio of 7:1. The composting process lasted for 10 weeks, and the compost was turned approximately every 2 weeks. Results showed that both aeration rate and method significantly affected GHG emissions. Higher aeration rates increased NH3 and N2O losses, but reduced CH4 emissions. The exception is that the CH4 emission of the passive aeration treatment was lower than that of the low aeration rate treatment. Without forced aeration, the CH4 diffusion rates in the center of the piles were very low and part of the CH4 was oxidized in the surface layer. Intermittent aeration reduced NH3 and CH4 losses, but significantly increased N2O production during the maturing periods. Intermittent aeration increased the nitrification/denitrification alternation and thus enhanced the N2O production. Forced aeration treatments had higher GHG emission rates than the passive aeration treatment. Forced aeration accelerated the maturing process, but could not improve the quality of the end product. Compared with continuous aeration, intermittent aeration could increase the O2 supply efficiency and reduced the total GHG emission by 17.8%, and this reduction increased to 47.4% when composting was ended after 36 days.


Assuntos
Fezes/química , Gases , Eliminação de Resíduos/métodos , Solo , Suínos , Amônia/química , Animais , Efeito Estufa , Metano/química , Óxido Nitroso/química , Temperatura
6.
Bioresour Technol ; 393: 130079, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37993066

RESUMO

Greenhouse gas (GHG) emissions from manure management processes deserve more attention. Using three industrial-scale experiments, this study comprehensively evaluated the effects of different aeration coupled with semi-permeable membrane-covered strategies on the structure and function of bacterial communities and their impact on GHG emissions during dairy manure aerobic composting. The succession of the bacterial communities tended to be consistent for similar aeration strategies. Ruminiclostridium and norank_f__MBA03 were significantly positively correlated with the methane emission rate, and forced aeration coupled with semi-permeable membrane-covered decreased GHG emissions by inhibiting these taxa. Metabolism was the most active function of the bacterial communities, and its relative abundance accounted for 75.69%-80.23%. The combined process also enhanced carbohydrate metabolism and amino acid metabolism. Therefore, forced aeration coupled with semi-permeable membrane-covered represented a novel strategy for reducing global warming potential by regulating the structure and function of the bacterial communities during aerobic composting of dairy manure.


Assuntos
Compostagem , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Esterco , Aquecimento Global , Bactérias , Metano/análise , Solo , Óxido Nitroso/análise
7.
Foods ; 13(1)2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38201174

RESUMO

The attachment strength of bacteria to surfaces can affect the efficacy of sanitizers during washing. This study aimed to determine the effectiveness of chlorination and aeration in the removal of pathogens from the surface of produce. Cucumbers and bell peppers were inoculated with Listeria innocua, Escherichia coli O157:H7, or Salmonella enterica; afterwards, the produce was washed with or without chlorinated water (100 ppm) for 3 min in combination with or without aeration. Cucumbers washed with chlorinated water, with or without aeration, presented significant reductions of L. innocua (3.65 log CFU/cm2 and 1.13 log CFU/cm2, respectively) (p < 0.05). Similarly, bell peppers washed in chlorinated water with aeration (1.91 log CFU/g) and without aeration (2.49 log CFU/g) presented significant reductions of L. innocua. A significant reduction of L. innocua was observed on bell peppers washed with non-chlorinated water with aeration (2.49 log CFU/g) (p < 0.05). Non-chlorinated water was also effective in significantly reducing the level of Salmonella enterica (p < 0.05) on cucumbers and bell peppers. Washing with chlorinated water with aeration reduced Salmonella enterica levels from 4.45 log CFU/cm2 on cucumbers to below the detectable limit (0.16 log CFU/cm2). The highest reduction of Salmonella enterica from bell peppers occurred after washing with chlorinated water with aeration (2.48 log CFU/g). E. coli O157:H7, L. innocua, and Salmonella enterica levels present in non-chlorinated water after washing contaminated produce with or without aeration were significantly greater than those in chlorinated water (p < 0.05). After treatment, the population levels of all pathogens in chlorinated water with or without aeration were below the detectable limit for bell peppers (<1.10 log CFU/mL) and cucumbers (<1.20 log CFU/mL). Using chlorine in combination with forced aeration during washing minimizes cross-contamination of bacterial pathogens.

