Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Med ; 74: 353-367, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36375470

RESUMO

Hundreds of different genetic causes of chronic kidney disease are now recognized, and while individually rare, taken together they are significant contributors to both adult and pediatric diseases. Traditional genetics approaches relied heavily on the identification of large families with multiple affected members and have been fundamental to the identification of genetic kidney diseases. With the increased utilization of massively parallel sequencing and improvements to genotype imputation, we can analyze rare variants in large cohorts of unrelated individuals, leading to personalized care for patients and significant research advancements. This review evaluates the contribution of rare disorders to patient care and the study of genetic kidney diseases and highlights key advancements that utilize new techniques to improve our ability to identify new gene-disease associations.


Assuntos
Nefropatias , Adulto , Criança , Humanos , Genótipo , Nefropatias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Am J Kidney Dis ; 84(3): 320-328.e1, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38514012

RESUMO

RATIONALE & OBJECTIVE: Alport syndrome (AS) is the most common genetic glomerular disease caused by mutations that affect type IV collagen. However, the clinical characteristics and significance of AS with kidney cysts are not well defined. This study investigated the prevalence and clinical significance of cystic kidney phenotype in AS. STUDY DESIGN: Retrospective cohort study. SETTING & PARTICIPANTS: One hundred-eight patients with AS and a comparison cohort of 79 patients with IgA nephropathy (IgAN). Clinical, genetic, and imaging data were collected from medical records. EXPOSURE: Cystic kidney phenotype evaluated by ultrasonography and defined as the presence of≥3 cysts in each kidney; demographic characteristics and estimated glomerular filtration rate (eGFR) at disease onset. OUTCOME: Cystic kidney phenotype in the AS and IgAN cohorts; time to chronic kidney disease (CKD) stage 3b and longitudinal changes in eGFR in the AS cohort. ANALYTICAL APPROACH: Logistic regression analysis to test independent strengths of associations of clinical/demographic features with the binary outcome of cystic phenotype. Survival analysis for the outcome of reaching CKD stage 3b and linear mixed models for changes in eGFR over time in the AS cohort. RESULTS: We studied 108 patients with AS; 76 (70%) had a genetic diagnosis. Autosomal dominant AS was prevalent, accounting for 68% of patients with a genetic diagnosis. Cystic kidney phenotype was observed in 38% of patients with AS and was associated with normal-sized kidneys in all but 3 patients, who showed increased total kidney volume, mimicking autosomal dominant polycystic kidney disease. The prevalence of cystic kidney phenotype was significantly higher in patients with AS when compared with the group of patients with IgAN (42% vs 19%; P=0.002). Patients with the cystic kidney phenotype were older and had more marked reduction in eGFR than patients without cystic changes. Among patients with AS, the cystic phenotype was associated with older age and a faster decline eGFR. LIMITATIONS: Retrospective, single-center study. CONCLUSIONS: Cystic kidney phenotype is a common finding in AS. The cystic kidney phenotype is a common finding in AS, suggesting a possible role in cystogenesis for the genetic variants that cause this disease. PLAIN-LANGUAGE SUMMARY: Hematuria is the classic renal presentation of Alport syndrome (AS), a hereditary glomerulopathy caused by pathogenic variants of the COL4A3-5 genes. An atypical kidney cystic phenotype has been rarely reported in individuals with these variants. To determine the prevalence of kidney cysts, we performed abdominal ultrasonography in a large group of patients with AS and a comparison group of patients with another glomerular kidney disease, IgA nephropathy (IgAN). Multiple kidney cysts, usually with normal kidney volume, were found in 38% of patients with AS. A few patients' kidney volumes were large enough to mimic a different hereditary cystic kidney disease, autosomal dominant polycystic kidney disease. The overall prevalence of kidney cysts in AS was more than double that observed in the well-matched comparison group with IgAN. These findings emphasize the high prevalence of cystic kidney phenotype in AS, suggesting a likely association between the genetic variants that cause this disease and the development of kidney cysts.


Assuntos
Nefrite Hereditária , Fenótipo , Humanos , Nefrite Hereditária/genética , Nefrite Hereditária/epidemiologia , Nefrite Hereditária/complicações , Masculino , Feminino , Estudos Retrospectivos , Adulto , Taxa de Filtração Glomerular , Pessoa de Meia-Idade , Doenças Renais Císticas/genética , Doenças Renais Císticas/epidemiologia , Estudos de Coortes , Adulto Jovem , Prevalência , Glomerulonefrite por IGA/genética , Glomerulonefrite por IGA/epidemiologia , Relevância Clínica
3.
Am J Kidney Dis ; 83(6): 816-824, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38147894

RESUMO

Genetic kidney disease is common but often unrecognized. It accounts for most cystic kidney diseases and tubulopathies, many forms of congenital abnormalities of the kidney and urinary tract (CAKUT), and some glomerulopathies. Genetic kidney disease is typically suspected where the disease usually has a genetic basis or there is another affected family member, a young age at onset, or extrarenal involvement, but there are also many exceptions to these "rules". Genetic testing requires the patient's written informed consent. When a patient declines testing, another later conversation may be worthwhile. Genetic testing not only indicates the diagnosis but also the inheritance pattern, likely at-risk family members, disease in other organs, clinical course, and possibly effective treatments. Sometimes genetic testing does not identify a pathogenic variant even where other evidence is strong. A variant of uncertain significance (VUS) may be reported but should not be used for clinical decision making. It may be reclassified after more information becomes available without necessarily retesting the patient. Patients should be provided with a copy of their genetic test report, the results explained, and at-risk family members offered "cascade" testing. A referral to a clinical geneticist or genetic counselor helps identify affected family members and in providing advice to assist with reproductive decisions.


Assuntos
Testes Genéticos , Nefropatias , Adulto , Feminino , Humanos , Masculino , Aconselhamento Genético , Testes Genéticos/métodos , Nefropatias/genética , Nefropatias/diagnóstico
4.
Kidney Blood Press Res ; 49(1): 258-265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527442

RESUMO

BACKGROUND: Chronic kidney disease affects 10% of the world population, and it is associated with progression to end-stage kidney disease and increased morbidity and mortality. The advent of multi-omics technologies has expanded our knowledge on the complexity of kidney diseases, revealing their frequent genetic etiology, particularly in children and young subjects. Genetic heterogeneity and drug screening require patient-derived disease models to establish a correct diagnosis and evaluate new potential treatments and outcomes. SUMMARY: Patient-derived renal progenitors can be isolated from urine to set up proper disease modeling. This strategy allows to make diagnosis of genetic kidney disease in patients carrying unknown significance variants or uncover variants missed from peripheral blood analysis. Furthermore, urinary-derived tubuloids obtained from renal progenitors of patients appear to be potentially valuable for modeling kidney diseases to test ex vivo treatment efficacy or to develop new therapeutic approaches. Finally, renal progenitors derived from urine can provide insights into acute kidney injury and predict kidney function recovery and outcome. KEY MESSAGES: Renal progenitors derived from urine are a promising new noninvasive and easy-to-handle tool, which improves the rate of diagnosis and the therapeutic choice, paving the way toward a personalized healthcare.


Assuntos
Medicina de Precisão , Células-Tronco , Humanos , Nefropatias/diagnóstico , Nefropatias/urina , Rim/patologia , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/urina , Urina/citologia
5.
Pediatr Nephrol ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39349776

RESUMO

BACKGROUND: Genetic kidney disease is an important cause of persistent microscopic haematuria in children and young people. We aimed to determine the frequency of variants in the Alport syndrome genes (COL4A3, COL4A4 or COL4A5) in individuals under 18 years of age presenting with persistent microscopic haematuria to a single specialist centre in the UK over a 10-year period. METHODS: We conducted a retrospective longitudinal study of individuals referred to a tertiary paediatric nephrology service with persistent microscopic haematuria between April 2012 to 2022. RESULTS: A total of 224 individuals (female 51.8%) were evaluated with persistent microscopic haematuria of greater than 6 months duration. The age at presentation was 7.5 ± 4.3 years (mean ± SD) with a duration of follow-up of 6.8 ± 4.6 years (mean ± SD). Targeted exome sequencing was performed in 134 individuals and 91 (68%) had a pathogenic or likely pathogenic variant in COL4A3, COL4A4 or COL4A5. Only 49.5% of individuals with identified variants had a family history of microscopic haematuria documented and 37.4% (34/91) had additional proteinuria at presentation. COL4A5 was the most common gene affected and missense variants affecting glycine residues were the most common variant type. CONCLUSION: Over two-thirds of children and young people who underwent genetic testing had an identifiable genetic basis for their microscopic haematuria and over half did not have a documented family history. Genetic testing should be part of the evaluation of persistent microscopic haematuria despite a negative family history.

6.
Pediatr Nephrol ; 39(9): 2733-2740, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38316682

RESUMO

BACKGROUND: The use of genetic testing in pediatric patients with chronic kidney diseases (CKD) has increased exponentially in the past few years, particularly with the emergence of novel sequencing techniques. However, the genetic yield remains unexpectedly low in nephrology, with an impact on diagnosis, prognosis and treatment. Moreover, the increasing diversity of genetic testing possibilities can be seen as an obstacle by clinicians, in the absence of a strong background in genetics. Here, we propose a step-by-step, multidisciplinary strategy for the diagnostic evaluation of pediatric patients with CKD, and appropriate genetic test selection to maximize the yield of genetic testing. METHODS: A total of 126 pediatric patients were enrolled in a retrospective file analysis. Genetic testing techniques used included phenotype-associated next-generation panel sequencing (N = 41), Sanger and SNaPshot sequencing (N = 3) and/or whole exome sequencing (N = 2). RESULTS: Overall genetic yield reached 63% and genetic testing significantly impacted patient management in 70%. The distribution of kidney diseases among patients was balanced and matched previously described pediatric cohorts in terms of glomerulopathies, tubulopathies and ciliopathies. Genetic analyses led to significant treatment modifications, kidney biopsy sparing and personalized nephroprotection, as well as tailored genetic counseling. Of note, the evaluation of Human Phenotype Ontology term accuracy in the cohort showed that causal mutations were precisely identified in 85% of the patients at most. CONCLUSION: Here we suggest a step-by-step, multidisciplinary strategy to maximize the yield of genetic testing in pediatric patients with CKD. This approach optimizes patient care while avoiding unnecessary treatments or procedures.


Assuntos
Testes Genéticos , Insuficiência Renal Crônica , Humanos , Testes Genéticos/métodos , Criança , Masculino , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/terapia , Estudos Retrospectivos , Feminino , Adolescente , Pré-Escolar , Lactente , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Sequenciamento do Exoma
7.
Am J Hum Genet ; 107(4): 727-742, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32891193

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) constitute one of the most frequent birth defects and represent the most common cause of chronic kidney disease in the first three decades of life. Despite the discovery of dozens of monogenic causes of CAKUT, most pathogenic pathways remain elusive. We performed whole-exome sequencing (WES) in 551 individuals with CAKUT and identified a heterozygous de novo stop-gain variant in ZMYM2 in two different families with CAKUT. Through collaboration, we identified in total 14 different heterozygous loss-of-function mutations in ZMYM2 in 15 unrelated families. Most mutations occurred de novo, indicating possible interference with reproductive function. Human disease features are replicated in X. tropicalis larvae with morpholino knockdowns, in which expression of truncated ZMYM2 proteins, based on individual mutations, failed to rescue renal and craniofacial defects. Moreover, heterozygous Zmym2-deficient mice recapitulated features of CAKUT with high penetrance. The ZMYM2 protein is a component of a transcriptional corepressor complex recently linked to the silencing of developmentally regulated endogenous retrovirus elements. Using protein-protein interaction assays, we show that ZMYM2 interacts with additional epigenetic silencing complexes, as well as confirming that it binds to FOXP1, a transcription factor that has also been linked to CAKUT. In summary, our findings establish that loss-of-function mutations of ZMYM2, and potentially that of other proteins in its interactome, as causes of human CAKUT, offering new routes for studying the pathogenesis of the disorder.


Assuntos
Proteínas de Ligação a DNA/genética , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Mutação , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Sistema Urinário/metabolismo , Anormalidades Urogenitais/genética , Proteínas de Anfíbios/antagonistas & inibidores , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Animais , Estudos de Casos e Controles , Criança , Pré-Escolar , Proteínas de Ligação a DNA/metabolismo , Família , Feminino , Fatores de Transcrição Forkhead/metabolismo , Heterozigoto , Humanos , Lactente , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Camundongos , Camundongos Knockout , Morfolinos/genética , Morfolinos/metabolismo , Linhagem , Ligação Proteica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Sistema Urinário/anormalidades , Anormalidades Urogenitais/metabolismo , Anormalidades Urogenitais/patologia , Sequenciamento do Exoma , Xenopus
8.
Genet Med ; 25(11): 100942, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37489581

RESUMO

PURPOSE: To assess the relative cost-effectiveness of genomic testing compared with standard non-genomic diagnostic investigations in patients with suspected monogenic kidney disease from an Australian health care system perspective. METHODS: Diagnostic and clinical information was used from a national cohort of 349 participants. Simulation modelling captured diagnostic, health, and economic outcomes during a time horizon from clinical presentation until 3 months post-test results based on the outcome of cost per additional diagnosis and lifetime horizon based on cost per quality-adjusted life-year (QALY) gained. RESULTS: Genomic testing was Australian dollars (AU$) 1600 more costly per patient and led to an additional 27 diagnoses out of a 100 individuals tested, resulting in an incremental cost-effectiveness ratio of AU$5991 per additional diagnosis. Using a lifetime horizon, genomic testing resulted in an additional cost of AU$438 and 0.04 QALYs gained per individual compared with standard diagnostic investigations, corresponding to an incremental cost-effectiveness ratio of AU$10,823 per QALY gained. Sub-group analyses identified that the results were largely driven by the cost-effectiveness in glomerular diseases. CONCLUSION: Based on established or expected thresholds of cost-effectiveness, our evidence suggests that genomic testing is very likely to be cost saving for individuals with suspected glomerular diseases, whereas no evidence of cost-effectiveness was found for non-glomerular diseases.


Assuntos
Testes Genéticos , Humanos , Criança , Adulto , Análise Custo-Benefício , Austrália , Anos de Vida Ajustados por Qualidade de Vida , Simulação por Computador
9.
Clin Genet ; 104(3): 298-312, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37270787

RESUMO

The genetic spectrum of genetic kidney diseases (GKD) and the application of genetic diagnoses to patient care were assessed by whole exome sequencing (WES) of the DNA of 172 pediatric or adult patients with various kidney diseases. WES diagnosed genetic diseases in 63 (36.6%) patients. The diagnostic yields in patients with glomerulopathy were 33.8% (25/74 pts) due to variants in 10 genes, 58.8% (20/34) in patients with tubulointerstitial disease due to variants in 18 genes, 33.3% (15/45) in patients with cystic disease/ciliopathy due to variants in 10 genes, 18.2% (2/11) in patients with congenital anomalies of the kidneys and urinary tract (CAKUT) due to variants in two genes, and 12.5% (1/8) in patients with end stage kidney disease (ESKD). The diagnosis rate was high in patients aged <1-6 years (46-50.0%), and low in patients aged ≥40 years (9.1%). Renal phenotype was reclassified in 10 (15.9%) of 63 patients and clinical management altered in 10 (15.9%) of 63 patients after genetic diagnosis. In conclusion, these findings demonstrated the diagnostic utility of WES and its effective clinical application in patients, with various kinds of kidney diseases, across the different age groups.


Assuntos
Nefrite Intersticial , Sistema Urinário , Humanos , Sequenciamento do Exoma , Rim/anormalidades , Fenótipo
10.
Pediatr Nephrol ; 38(8): 2615-2622, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36688940

RESUMO

BACKGROUND: Diagnosing genetic kidney disease has become more accessible with low-cost, rapid genetic testing. The study objectives were to determine genetic testing diagnostic yield and examine predictors of genetic diagnosis in children with nephrolithiasis/nephrocalcinosis (NL/NC). METHODS: This retrospective multicenter cross-sectional study was conducted on children ≤ 21 years old with NL/NC from pediatric nephrology/urology centers that underwent the Invitae Nephrolithiasis Panel 1/1/2019-9/30/2021. The diagnostic yield of the genetic panel was calculated. Bivariate and multiple logistic regression were performed to assess for predictors of positive genetic testing. RESULTS: One hundred and thirteen children (83 NL, 30 NC) from 7 centers were included. Genetic testing was positive in 32% overall (29% NL, 40% NC) with definite diagnoses (had pathogenic variants alone) made in 11.5%, probable diagnoses (carried a combination of pathogenic variants and variants of uncertain significance (VUS) in the same gene) made in 5.4%, and possible diagnoses (had VUS alone) made in 15.0%. Variants were found in 28 genes (most commonly HOGA1 in NL, SLC34A3 in NC) and 20 different conditions were identified. Compared to NL, those with NC were younger and had a higher proportion with developmental delay, hypercalcemia, low serum bicarbonate, hypophosphatemia, and chronic kidney disease. In multivariate analysis, low serum bicarbonate was associated with increased odds of genetic diagnosis (ß 2.2, OR 8.7, 95% CI 1.4-54.7, p = 0.02). CONCLUSIONS: Genetic testing was high-yield with definite, probable, or possible explanatory variants found in up to one-third of children with NL/NC and shows promise to improve clinical practice. A higher resolution version of the Graphical abstract is available as Supplementary information.


Assuntos
Cálculos Renais , Nefrocalcinose , Nefrolitíase , Criança , Humanos , Adulto Jovem , Adulto , Nefrocalcinose/diagnóstico , Nefrocalcinose/genética , Bicarbonatos , Estudos Transversais , Nefrolitíase/diagnóstico , Nefrolitíase/genética , Cálculos Renais/genética , Testes Genéticos
11.
J Am Soc Nephrol ; 33(12): 2174-2193, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36137753

RESUMO

BACKGROUND: Variants in TBC1D8B cause nephrotic syndrome. TBC1D8B is a GTPase-activating protein for Rab11 (RAB11-GAP) that interacts with nephrin, but how it controls nephrin trafficking or other podocyte functions remains unclear. METHODS: We generated a stable deletion in Tbc1d8b and used microhomology-mediated end-joining for genome editing. Ex vivo functional assays utilized slit diaphragms in podocyte-like Drosophila nephrocytes. Manipulation of endocytic regulators and transgenesis of murine Tbc1d8b provided a comprehensive functional analysis of Tbc1d8b. RESULTS: A null allele of Drosophila TBC1D8B exhibited a nephrocyte-restricted phenotype of nephrin mislocalization, similar to patients with isolated nephrotic syndrome who have variants in the gene. The protein was required for rapid nephrin turnover in nephrocytes and for endocytosis of nephrin induced by excessive Rab5 activity. The protein expressed from the Tbc1d8b locus bearing the edited tag predominantly localized to mature early and late endosomes. Tbc1d8b was required for endocytic cargo processing and degradation. Silencing Hrs, a regulator of endosomal maturation, phenocopied loss of Tbc1d8b. Low-level expression of murine TBC1D8B rescued loss of the Drosophila gene, indicating evolutionary conservation. Excessive murine TBC1D8B selectively disturbed nephrin dynamics. Finally, we discovered four novel TBC1D8B variants within a cohort of 363 patients with FSGS and validated a functional effect of two variants in Drosophila, suggesting a personalized platform for TBC1D8B-associated FSGS. CONCLUSIONS: Variants in TBC1D8B are not infrequent among patients with FSGS. TBC1D8B, functioning in endosomal maturation and degradation, is essential for nephrin trafficking.


Assuntos
Glomerulosclerose Segmentar e Focal , Síndrome Nefrótica , Podócitos , Camundongos , Animais , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Drosophila , Glomerulosclerose Segmentar e Focal/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Podócitos/metabolismo , Endocitose , Endossomos/metabolismo
12.
Am J Med Genet C Semin Med Genet ; 190(3): 399-403, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35775584

RESUMO

Alport syndrome is an inherited disorder of the kidneys that results from variants in three collagen IV genes-COL4A3, COL4A4, and COL4A5. Early diagnosis and pharmacologic intervention can delay the progression of chronic kidney disease and the onset of kidney failure in patients with Alport syndrome. This article describes the evolution of approaches to the diagnosis and early treatment of Alport syndrome.


Assuntos
Nefrite Hereditária , Humanos , Nefrite Hereditária/complicações , Nefrite Hereditária/diagnóstico , Nefrite Hereditária/genética , Hematúria/diagnóstico , Hematúria/genética , Nefrologistas , Colágeno Tipo IV/genética , Testes Genéticos , Mutação
13.
Kidney Int ; 101(6): 1126-1141, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35460632

RESUMO

Numerous genes for monogenic kidney diseases with classical patterns of inheritance, as well as genes for complex kidney diseases that manifest in combination with environmental factors, have been discovered. Genetic findings are increasingly used to inform clinical management of nephropathies, and have led to improved diagnostics, disease surveillance, choice of therapy, and family counseling. All of these steps rely on accurate interpretation of genetic data, which can be outpaced by current rates of data collection. In March of 2021, Kidney Diseases: Improving Global Outcomes (KDIGO) held a Controversies Conference on "Genetics in Chronic Kidney Disease (CKD)" to review the current state of understanding of monogenic and complex (polygenic) kidney diseases, processes for applying genetic findings in clinical medicine, and use of genomics for defining and stratifying CKD. Given the important contribution of genetic variants to CKD, practitioners with CKD patients are advised to "think genetic," which specifically involves obtaining a family history, collecting detailed information on age of CKD onset, performing clinical examination for extrarenal symptoms, and considering genetic testing. To improve the use of genetics in nephrology, meeting participants advised developing an advanced training or subspecialty track for nephrologists, crafting guidelines for testing and treatment, and educating patients, students, and practitioners. Key areas of future research, including clinical interpretation of genome variation, electronic phenotyping, global representation, kidney-specific molecular data, polygenic scores, translational epidemiology, and open data resources, were also identified.


Assuntos
Insuficiência Renal Crônica , Congressos como Assunto , Humanos , Nefrologia , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/genética
14.
Kidney Int ; 102(3): 604-612, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35643375

RESUMO

Primary Coenzyme Q10 (CoQ10) deficiency is an ultra-rare disorder caused by defects in genes involved in CoQ10 biosynthesis leading to multidrug-resistant nephrotic syndrome as the hallmark kidney manifestation. Promising early results have been reported anecdotally with oral CoQ10 supplementation. However, the long-term efficacy and optimal prescription remain to be established. In a global effort, we collected and analyzed information from 116 patients who received CoQ10 supplements for primary CoQ10 deficiency due to biallelic pathogenic variants in either the COQ2, COQ6 or COQ8B genes. Median duration of follow up on treatment was two years. The effect of treatment on proteinuria was assessed, and kidney survival was analyzed in 41 patients younger than 18 years with chronic kidney disease stage 1-4 at the start of treatment compared with that of an untreated cohort matched by genotype, age, kidney function, and proteinuria. CoQ10 supplementation was associated with a substantial and significant sustained reduction of proteinuria by 88% at 12 months. Complete remission of proteinuria was more frequently observed in COQ6 disease. CoQ10 supplementation led to significantly better preservation of kidney function (5-year kidney failure-free survival 62% vs. 19%) with an improvement in general condition and neurological manifestations. Side effects of treatment were uncommon and mild. Thus, our findings indicate that all patients diagnosed with primary CoQ10 deficiency should receive early and life-long CoQ10 supplementation to decelerate the progression of kidney disease and prevent further damage to other organs.


Assuntos
Doenças Mitocondriais , Síndrome Nefrótica , Ubiquinona , Ataxia/tratamento farmacológico , Suplementos Nutricionais , Humanos , Rim/patologia , Doenças Mitocondriais/tratamento farmacológico , Debilidade Muscular/tratamento farmacológico , Mutação , Síndrome Nefrótica/complicações , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Proteinúria/diagnóstico , Proteinúria/tratamento farmacológico , Esteroides/uso terapêutico , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Ubiquinona/uso terapêutico
15.
Am J Physiol Renal Physiol ; 320(2): F145-F160, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33283647

RESUMO

The various forms of Fanconi renotubular syndromes (FRTS) offer significant challenges for clinicians and present unique opportunities for scientists who study proximal tubule physiology. This review will describe the clinical characteristics, genetic underpinnings, and underlying pathophysiology of the major forms of FRST. Although the classic forms of FRTS will be presented (e.g., Dent disease or Lowe syndrome), particular attention will be paid to five of the most recently discovered FRTS subtypes caused by mutations in the genes encoding for L-arginine:glycine amidinotransferase (GATM), solute carrier family 34 (type Ii sodium/phosphate cotransporter), member 1 (SLC34A1), enoyl-CoAhydratase/3-hydroxyacyl CoA dehydrogenase (EHHADH), hepatocyte nuclear factor 4A (HNF4A), or NADH dehydrogenase complex I, assembly factor 6 (NDUFAF6). We will explore how mutations in these genes revealed unexpected mechanisms that led to compromised proximal tubule functions. We will also describe the inherent challenges associated with gene discovery studies based on findings derived from small, single-family studies by focusing the story of FRTS type 2 (SLC34A1). Finally, we will explain how extensive alternative splicing of HNF4A has resulted in confusion with mutation nomenclature for FRTS type 4.


Assuntos
Síndrome de Fanconi/diagnóstico , Síndrome de Fanconi/fisiopatologia , Túbulos Renais Proximais/fisiopatologia , Síndrome de Fanconi/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Mutação
16.
Genet Med ; 23(1): 183-191, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32939031

RESUMO

PURPOSE: To determine the diagnostic yield and clinical impact of exome sequencing (ES) in patients with suspected monogenic kidney disease. METHODS: We performed clinically accredited singleton ES in a prospectively ascertained cohort of 204 patients assessed in multidisciplinary renal genetics clinics at four tertiary hospitals in Melbourne, Australia. RESULTS: ES identified a molecular diagnosis in 80 (39%) patients, encompassing 35 distinct genetic disorders. Younger age at presentation was independently associated with an ES diagnosis (p < 0.001). Of those diagnosed, 31/80 (39%) had a change in their clinical diagnosis. ES diagnosis was considered to have contributed to management in 47/80 (59%), including negating the need for diagnostic renal biopsy in 10/80 (13%), changing surveillance in 35/80 (44%), and changing the treatment plan in 16/80 (20%). In cases with no change to management in the proband, the ES result had implications for the management of family members in 26/33 (79%). Cascade testing was subsequently offered to 40/80 families (50%). CONCLUSION: In this pragmatic pediatric and adult cohort with suspected monogenic kidney disease, ES had high diagnostic and clinical utility. Our findings, including predictors of positive diagnosis, can be used to guide clinical practice and health service design.


Assuntos
Exoma , Nefropatias , Adulto , Austrália , Criança , Testes Genéticos , Humanos , Nefropatias/diagnóstico , Nefropatias/genética , Sequenciamento do Exoma
17.
Am J Kidney Dis ; 78(6): 857-864, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34245817

RESUMO

Massively parallel sequencing identifies pathogenic variants in the genes affected in Alport syndrome (COL4A3-COL4A5) in as many as 30% of individuals with focal and segmental glomerulosclerosis (FSGS), 10% of those with kidney failure of unknown cause, and 20% with familial immunoglobulin A (IgA) glomerulonephritis. FSGS associated with COL4A3-COL4A5 variants is usually present by the onset of kidney failure and may develop because the abnormal glomerular membranes result in podocyte loss and secondary hyperfiltration. The association of COL4A3-COL4A5 variants with kidney failure or IgA glomerulonephritis may be coincidental. However, pathogenic variants in these conditions occur more often than they should by chance, which suggests that the variants are disease-causing. COL4A3-COL4A5 variants are also found in cystic kidney diseases after autosomal dominant polycystic kidney disease has been excluded. COL4A3-COL4A5 variants should be suspected in individuals with FSGS, kidney failure of unknown cause, or familial IgA glomerulonephritis, especially where there is persistent hematuria and a family history of hematuria or kidney failure.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrite Hereditária , Autoantígenos/genética , Colágeno Tipo IV/genética , Hematúria , Humanos , Rim , Mutação , Nefrite Hereditária/genética
18.
Nephrol Dial Transplant ; 36(2): 295-305, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-31738409

RESUMO

BACKGROUND: The clinical diagnosis of genetic renal diseases may be limited by the overlapping spectrum of manifestations between diseases or by the advancement of disease where clues to the original process are absent. The objective of this study was to determine whether genetic testing informs diagnosis and facilitates management of kidney disease patients. METHODS: We developed a comprehensive genetic testing panel (KidneySeq) to evaluate patients with various phenotypes including cystic diseases, congenital anomalies of the kidney and urinary tract (CAKUT), tubulointerstitial diseases, transport disorders and glomerular diseases. We evaluated this panel in 127 consecutive patients ranging in age from newborns to 81 years who had samples sent in for genetic testing. RESULTS: The performance of the sequencing pipeline for single-nucleotide variants was validated using CEPH (Centre de'Etude du Polymorphism) controls and for indels using Genome-in-a-Bottle. To test the reliability of the copy number variant (CNV) analysis, positive samples were re-sequenced and analyzed. For patient samples, a multidisciplinary review board interpreted genetic results in the context of clinical data. A genetic diagnosis was made in 54 (43%) patients and ranged from 54% for CAKUT, 53% for ciliopathies/tubulointerstitial diseases, 45% for transport disorders to 33% for glomerulopathies. Pathogenic and likely pathogenic variants included 46% missense, 11% nonsense, 6% splice site variants, 23% insertion-deletions and 14% CNVs. In 13 cases, the genetic result changed the clinical diagnosis. CONCLUSION: Broad genetic testing should be considered in the evaluation of renal patients as it complements other tests and provides insight into the underlying disease and its management.


Assuntos
Biomarcadores/sangue , Variações do Número de Cópias de DNA , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nefropatias/diagnóstico , Mutação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Nefropatias/sangue , Nefropatias/genética , Nefropatias/terapia , Masculino , Pessoa de Meia-Idade , Fenótipo , Reprodutibilidade dos Testes , Adulto Jovem
19.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809516

RESUMO

Single-gene defects have been revealed to be the etiologies of many kidney diseases with the recent advances in molecular genetics. Autosomal dominant polycystic kidney disease (ADPKD), as one of the most common inherited kidney diseases, is caused by mutations of PKD1 or PKD2 gene. Due to the complexity of pathophysiology of cyst formation and progression, limited therapeutic options are available. The roles of noncoding RNAs in development and disease have gained widespread attention in recent years. In particular, microRNAs in promoting PKD progression have been highlighted. The dysregulated microRNAs modulate cyst growth through suppressing the expression of PKD genes and regulating cystic renal epithelial cell proliferation, mitochondrial metabolism, apoptosis and autophagy. The antagonists of microRNAs have emerged as potential therapeutic drugs for the treatment of ADPKD. In addition, studies have also focused on microRNAs as potential biomarkers for ADPKD and other common hereditary kidney diseases, including HNF1ß-associated kidney disease, Alport syndrome, congenital abnormalities of the kidney and urinary tract (CAKUT), von Hippel-Lindau (VHL) disease, and Fabry disease. This review assembles the current understanding of the non-coding RNAs, including microRNAs and long noncoding RNAs, in polycystic kidney disease and these common monogenic kidney diseases.


Assuntos
Doenças Genéticas Inatas/genética , Nefropatias/genética , RNA Longo não Codificante/metabolismo , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos
20.
Nephrol Dial Transplant ; 35(3): 390-397, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30809662

RESUMO

A large fraction of early-onset chronic kidney disease (CKD) is known to be monogenic in origin. To date, ∼450 monogenic (synonymous with single-gene disorders) genes, if mutated, are known to cause CKD, explaining ∼30% of cases in pediatric cohorts and ∼5-30% in adult cohorts. However, there are likely hundreds of additional monogenic nephropathy genes that may be revealed by whole-exome or -genome sequencing. Although the discovery of novel CKD-causing genes has accelerated, significant challenges in adult populations remain due to broad phenotypic heterogeneity together with variable expressivity, incomplete penetrance or age-related penetrance of these genes. Here we give an overview of the currently known monogenic causes for human CKD. We also describe how next-generation sequencing facilitates rapid molecular genetic diagnostics in individuals with suspected genetic kidney disease. In an era of precision medicine, understanding the utility of genetic testing in individuals with a suspected inherited nephropathy has important diagnostic and prognostic implications. Detection of monogenic causes of CKD permits molecular genetic diagnosis for patients and families and opens avenues for personalized treatment strategies for CKD. As an example, detection of a pathogenic mutation in the gene HNF1B not only allows for the formal diagnosis of CKD, but can also facilitate screening for additional extrarenal manifestations of disease, such as maturity-onset diabetes of youth, subclinical abnormal liver function tests, neonatal cholestasis and pancreatic hypoplasia. It also provides the driving force towards a better understanding of disease pathogenesis, potentially facilitating targeted new therapies for individuals with CKD.


Assuntos
Marcadores Genéticos , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Medicina de Precisão , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/genética , Humanos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA