RESUMO
GC-MS/MS combines the superior chromatographic resolution of GC with the specific and sensitive detection of tandem MS. On paper, it is an ideal system for the routine analyses of organic acids, yet very few studies have used and published such methods. This is likely due to several challenges highlighted in this communication. Briefly, the combination of EI ionization with MRM detection provides arguably insufficient specificity when targeting organic acids. Moreover, the narrow peaks generally produced by GC can lead to inaccurate quantification when the mass spectrometer's cycle time is too long. Potential solutions to these problems are discussed.
Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Compostos Orgânicos/análise , Compostos Orgânicos/química , Ácidos/análise , Ácidos/químicaRESUMO
Foodborne infections in humans are one of the major concerns of the food industries, especially for minimally processed foods (MPF). Thereby, the packaging industry applies free chlorine in the sanitization process, ensuring the elimination of any fecal coliforms or pathogenic microorganisms. However, free chlorine's propensity to react with organic matter, forming toxic compounds such as trihalomethanes and haloacetic acid. Therefore, the present work aimed to synthesize a novel organic biomaterial as an alternative to free chlorine. Chitosan microparticles were produced, with Pimpinella anisum (anise) essential oil immobilized in the biopolymer matrix (MPsQTO). The characterization of this biomaterial was done through GC-MS/MS, FT-IR, and SEM. Antimicrobial assays proved that the MPsQTO presented antibacterial activity for Escherichia coli, Salmonella typhi, Pseudomonas aeruginosa, and Bacillus subtilis at 300 µL mL-1 of concentration. The fluorescence microscope also showed the MPsQTO targets the cytoplasmatic membrane, which is responsible for cell death in the first minutes of contact. Studies with the mutant B. subtilis (amy::pspac-ftsZ-gfpmut1) and the Saccharomyces cerevisiae D7 also proved that the biomaterial did not affect the genetic material and did not have any mutagenic/carcinogenic effect on the cells. The sanitization assays with pumpkin MPF proved that the MPsQTO is more effective than free chlorine, increasing the shelf-life of the MPF. Consequently, the novel biomaterial proposed in this work is a promising alternative to traditional chemical sanitizers.
RESUMO
Generic extraction methods for the multi-compound pesticide analysis of food have found their solid place in laboratories. Ethyl acetate and acetonitrile extraction methods have been developed as fast and easy to handle standard multi-compound methods, both feature benefits and limitations. The direct injection to gas chromatography can be impaired by a high burden of coextracted matrix, resulting in deterioration of the chromatographic system and matrix effects, requiring frequent maintenance. Therefore, common clean-up methods, such as dispersive solid-phase extraction, freeze-out of fats, or gel permeation chromatography, have been applied in clean-up. Automated clean-up using micro-solid-phase extraction (µSPE) is a recent development with several demonstrated advantages when employed in the analysis of pesticides and other contaminants in foods extracted with acetonitrile, but it has not yet been evaluated in this application using ethyl acetate for extraction. In this study, an automated procedure using µSPE cartridges was developed and established on an x,y,z robotic sampler for the raw extract clean-up and preparation of diluted samples for injection on a GC-MS/MS system. Validation experiments for 212 pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons in lettuce, avocado, raspberry, paprika, egg, and liver extracts were performed using µSPE with MgSO4, PSA, C18, and CarbonX. The performance in routine operation is briefly discussed.
Assuntos
Resíduos de Praguicidas , Praguicidas , Praguicidas/análise , Espectrometria de Massas em Tandem/métodos , Resíduos de Praguicidas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Extração em Fase Sólida/métodos , Acetonitrilas/químicaRESUMO
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants formed during the incomplete combustion of organic matter such as tobacco. Among these, benzo[a]pyrene (BaP) has been classified as a known carcinogen to humans. It unfolds its effect through metabolic activation to BaP-(7R,8S)-diol-(9S,10R)-epoxide (BPDE), the ultimate carcinogen of BaP. In this article, we describe a simple and highly sensitive GC-NICI-MS/MS method for the quantification of urinary BaP-(7R,8S,9R,10S)-tetrol (( +)-BPT I-1), the hydrolysis product of BPDE. The method was validated and showed excellent results in terms of accuracy, precision, and sensitivity (lower limit of quantification (LLOQ): 50 pg/L). In urine samples derived from users of tobacco/nicotine products and non-users, only consumption of combustible cigarettes was associated with a significant increase in BPT I-1 concentrations (0.023 ± 0.016 nmol/mol creatinine, p < 0.001). Levels of users of potentially reduced-risk products as well as non-users were all below the LLOQ. In addition, the urine levels of six occupationally exposed workers were analyzed and showed the highest overall concentrations of BPT I-1 (844.2 ± 336.7 pg/L). Moreover, comparison with concentrations of 3-hydroxybenzo[a]pyrene (3-OH-BaP), the major detoxification product of BaP oxidation, revealed higher levels of 3-OH-BaP than BPT I-1 in almost all study subjects. Despite the lower levels, BPT I-1 can provide more relevant information on an individual's cancers susceptibility since BPDE is generated by the metabolic activation of BaP. In conclusion, BPT I-1 is a suitable biomarker to distinguish not only cigarette smokers from non-smokers but also from users of potentially reduced-risk products.
Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Limite de Detecção , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Benzo(a)pireno/análise , Masculino , Adulto , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Fumar/urinaRESUMO
Corn is the second most widely farmed grain for human consumption. Low corn productivity due to damage caused by pests has led to using pesticides to control pest infestations. However, the uncontrolled application of pesticides on corn harms both environmental and human health. Accordingly, field experiments followed good agricultural practices to investigate the dissipation pattern and terminal residues of chlorfenapyr and methomyl in corn and compare the values with established safety limits. Gas chromatography-tandem mass spectrometer coupled with the quick, easy, cheap, effective, rugged, and safe technique was used to analyze residues of chlorfenapyr and methomyl in corn. The average recoveries varied from 94% to 105%, with relative standard deviations (RSDs) of 8%-13% for chlorfenapyr and from 99% to 111%, with RSDs of 10-16% for methomyl. Chlorfenapyr and methomyl residues degraded in corn following a first-order kinetic model, with an estimated half-life (t1/2) of 3.9 and 2.8 days, respectively, and significant degradation (91.4%-98.1.5%, respectively) after 14 days. Although the maximum residue limits of chlorfenapyr and methomyl for corn are yet to be formulated in Egypt, the long-term dietary risk for those pesticides was acceptable, with arisk quotient < 100%, according to the national assessments. These findings are required to guide the correct and safe application of these insecticides in Egypt.
Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Metomil , Resíduos de Praguicidas , Piretrinas , Zea mays , Zea mays/química , Metomil/análise , Metomil/química , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Piretrinas/análise , Piretrinas/química , Egito , Medição de Risco , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Limite de Detecção , Humanos , Modelos Lineares , Contaminação de Alimentos/análise , Inseticidas/análise , Inseticidas/químicaRESUMO
A lesser-known bee product called drone brood homogenate (DBH, apilarnil) has recently attracted scientific interest for its chemical and biological properties. It contains pharmacologically active compounds that may have neuroprotective, antioxidant, fertility-enhancing, and antiviral effects. Unlike other bee products, the chemical composition of bee drone larva is poorly studied. This study analyzed the chemical compostion of apilarnil using several methods. These included liquid chromatography-mass spectrometry (LC-MS/MS) and a combination of gas chromatography/mass spectrometry with solid phase micro-extraction (SPME/GC-MS). Additionally, antioxidant activity of the apilarnil was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. A chemical assessment of apilarnil showed that it has 6.3±0.00, 74.67±0.10 %, 3.65±0.32 %, 8.80±1.01 %, 13.16±0.94 %, and 8.79±0.49 % of pH, moisture, total lipids, proteins, flavonoids, and carbohydrates, respectively. LC-MS/MS analysis and molecular networking (GNPS) of apilarnil exhibited 44 compounds, including fatty acids, flavonoids, glycerophospholipids, alcohols, sugars, amino acids, and steroids. GC-MS detected 30 volatile compounds in apilarnil, mainly esters (24 %), ketones (23.84 %), ethers (15.05 %), alcohols (11.41 %), fatty acids (10.06), aldehydes (6.73 %), amines (5.46), and alkene (5.53 %). The antioxidant activity of apilarnil was measured using DPPH with an IC50 of 179.93±2.46â µg/ml.
Assuntos
Antioxidantes , Compostos de Bifenilo , Abelhas , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Animais , Compostos de Bifenilo/antagonistas & inibidores , Cromatografia Gasosa-Espectrometria de Massas , Picratos/antagonistas & inibidores , Espectrometria de Massas em Tandem , Cromatografia Líquida , Microextração em Fase SólidaRESUMO
The current study's goals were to thoroughly characterize the volatile compounds from Origanum grosii's aerial parts and assess their potential as antioxidants and enzyme inhibitors both in vitro and in silico. The volatile substances in essential oils were identified using GC-MS analysis. Indeed, Origanum grosii essential oil (OGEO) contained carvacrol (15.59%), prehnitol (14.83%), ß-Terpinene (13.56%), and thymol (10.36%). The antioxidant potential was assessed using three different assays. Remarkably, OGEO exhibited important antioxidant activity; the IC50 values found were 55.40 ± 2.23, 81.65 ± 3.26, and 98.04 ± 3.87 µg/mL for DPPH, ABTS, and FRAP assays, respectively. The inhibitory effect of essential oils has been studied against enzymes involved in the appearance of human pathologies, including α-glucosidase, α-amylase, tyrosinase, and acetylcholinesterase. In silico, the main compounds in this essential oil demonstrated high binding energies during their associations with the enzymes tested. To sum up, OGEO possesses the ability to function as a natural agent, offering promising qualities suitable for use in food, medicine, and cosmetics.
RESUMO
Water hyacinth (Eichhornia crassipes (Mart.) Solms) is a highly invasive aquatic weed native to the Amazonia basin, known for its rapid propagation, adaptability and utilization in traditional medicine. The study aims to unveil the therapeutic potential of water hyacinth flowers methanolic extract (EC-CME) and its four kupchan fractions (EC-PESF, EC-DCMSF, EC-EASF, EC-ASF) through diversified chemical-pharmacological approaches. GC-MS/MS of EC-CME uncovered a rich tapestry of 72 phytochemical components. In vitro DPPH scavenging assay and total phenolic content determination assay deciphered promising antioxidant assays with remarkably low IC50 values of 0.353 and 0.485 µg/mL, respectively for EC-ESF and EC-ASF. Besides, different in vivo tests, including tail emersion, acetic acid-induced writhing, and thiopental-induced sleeping test of EC-CME, yielded a remarkable 8.61 ± 0.29 minutes of tail immersion time compared to the control's 2.05 ± 0.11 minutes at the highest dose (600 mg/kg). The best % inhibition of writhing was recorded as 47.96% accrued in 400 mg/kg dose, indicating robust pain-relieving properties. The onset and duration of sleep are significantly ameliorated for EC-CME, unveiling its antidepressant potential. Besides, molecular docking studies along with ADME/T analysis also validated the wet lab findings as well as their safety, efficacy and drug-likeliness profile.
RESUMO
Schizophrenia is associated with numerous abnormalities, including imbalances in all hormonal axes, among which steroids play a major role. Steroidomic studies therefore represent a promising tool for early diagnosis and appropriate treatment of schizophrenia. A total of 51 adult male schizophrenics aged 27 (22, 34) years (shown as median with quartiles) and 16 healthy controls (HCs) aged 28 (25, 32) years were enrolled into this study. Our results showed the effective differentiation of men with schizophrenia from controls based on steroidomic profiles. We also found an altered metabolic pathway from pregnenolone and its sulfate (PREG/S) to cortisol in schizophrenics with several metabolic bottlenecks such as lower PREG levels due to increased PREG sulfation and/or suppressed PREGS desulfation and attenuated conversion of 17-hydroxy-PREG to 17-hydroxy-progesterone, as well as the results suggestive of suppressed CYP11B1 activity. In contrast, steroid molar ratios suggested two counterregulatory steps involving increased conversion of PREG/S to 17-hydroxy-PREG/S and decreased conversion of cortisol to cortisone, which may maintain unchanged basal cortisol levels but may not ensure a sufficient cortisol response to stress. Our data also indicated a trend to higher 7α-, 7ß-, and 16α-hydroxylation that may counteract the autoimmune complications and proinflammatory processes accompanying schizophrenia. Finally, a possible suppression of HSD17B3 activity was suggested, resulting in decreased circulating testosterone levels with increased androstenedione levels.
Assuntos
Esquizofrenia , Humanos , Masculino , Esquizofrenia/metabolismo , Adulto , Pregnenolona/metabolismo , Pregnenolona/sangue , Hidrocortisona/metabolismo , Hidrocortisona/sangue , Esteroides/metabolismo , Adulto Jovem , Estudos de Casos e ControlesRESUMO
Propafenone (PPF) belongs to the class 1C antiarrhythmics and can cause electrocardiogram-associated adverse/toxic effects. Cases of PPF intoxication are rarely investigated. We developed a novel and selective GC-MS/MS method for the determination of PPF and its tissue distribution in an intentional fatal poisoning case, which is applicable to PPF quantification in the range of therapeutic to lethal concentrations in complex post-mortem samples. A simple and effective sample pretreatment was applied to all analyzed samples. PPF was determined without the need for dilution, even in highly complex samples containing a wide range of analyte concentrations. Quantification was performed using the standard addition method, developed and validated according to the ICH M10 guidelines. The obtained results indicated that the PPF concentration in the serum from blood taken while alive, before therapy, was the highest ever reported in the literature. Despite the intensive therapy after the patients' admission, the PPF concentrations in the lungs, spleen, femoral blood and cardiac blood were fatal or abnormally high. On the other hand, the concentrations in the liver and skeletal muscle were lower or approximately the same as observed in cases with therapeutic doses. To the best of our knowledge, the distribution of PPF has not been investigated in fatal intoxication cases and can be helpful in clinical or forensic toxicology.
Assuntos
Propafenona , Humanos , Distribuição Tecidual , Propafenona/intoxicação , Masculino , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem , Antiarrítmicos/intoxicação , Evolução Fatal , AdultoRESUMO
Phthalate esters are commonly included in the formulations of cosmetics and related products in order to retain fragrance, enhance flexibility (i.e., by acting as plasticizers), facilitate the dissolution and dispersion of other ingredients, and improve the overall texture and sensory experience of the products. This study aimed to assess the presence and concentrations of phthalates in cosmetics by analyzing a comprehensive set of samples collected over a period of five years (2016-2020). The concentrations of nine different phthalate esters (BBP, DEHP, DNOP, DPP, DBP, DIPP, DMEP, DMP and PIPP) in 1110 cosmetics samples from France and Spain were determined by gas chromatography-mass spectrometry. The samples were included in five categories: soaps and shampoos; hand and body creams; lip gloss and lipsticks; nail polish; and facial makeup and skincare products. Some of the samples (4.86%) contained at least one phthalate at concentrations above the threshold limit (1 µg mL-1). Variable concentrations of different phthalates were determined in the 54 positive samples identified. DEHP was the most frequently detected phthalate, followed by DBP. The findings revealed different profiles according to the different categories of cosmetics and the phthalates detected in each. The results were critically compared with those obtained in various previous studies.
Assuntos
Cosméticos , Ésteres , Cromatografia Gasosa-Espectrometria de Massas , Ácidos Ftálicos , Controle de Qualidade , Cosméticos/química , Cosméticos/análise , Ácidos Ftálicos/análise , Ácidos Ftálicos/química , Ésteres/análise , Ésteres/química , Humanos , França , Plastificantes/química , Plastificantes/análise , EspanhaRESUMO
The aim of this study is to develop a rapid and accurate method for simultaneous analysis of multi-residue pesticides and conduct pesticide monitoring in agricultural products produced by the production and distribution stage in Korea. The representative agricultural products were selected as brown rice, soybean, potato, mandarin, and green pepper and developed using gas chromatography with tandem mass (GC-MS/MS) for the analysis of 272 pesticide residues. The experimental samples were extracted by the QuEChERS-EN method and then cleaned up by using d-SPE, including MgSO4 and primary secondary amine (PSA) sorbents. The established method was validated in accordance with Codex CAC-GL/40, and the limit of quantitation (LOQ) was determined to be 0.01 mg/kg. A total of 243 pesticides satisfied the guidelines in five samples at three levels with values of 60 to 120% (recovery) and ≤45% (coefficient of variation, CV). The remaining 29 pesticides did not satisfy the guidelines, and these pesticides are expected to be used as a screening method for the routine inspection of agricultural products. As a result of analyzing 223 agricultural products in South Korea by applying the simultaneous analysis method, none of the detected levels in the samples exceeded the standard values based on maximum residue limits (MRLs). The developed method in this study will be used to inspect residual pesticides in agricultural products, and it is anticipated to contribute to the distribution of safe agricultural products to consumers.
Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Resíduos de Praguicidas , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Resíduos de Praguicidas/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Praguicidas/análise , Produtos Agrícolas/química , República da Coreia , Contaminação de Alimentos/análise , Limite de Detecção , Extração em Fase Sólida/métodosRESUMO
Dispersive solid-phase extraction (dSPE) is a crucial step for multiresidue analysis used to remove matrix components from extracts. This purification prevents contamination of instrumental equipment and improves method selectivity, sensitivity, and reproducibility. Therefore, a clean-up step is recommended, but an over-purified extract can lead to analyte loss due to adsorption to the sorbent. This study provides a systematic comparison of the advantages and disadvantages of the well-established dSPE sorbents PSA, GCB, and C18 and the novel dSPE sorbents chitin, chitosan, multi-walled carbon nanotube (MWCNT), and Z-Sep® (zirconium-based sorbent). They were tested regarding their clean-up capacity by visual inspection, UV, and GC-MS measurements. The recovery rates of 98 analytes, including pesticides, active pharmaceutical ingredients, and emerging environmental pollutants with a broad range of physicochemical properties, were determined by GC-MS/MS. Experiments were performed with five different matrices, commonly used in food analysis (spinach, orange, avocado, salmon, and bovine liver). Overall, Z-Sep® was the best sorbent regarding clean-up capacity, reducing matrix components to the greatest extent with a median of 50% in UV and GC-MS measurements, while MWCNTs had the largest impact on analyte recovery, with 14 analytes showing recoveries below 70%. PSA showed the best performance overall.
Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Nanotubos de Carbono , Extração em Fase Sólida , Extração em Fase Sólida/métodos , Adsorção , Nanotubos de Carbono/química , Quitosana/química , Espectrometria de Massas em Tandem , Poluentes Ambientais/análise , Poluentes Ambientais/química , Poluentes Ambientais/isolamento & purificação , Animais , BovinosRESUMO
Recently, hexahydrocannabinol (HHC) was posed under strict control in Europe due to the increasing HHC-containing material seizures. The lack of analytical methods in clinical laboratories to detect HHC and its metabolites in biological matrices may result in related intoxication underreporting. We developed and validated a comprehensive GC-MS/MS method to quantify 9(R)-HHC, 9(S)-HHC, 9αOH-HHC, 9ßOH-HHC, 8(R)OH-9(R)-HHC, 8(S)OH-9(S)HHC, 11OH-9(R)HHC, 11OH-9(S)HHC, 11nor-carboxy-9(R)-HHC, and 11nor-carboxy-9(S)-HHC in whole blood, urine, and oral fluid. A novel QuEChERS extraction protocol was optimized selecting the best extraction conditions suitable for all the three matrices. Urine and blood were incubated with ß-glucuronidase at 60 °C for 2 h. QuEChERS extraction was developed assessing different ratios of Na2SO4:NaCl (4:1, 2:1, 1:1, w/w) to be added to 200 µL of any matrix added with acetonitrile. The chromatographic separation was achieved on a 7890B GC with an HP-5ms column, (30 m, 0.25 mm × 0.25 µm) in 12.50 min. The analytes were detected with a triple-quadrupole mass spectrometer in the MRM mode. The method was fully validated following OSAC guidelines. The method showed good validation parameters in all the matrices. The method was applied to ten real samples of whole blood (n = 4), urine (n = 3), and oral fluid (n = 3). 9(R)-HHC was the prevalent epimer in all the samples (9(R)/9(S) = 2.26). As reported, hydroxylated metabolites are proposed as urinary biomarkers, while carboxylated metabolites are hematic biomarkers. Furthermore, 8(R)OH-9(R)HHC was confirmed as the most abundant metabolite in all urine samples.
Assuntos
Dronabinol , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas em Tandem/métodos , Dronabinol/urina , Dronabinol/sangue , Dronabinol/análogos & derivados , Saliva/química , Saliva/metabolismo , Reprodutibilidade dos TestesRESUMO
The biodiversity of Brazil provides an excellent climate and favorable pollination conditions for Apis mellifera L., especially in the Eastern Amazon region, which boasts vast floral wealth, including an abundance of açaí (Euterpe oleracea) flowers and fruits. In the present study, seven types of honey were evaluated: three containing floral nectar from açaí (Açaí honey) collected in the Eastern Amazon region (Açaí honey from Breu Branco (AH1 and AH2) and Açaí honey from Santa Maria (AH3), both from the state of Pará, Brazil) and four honeys from different regions of Brazil (Aroeira honey from Minas Gerais, Cipó-Uva honey from Distrito Federal, Mangue honey from Pará, and Timbó honey from Rio Grande do Sul). The characteristics of these honeys were evaluated by examining their physicochemical properties, melissopalynological aspects, color, antioxidant potential, and their constituent compounds, which were confirmed through GC-MS analysis. Açaí floral nectar honeys presented physicochemical results similar to those of other honeys, aligning with Brazilian legislation norms, but differed in their high values of free acidity, apparent sugars, and lower reducing sugars, which are directly related to their botanical origin. These differences correlate with unique flavor and distinct aroma characteristics. Melissopalynological analysis confirmed the botanical origin of the honeys containing açaí floral nectar, which had a color range from amber to dark amber. The three açaí honeys demonstrated high antioxidant capacity and superior flavonoid and polyphenol content compared to other honeys, particularly the açaí honey from Breu Branco (AH1), which had four times the content to combat free radicals compared to the honey with the highest potential (Aroeira honey). GC-MS analysis confirmed the presence of antioxidant properties as well as potential anti-inflammatory, antibacterial, antimicrobial, and antitumor capabilities in açaí honeys, which have not yet been fully studied.
Assuntos
Antioxidantes , Flores , Mel , Néctar de Plantas , Abelhas/química , Mel/análise , Animais , Néctar de Plantas/química , Antioxidantes/química , Antioxidantes/análise , Antioxidantes/farmacologia , Flores/química , Euterpe/química , Brasil , Cromatografia Gasosa-Espectrometria de MassasRESUMO
Polycyclic aromatic hydrocarbons (PAHs) represent important toxic compounds formed in meat products during processing. This study aims to analyze 22 PAHs by QuEChERS coupled with GC-MS/MS in canned minced chicken and pork during processing. After marinating raw minced chicken and pork separately with a standard flavoring formula used for canning meat in Taiwan, they were subjected to different processing conditions including stir-frying, degassing and sterilizing at 115 °C/60 min (low-temperature-long-time, LTLT) and 125 °C/25 min (high-temperature-short-time, HTST). The quantitation of PAHs in these meat products revealed the formation of only three PAHs including acenaphthylene (AcPy), acenaphthene (AcP) and pyrene (Pyr) in canned minced chicken and pork during processing with no significant difference in total PAHs between the meat types. Analysis of PAH precursors showed the presence of benzaldehyde at the highest level, followed by 2-cyclohexene-1-one and trans,trans-2,4-decadienal in canned minced chicken and pork, suggesting PAH formation through the reaction of benzaldehyde with linoleic acid degradation products and of 2-cyclohexene-1-one with C4 compounds through the Diels-Alder reaction, as well as the reaction of trans,trans-2,4-decadienal with 2-butene. Monounsaturated and polyunsaturated fatty acids were present in the largest proportion in LTLT-sterilized chicken/pork, followed by HTST-sterilized chicken/pork and raw chicken/pork, and their levels did not show a high impact on PAH formation, probably due to an insufficient heating temperature and length of time. A two-factorial analysis suggested that PAH formation was not significantly affected by the sterilization condition or meat type. Principal component analysis corroborated the observed results implying the formation of PAHs in canned minced chicken/pork under different processing conditions with an insignificant difference (p > 0.05) between them, with the individual PAH content following the order of Pyr > AcPy > AcP.
Assuntos
Galinhas , Hidrocarbonetos Policíclicos Aromáticos , Animais , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Suínos , Cromatografia Gasosa-Espectrometria de Massas , Manipulação de Alimentos/métodos , Produtos da Carne/análise , Espectrometria de Massas em Tandem , Contaminação de Alimentos/análiseRESUMO
Concentrations and distribution for 16 organotin compounds were studied in all kinds of foods, including seafood, agricultural products, and wine. Meanwhile, the degradation of the TBT or TPhT was also evaluated. Concentrations of total organotins in seafood, agricultural products, and wine were 1047.2, 469.4, and 13.5 µg Sn/kg. Meanwhile, the most frequently detected organotin in three kinds of samples were TPhT, MPhT, and MPhT, respectively. The results demonstrated that phenyltin may probably become an emerging organotin pollutant. Regarding seafood, organotin concentrations of fish and mollusks were much higher than those of crustaceans. At the same time, a significant positive correlation was observed between the concentrations of TBT and MBT (p < 0.05), and between DBT and MBT(p < 0.0001). Moreover, TPhT was significantly and positively associated with DPhT (p < 0.0001), suggesting that TPhT was the precursor of DPhT. Apart from the likely illegal use of OTs as biocides in antifouling paints for ships, anthropogenic activity like agricultural activity or industrial activity also caused organotin contamination. Further research and more effective measures should be formulated to protect the food safety. Meanwhile, monitoring of the organotin contamination should not only in Qinhuangdao, but also expand to the cities along Bohai Bay.
Assuntos
Compostos Orgânicos de Estanho , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Agricultura , Monitoramento AmbientalRESUMO
Detecting z-drugs, a sedative-hypnotic medication, is also misused for criminal activities. Therefore, the analysis of urine samples is crucial for clinical and forensic purposes. We conducted a study where we developed, validated, and compared an analytical method for simultaneously detecting z-drugs in urine samples. Our approach uses the QuEChERS method for sample preparation, combined with liquid chromatography (LC) and gas chromatography (GC) coupled with tandem mass spectrometry (MS/MS). We optimized the QuEChERS method to effectively extract z-drugs from urine samples while minimizing matrix effects and achieving high recovery rates. After extraction, we split the samples into two parts for analysis using LC-MS/MS and GC-MS/MS. We validated our methods, and the results showed good linearity over a broad concentration range (1-200 ng/mL) for each z-drug. The limits of detection and quantification were within clinically relevant ranges, ensuring sensitivity for detecting z-drugs in urine samples. We compared the two chromatographic techniques by analyzing a set of urine samples spiked with known concentrations of z-drugs using both LC-MS/MS and GC-MS/MS methods and then applied to the real samples. The results were statistically analyzed to assess any significant differences in accuracy and precision above 95 %, and both methods offered reliable and consistent results with the samples as well. In conclusion, our analytical method coupled with both LC-MS/MS and GC-MS/MS using the QuEChERS approach provides a comprehensive and robust solution for the simultaneous detection of z-drugs in urine samples. The choice between the two chromatographic techniques can be based on the specific z-drugs of interest and the required analytical performance. This method holds promise for applications in clinical toxicology, forensic analysis, and monitoring z-drug usage.
RESUMO
Many xenobiotics were identified as possible endocrine disruptors during the last decades. Structural analogy of these substances to natural hormones may lead to agonists or antagonists of hormone receptors. For a comprehensive human biomonitoring of such substances, we developed a simple, reliable, and highly sensitive method for the simultaneous monitoring of the parameters bisphenol A, triclosan, methylparaben, ethylparaben, propylparaben, butylparaben, benzophenone-1, benzophenone-3, 3,5,6-trichloropyridin-2-ol, p-nitrophenol, genistein, and daidzein in urine. Thereby, optimization of the enzymatic hydrolysis and the use of ß-glucuronidase from E. coli K12 as well as sulfatase from Aerobacter aerogenes ensures the acquisition of intact analytes without cleavage of ester bonds among parabens. Validation of the method revealed limits of detection between 0.02 and 0.25 µg/L as well as limits of quantification between 0.08 and 0.83 µg/L. Thereby, the use of analyte-free surrogate matrix for calibration and control material influenced the sensitivity of the procedure positively. Furthermore, excellent precision in and between series was observed. Good absolute and relative recoveries additionally proved the robustness of the multimethod. Thus, the procedure can be applied for exploring the exposome to these prominent endocrine disruptors in the general population.
Assuntos
Disruptores Endócrinos , Humanos , Compostos Benzidrílicos/urina , Benzofenonas/urina , Disruptores Endócrinos/química , Disruptores Endócrinos/urina , Escherichia coli , Hidrólise , Parabenos/análise , Triclosan/urinaRESUMO
Fatty acids (FAs) and fatty acid methyl esters (FAMEs) co-occur in many samples, and analysis of both substance classes is frequently of high interest. To this end, this study introduces the first method for simultaneous determination of FAs and FAMEs including fully automated solvent-free solid-phase microextraction (SPME) arrow headspace extraction combined with isotope-labeling in situ FA derivatization with deuterated methanol (CD3OD). By using the chromatographic isotope effect (ΔRt = 0.03 min) and the + 3 m/z mass shift, FAs can be selectively differentiated from the FAMEs during gas chromatography tandem-mass spectrometry (GC-MS/MS) operated in the multiple reaction monitoring (MRM) aquisition mode. Additionally, an approach is presented to predict the retention times of deuterated compounds. Optimization of the derivatization conditions was accomplished by design of experiments and found to be 20 min, 50 °C, 4 v/v% CD3OD, and pH 2.1. During method validation, FAs and FAMEs were calibrated in different concentration ranges by standard addition in five real matrices and ultrapure water leading to good linearities and method detection limits for FAs ranging from 1-30 µg L-1 and for FAMEs from 0.003-0.72 µg L-1. FAs and FAMEs were detected in real samples from surface water, wastewater treatment plant effluent, and three different bioreactor samples and could be quantified in concentrations ranging from 2-1056 µg L-1 for FAs and 0.01-14 µg L-1 for FAMEs.