8.
Chemosphere ; 206: 310-319, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29754055

RESUMO

Animal manure is a source of the greenhouse gas nitrous oxide (N2O), therefore understanding the mechanisms underlying its production is essential for developing mitigating strategies and sustainable livestock production system. In this study, microbial communities potentially involved in multiple emission peaks during initial stage of laboratory-scale dairy manure composting with forced aeration system were investigated. Mature compost was used for the bulking agent. Change of overall bacterial community and nitrification-denitrification gene abundance were monitored by using 16S rRNA gene amoA, nirS, nirK or nosZ genes, respectively. Three N2O emission peaks were observed when the temperature reached at 45, 60 and 72 °C, at the same timing of oxygen consumption peaks. The maximum N2O emission peak was 3.86 mg h-1 kg-1 TS when the temperature reached at 60 °C. The shift of bacterial community among these experimental periods was significant, orders Flavobacteriales, Burkholderiales and Xanthomonadales increased, while orders belong to Bacillales, Lactobacillales, Clostridiales and Bacteroidales decreased. In addition, abundance of two denitrification genes (nirS and nosZ) significantly increased during this period. Clone library analysis of these genes showed that significantly increased sequences belonged to Pseudomonas-like clusters for both genes, indicates that denitrifiers possesses these genes are involved for these N2O emission peaks caused by mature compost addition.


Assuntos
Compostagem/métodos , Desnitrificação/fisiologia , Esterco/microbiologia , Óxido Nitroso/química , Microbiologia do Solo , Animais , Esterco/análise , Óxido Nitroso/análise
9.
Water Res ; 131: 228-238, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29291484

RESUMO

Microbial degradation is an important pathway during the removal of pharmaceuticals in constructed wetlands (CWs). However, the effects of CW design, plant presence, and different plant species on the microbial community in CWs have not been fully explored. This study aims to investigate the microbial community metabolic function of different types of CWs used to treat ibuprofen via community-level physiological profiling (CLPP) analysis. We studied the interactions between three CW designs (unsaturated, saturated and aerated) and six types of mesocosms (one unplanted and five planted, with Juncus, Typha, Berula, Phragmites and Iris) treating synthetic wastewater. Results show that the microbial activity and metabolic richness found in the interstitial water and biofilm of the unsaturated designs were lower than those of the saturated and aerated designs. Compared to other CW designs, the aerated mesocosms had the highest microbial activity and metabolic richness in the interstitial water, but similar levels of biofilm microbial activity and metabolic richness to the saturated mesocosms. In all three designs, biofilm microbial metabolic richness was significantly higher (p < .05) than that of interstitial water. Both the interstitial water and biofilm microbial community metabolic function were influenced by CW design, plant presence and species, but design had a greater influence than plants. Moreover, canonical correlation analysis indicated that biofilm microbial communities in the three designs played a key role in ibuprofen degradation. The important factors identified as influencing ibuprofen removal were microbial AWCD (average well color development), microbial metabolic richness, and the utilization of amino acids and amine/amides. The enzymes associated with co-metabolism of l-arginine, l-phenyloalanine and putrescine may be linked to ibuprofen transformations. These results provide useful information for optimizing the operational parameters of CWs to improve ibuprofen removal.


Assuntos
Ibuprofeno/metabolismo , Microbiota/fisiologia , Poluentes Químicos da Água/metabolismo , Qualidade da Água , Áreas Alagadas , Biodegradação Ambiental , Biofilmes , Magnoliopsida/fisiologia , Microbiota/efeitos dos fármacos , Poaceae/fisiologia , Typhaceae/fisiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Purificação da Água/métodos
10.
Waste Manag ; 34(7): 1125-38, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24768513

RESUMO

Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aerationin 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10<20 and 20<30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC-MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and bulking agent to waste ratio: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone and 1-propanol-2-methyl. However, dropping the aeration rate and increasing the bulking agent to waste ratio reduced gaseous odour emissions by a factor of 5-10, when the required threshold dilution factor ranged from 10(5) to 10(6), to avoid nuisance at peak emission rates. Process influence on emissions of dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide were poorly correlated with both aeration rate and bulking agent to waste ratio as a reaction with hydrogen sulphide was suspected. Acetophenone emissions originated from the wood chips. Olfactory measurements need to be correlated to gaseous emissions for a more accurate odour emission evaluation.


Assuntos
Poluentes Atmosféricos/análise , Odorantes/análise , Esgotos/química , Gerenciamento de Resíduos , Animais , Cromatografia Gasosa , Tamanho da Partícula , Eliminação de Resíduos , Solo/química , Sus scrofa , Madeira/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA