Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 25(3): e14185, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332556

RESUMO

PURPOSE: ACR and AAPM task group's guidelines addressing commissioning for dedicated MR simulators were recently published. The goal of the current paper is to present the authors' 2-year experience regarding the commissioning and introduction of a QA program based on these guidelines and an associated automated workflow. METHODS: All mandatory commissioning tests suggested by AAPM report 284 were performed and results are reported for two MRI scanners (MAGNETOM Sola and Aera). Visual inspection, vendor clinical or service platform, third-party software, or in-house python-based code were used. Automated QA and data analysis was performed via vendor, in-house or third-party software. QATrack+ was used for QA data logging and storage. 3D geometric distortion, B0 inhomogeneity, EPI, and parallel imaging performance were evaluated. RESULTS: Contrasting with AAPM report 284 recommendations, homogeneity and RF tests were performed monthly. The QA program allowed us to detect major failures over time (shimming, gradient calibration and RF interference). Automated QA, data analysis, and logging allowed fast ACR analysis daily and monthly QA to be performed in 3 h. On the Sola, the average distortion is 1 mm for imaging radii of 250 mm or less. For radii of up to 200 mm, the maximum, average (standard deviation) distortion is 1.2  and 0.4 mm (0.3 mm). Aera values are roughly double the Sola for radii up to 200 mm. EPI geometric distortion, ghosting ratio, and long-term stability were found to be under the maximum recommended values. Parallel imaging SNR ratio was stable and close to the theoretical value (ideal g-factor). No major failures were detected during commissioning. CONCLUSION: An automated workflow and enhanced QA program allowed to automatically track machine and environmental changes over time and to detect periodic failures and errors that might otherwise have gone unnoticed. The Sola is more geometrically accurate, with a more homogenous B0 field than the Aera.


Assuntos
Radioterapia (Especialidade) , Humanos , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Software , Fluxo de Trabalho
2.
Sensors (Basel) ; 24(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732941

RESUMO

SAR imagery plays a crucial role in geological and environmental monitoring, particularly in highland mountainous regions. However, inherent geometric distortions in SAR images often undermine the precision of remote sensing analyses. Accurately identifying and classifying these distortions is key to analyzing their origins and enhancing the quality and accuracy of monitoring efforts. While the layover and shadow map (LSM) approach is commonly utilized to identify distortions, it falls short in classifying subtle ones. This study introduces a novel LSM ground-range slope (LG) method, tailored for the refined identification of minor distortions to augment the LSM approach. We implemented the LG method on Sentinel-1 SAR imagery from the tri-junction area where the Xiaojiang, Pudu, and Jinsha rivers converge at the Yunnan-Sichuan border. By comparing effective monitoring-point densities, we evaluated and validated traditional methods-LSM, R-Index, and P-NG-against the LG method. The LG method demonstrates superior performance in discriminating subtle distortions within complex terrains through its secondary classification process, which allows for precise and comprehensive recognition of geometric distortions. Furthermore, our research examines the impact of varying slope parameters during the classification process on the accuracy of distortion identification. This study addresses significant gaps in recognizing geometric distortions and lays a foundation for more precise SAR imagery analysis in complex geographic settings.

3.
Magn Reson Med ; 90(3): 963-977, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37125656

RESUMO

PURPOSE: MRI is increasingly utilized for image-guided radiotherapy due to its outstanding soft-tissue contrast and lack of ionizing radiation. However, geometric distortions caused by gradient nonlinearities (GNLs) limit anatomical accuracy, potentially compromising the quality of tumor treatments. In addition, slow MR acquisition and reconstruction limit the potential for effective image guidance. Here, we demonstrate a deep learning-based method that rapidly reconstructs distortion-corrected images from raw k-space data for MR-guided radiotherapy applications. METHODS: We leverage recent advances in interpretable unrolling networks to develop a Distortion-Corrected Reconstruction Network (DCReconNet) that applies convolutional neural networks (CNNs) to learn effective regularizations and nonuniform fast Fourier transforms for GNL-encoding. DCReconNet was trained on a public MR brain dataset from 11 healthy volunteers for fully sampled and accelerated techniques, including parallel imaging (PI) and compressed sensing (CS). The performance of DCReconNet was tested on phantom, brain, pelvis, and lung images acquired on a 1.0T MRI-Linac. The DCReconNet, CS-, PI-and UNet-based reconstructed image quality was measured by structural similarity (SSIM) and RMS error (RMSE) for numerical comparisons. The computation time and residual distortion for each method were also reported. RESULTS: Imaging results demonstrated that DCReconNet better preserves image structures compared to CS- and PI-based reconstruction methods. DCReconNet resulted in the highest SSIM (0.95 median value) and lowest RMSE (<0.04) on simulated brain images with four times acceleration. DCReconNet is over 10-times faster than iterative, regularized reconstruction methods. CONCLUSIONS: DCReconNet provides fast and geometrically accurate image reconstruction and has the potential for MRI-guided radiotherapy applications.


Assuntos
Aprendizado Profundo , Radioterapia Guiada por Imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Pulmão/patologia , Humanos
4.
Magn Reson Med ; 90(6): 2375-2387, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37667533

RESUMO

PURPOSE: EPI with blip-up/down acquisition (BUDA) can provide high-quality images with minimal distortions by using two readout trains with opposing phase-encoding gradients. Because of the need for two separate acquisitions, BUDA doubles the scan time and degrades the temporal resolution when compared to single-shot EPI, presenting a major challenge for many applications, particularly fMRI. This study aims at overcoming this challenge by developing an echo-shifted EPI BUDA (esEPI-BUDA) technique to acquire both blip-up and blip-down datasets in a single shot. METHODS: A 3D esEPI-BUDA pulse sequence was designed by using an echo-shifting strategy to produce two EPI readout trains. These readout trains produced a pair of k-space datasets whose k-space trajectories were interleaved with opposite phase-encoding gradient directions. The two k-space datasets were separately reconstructed using a 3D SENSE algorithm, from which time-resolved B0 -field maps were derived using TOPUP in FSL and then input into a forward model of joint parallel imaging reconstruction to correct for geometric distortion. In addition, Hankel structured low-rank constraint was incorporated into the reconstruction framework to improve image quality by mitigating the phase errors between the two interleaved k-space datasets. RESULTS: The 3D esEPI-BUDA technique was demonstrated in a phantom and an fMRI study on healthy human subjects. Geometric distortions were effectively corrected in both phantom and human brain images. In the fMRI study, the visual activation volumes and their BOLD responses were comparable to those from conventional 3D echo-planar images. CONCLUSION: The improved imaging efficiency and dynamic distortion correction capability afforded by 3D esEPI-BUDA are expected to benefit many EPI applications.


Assuntos
Algoritmos , Artroplastia de Substituição , Humanos , Encéfalo/diagnóstico por imagem , Voluntários Saudáveis , Imagens de Fantasmas
5.
Chemistry ; 29(68): e202302463, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37873907

RESUMO

Nonclassical P(III) centers have attracted much attention in recent years. Incorporating a P(III) center in a rigid bicyclic platform offers a particularly attractive way to invoke significant geometric distortion of the phosphorus atom that may in turn induce unusual reactivity. Although still relatively scarcely explored, phosphorus centers enforced in a non-C3 symmetry have gained significant traction lately. However, the current scaffolds are based on a relatively limited set of design principles and ligand platforms associated therewith. This work is focussed on the synthesis as well as versatile oxidation, addition and coordination chemistry of a geometrically distorted P(III) species featuring a synthetically modular, nonsymmetric trisamine platform derived from 2-(methylamino)-N-(2-(methylamino)phenyl)benzenesulfonamide.

6.
Acta Oncol ; 62(11): 1551-1560, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37815867

RESUMO

BACKGROUND: As magnetic resonance imaging (MRI) becomes increasingly integrated into radiotherapy (RT) for enhanced treatment planning and adaptation, the inherent geometric distortion in acquired MR images pose a potential challenge to treatment accuracy. This study aimed to evaluate the geometric distortion levels in the clinical MRI protocols used across Danish RT centers and discuss influence of specific sequence parameters. Based on the variety in geometric performance across centers, we assess if harmonization of MRI sequences is a relevant measure. MATERIALS AND METHODS: Nine centers participated with 12 MRI scanners and MRI-Linacs (MRL). Using a travelling phantom approach, a reference MRI sequence was used to assess variation in baseline distortion level between scanners. The phantom was also scanned with local clinical MRI sequences for brain, head/neck (H/N), abdomen, and pelvis. The influence of echo time, receiver bandwidth, image weighting, and 2D/3D acquisition was investigated. RESULTS: We found a large variation in geometric accuracy across 93 clinical sequences examined, exceeding the baseline variation found between MRI scanners (σ = 0.22 mm), except for abdominal sequences where the variation was lower. Brain and abdominal sequences showed lowest distortion levels ([0.22, 2.26] mm), and a large variation in performance was found for H/N and pelvic sequences ([0.19, 4.07] mm). Post hoc analyses revealed that distortion levels decreased with increasing bandwidth and a less clear increase in distortion levels with increasing echo time. 3D MRI sequences had lower distortion levels than 2D (median of 1.10 and 2.10 mm, respectively), and in DWI sequences, the echo-planar imaging read-out resulted in highest distortion levels. CONCLUSION: There is a large variation in the geometric distortion levels of clinical MRI sequences across Danish RT centers, and between anatomical sites. The large variation observed makes harmonization of MRI sequences across institutions and adoption of practices from well-performing anatomical sites, a relevant measure within RT.


Assuntos
Imagem Ecoplanar , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Encéfalo , Imagens de Fantasmas
7.
Acta Radiol ; 64(8): 2485-2491, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37545177

RESUMO

BACKGROUND: Cervical cancer (CC) is the second most common cancer in women worldwide. Diffusion-weighted imaging (DWI) plays an important role in the diagnosis of CC, but the conventional techniques are affected by many factors. PURPOSE: To compare reduced-field-of-view (r-FOV) and full-field-of-view (f-FOV) DWI in the diagnosis of CC. MATERIAL AND METHODS: Preoperative magnetic resonance imaging (MRI) with r-FOV and f-FOV DWI images were collected. Two radiologists reviewed the images using a subjective 4-point scale for anatomical features, magnetic susceptibility artifacts, visual distortion, and overall diagnostic confidence for r-FOV and f-FOV DWI. The objective features included the region of interest (ROI) signal intensity of the cervical lesion (SIlesion) and gluteus maximus muscle (SIgluteus), standard deviation of the background noise (SDbackground), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). The differences of measured apparent diffusion coefficient (ADC) values between the two examinations in pathological grades and FIGO tumor stages were compared. RESULTS: A total of 200 patients were included (170 with squamous cell carcinoma and 30 with adenocarcinoma). The scores of anatomical features, magnetic susceptibility artifacts, visual distortion, and overall diagnostic confidence for r-FOV DWI were significantly higher than those for f-FOV DWI. There was no difference in SNR and CNR between r-FOV DWI and f-FOV DWI. There were significant differences in ADC values between the two groups in all comparisons (P < 0.05). CONCLUSION: Compared with f-FOV DWI, r-FOV DWI might provide clearer imaging, fewer artifacts, less distortion, and higher image quality for the diagnosis of CC and might assist in the detection of CC.


Assuntos
Adenocarcinoma , Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/diagnóstico por imagem , Razão Sinal-Ruído , Imagem de Difusão por Ressonância Magnética/métodos , Adenocarcinoma/diagnóstico por imagem , Reprodutibilidade dos Testes , Imagem Ecoplanar
8.
Acta Radiol ; 63(10): 1344-1352, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34797750

RESUMO

BACKGROUND: According to the European Reference Organization for Quality Assurance Breast Screening and European Diagnostic Services, the spatial accuracy of reconstructed images and reconstruction artifacts must be evaluated in digital breast tomosynthesis (DBT) quality control procedures. PURPOSE: To propose a computational algorithm to evaluate the geometric distortion and artifact spreading (GDAS) in DBT images. MATERIAL AND METHODS: The proposed algorithm analyzed tomosynthesis images of a phantom that contains aluminum spheres (1 mm in diameter) arranged in a rectangular matrix spaced 5 cm apart that was inserted in 5-mm-thick polymethylmethacrylate (PMMA). RESULTS: The obtained results were compared with the values provided by the algorithm developed by the National Coordinating Center for the Physics of Mammography (NCCPM). In the comparison, the results depended on the dimensions of the region of interest (ROI). This dependence proves the benefit of the proposed algorithm because it allows the user to select the ROI. CONCLUSION: The computational algorithm proved to be useful for the evaluation of GDAS in DBT images, in the same way as the reference algorithm (NCCPM), as well as allowing the selection of the ROI dimensions that best suit the spreading of the artifact in the analyzed images.


Assuntos
Artefatos , Polimetil Metacrilato , Algoritmos , Alumínio , Humanos , Mamografia/métodos
9.
J Appl Clin Med Phys ; 23(3): e13517, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35106908

RESUMO

We investigated the dose deviation related to geometric distortion and dose gradient on magnetic resonance-only treatment planning for intensity-modulated radiation therapy and proton therapy. The residual geometric distortion of two different magnetic resonance imaging (MRI) sequences (A) and (B) was applied in the computed tomography image and the structure set of each patient through a polynomial MRI geometric distortion model to simulate MRI-based treatment planning. A 3D histogram was generated to specify the relationship of dose deviation to geometric distortion and dose gradient. When the dose gradient (Gd ) approached zero, the maximum dose deviation reached 1.64% and 2.71% for photon plans of sequences A and B, respectively. For proton plans, the maximum dose deviation reached 3.15% and 4.89% for sequences A and B, respectively. When the geometric distortion (d) was close to zero, the maximum dose deviation was less than 0.8% for photon and proton plans of both sequences. Under extreme conditions (d = 2 mm and Gd  = 4.5%/mm), the median value of dose deviation reached 3% and 3.49% for photon and proton plans, respectively for sequence A, and 2.93% and 4.55% for photon and proton plans, respectively, for sequence B. We demonstrate that the dose deviation is specific to MRI hardware parameters. Compared to the photon plan, the proton plan is more sensitive to the changes in geometric distortion. For typical clinical MRI geometric distortion (d ≤2 mm), the median dose deviation is expected to be within 3% and 5% for photon and proton plans, respectively.


Assuntos
Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Imageamento por Ressonância Magnética/métodos , Terapia com Prótons/métodos , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
10.
Magn Reson Med ; 85(5): 2445-2461, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33220010

RESUMO

PURPOSE: To develop a postprocessing algorithm that corrects geometric distortions due to spatial variations of the static magnetic field amplitude, B0 , and effects from relaxation during signal acquisition in EPI. THEORY AND METHODS: An analytic, complex point-spread function is deduced for k-space trajectories of EPI variants and applied to corresponding acquisitions in a resolution phantom and in human volunteers at 3 T. With the analytic point-spread function and experimental maps of B0 (and, optionally, the effective transverse relaxation time, T2* ) as input, a point-spread function matrix operator is devised for distortion correction by a Thikonov-regularized deconvolution in image space. The point-spread function operator provides additional information for an appropriate correction of the signal intensity distribution. A previous image combination algorithm for acquisitions with opposite phase blip polarities is adapted to the proposed method to recover destructively interfering signal contributions. RESULTS: Applications of the proposed deconvolution-based distortion correction ("DecoDisCo") algorithm demonstrate excellent distortion corrections and superior performance regarding the recovery of an undistorted intensity distribution in comparison to a multifrequency reconstruction. Examples include full and partial Fourier standard EPI scans as well as double-shot center-out trajectories. Compared with other distortion-correction approaches, DecoDisCo permits additional deblurring to obtain sharper images in cases of significant T2* effects. CONCLUSION: Robust distortion corrections in EPI acquisitions are feasible with high quality by regularized deconvolution with an analytic point-spread function. The general algorithm, which is publicly released on GitHub, can be straightforwardly adapted for specific EPI variants or other acquisition schemes.


Assuntos
Artefatos , Imagem Ecoplanar , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
11.
Chemistry ; 27(36): 9350-9359, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33811689

RESUMO

Several phosphaquinodimethanes and their M(CO)5 complexes (M=Cr, Mo, W) and model derivatives have been theoretically investigated regarding the quest of non-innocence. Computed structural and electronic properties of the P-Me/NH2 substituted phosphaquinodimethanes and tungsten complexes revealed an interesting non-innocent ligand behaviour for the radical anion complexes with distonic ion character and a strong rearomatization of the middle phenyl ring. The latter was further probed taking also geometric aromaticity (HOMA) and quinoid distortion parameters (HOMQc) into account, as well as NICS(1). Furthermore, the effect of the P-substitution was investigated for real (or plausible) complexes and their free ligands focusing on the resulting aromaticity at the middle phenyl ring and vertical one-electron redox processes. The best picture of ligand engagement in redox changes was provided by representing NICS(1) values versus HOMA and the new geometric distortion parameter HOMQc8.

12.
J Appl Clin Med Phys ; 22(8): 303-309, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34231963

RESUMO

PURPOSE: To estimate the overall spatial distortion on clinical patient images for a 0.35 T MR-guided radiotherapy system. METHODS: Ten patients with head-and-neck cancer underwent CT and MR simulations with identical immobilization. The MR images underwent the standard systematic distortion correction post-processing. The images were rigidly registered and landmark-based analysis was performed by an anatomical expert. Distortion was quantified using Euclidean distance between each landmark pair and tagged by tissue interface: bone-tissue, soft tissue, or air-tissue. For baseline comparisons, an anthropomorphic phantom was imaged and analyzed. RESULTS: The average spatial discrepancy between CT and MR landmarks was 1.15 ± 1.14 mm for the phantom and 1.46 ± 1.78 mm for patients. The error histogram peaked at 0-1 mm. 66% of the discrepancies were <2 mm and 51% <1 mm. In the patient data, statistically significant differences (p-values < 0.0001) were found between the different tissue interfaces with averages of 0.88 ± 1.24 mm, 2.01 ± 2.20 mm, and 1.41 ± 1.56 mm for the air/tissue, bone/tissue, and soft tissue, respectively. The distortion generally correlated with the in-plane radial distance from the image center along the longitudinal axis of the MR. CONCLUSION: Spatial distortion remains in the MR images after systematic distortion corrections. Although the average errors were relatively small, large distortions observed at bone/tissue interfaces emphasize the need for quantitative methods for assessing and correcting patient-specific spatial distortions.


Assuntos
Imageamento por Ressonância Magnética , Planejamento da Radioterapia Assistida por Computador , Humanos , Imagens de Fantasmas
13.
J Appl Clin Med Phys ; 22(12): 149-157, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34719100

RESUMO

One of the main challenges to using magnetic resonance imaging (MRI) in radiotherapy is the existence of system-related geometric inaccuracies caused mainly by the inhomogeneity in the main magnetic field and the nonlinearities of the gradient coils. Several physical phantoms, with fixed configuration, have been developed and commercialized for the assessment of the MRI geometric distortion. In this study, we propose a new design of a customizable phantom that can fit any type of radio frequency (RF) coil. It is composed of 3D printed plastic blocks containing holes that can hold glass tubes which can be filled with any liquid. The blocks can be assembled to construct phantoms with any dimension. The feasibility of this design has been demonstrated by assembling four phantoms with high robustness allowing the assessment of the geometric distortion for the GE split head coil, the head and neck array coil, the anterior array coil, and the body coil. Phantom reproducibility was evaluated by analyzing the geometric distortion on CT acquisition of five independent assemblages of the phantom. This solution meets all expectations in terms of having a robust, lightweight, modular, and practical tool for measuring distortion in three dimensions. Mean error in the position of the tubes was less than 0.2 mm. For the geometric distortion, our results showed that for all typical MRI sequences used for radiotherapy, the mean geometric distortion was less than 1 mm and less than 2.5 mm over radial distances of 150 mm and 250 mm, respectively. These tools will be part of a quality assurance program aimed at monitoring the image quality of MRI scanners used to guide radiation therapy.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Campos Magnéticos , Imagens de Fantasmas , Reprodutibilidade dos Testes
14.
NMR Biomed ; 33(7): e4316, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32339348

RESUMO

B0 field maps are used ubiquitously in neuroimaging, in disciplines ranging from magnetic resonance spectroscopy to temperature mapping and susceptibility-weighted imaging. Most B0 maps are acquired using standard gradient-echo-based vendor-provided sequences, often comprised of two echoes spaced a few milliseconds apart. Herein, we analyze the optimal spacing of echo times, defined as those maximizing precision-minimizing the standard deviation-for a fixed total acquisition time. Field estimation is carried out using a weighted least squares estimator. The standard deviation is shown to be approximately inversely proportional to the total acquisition time, suggesting a law of diminishing returns, whereby substantial gains are obtained up to a certain point, with little improvement beyond that point. Validations are provided in a phantom and a group of volunteers. Multi-gradient echo sequences are readily available on all manufacturer platforms, making our recommendations straightforward to implement on any modern scanner.


Assuntos
Imagem Ecoplanar , Algoritmos , Humanos , Análise Numérica Assistida por Computador , Imagens de Fantasmas , Fatores de Tempo
15.
J Magn Reson Imaging ; 51(1): 296-310, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31111581

RESUMO

BACKGROUND: Distortion-free, high-resolution diffusion imaging using DIADEM (Distortion-free Imaging: A Double Encoding Method), proposed recently, has great potential for clinical applications. However, it can suffer from prolonged scan times and its reliability for quantitative diffusion imaging has not been evaluated. PURPOSE: To investigate the clinical feasibility of DIADEM-based high-resolution diffusion imaging on a novel compact 3T (C3T) by evaluating the reliability of quantitative diffusion measurements and utilizing both the high-performance gradients (80 mT/m, 700 T/m/s) and the sequence optimization with the navigator acquisition window reduction and simultaneous multislice (multiband) imaging. STUDY TYPE: Prospective feasibility study. PHANTOM/SUBJECTS: Diffusion quality control phantom scans to evaluate the reliability of quantitative diffusion measurements; 36 normal control scans for B0 -field mapping; six healthy and two patient subject scans with a brain tumor for comparisons of diffusion and anatomical imaging. FIELD STRENGTH/SEQUENCE: 3T; the standard single-shot echo-planar-imaging (EPI), multishot DIADEM diffusion, and anatomical (2D-FSE [fast-spin-echo], 2D-FLAIR [fluid-attenuated-inversion-recovery], and 3D-MPRAGE [magnetization prepared rapid acquisition gradient echo]) imaging. ASSESSMENT: The scan time reduction, the reliability of quantitative diffusion measurements, and the clinical efficacy for high-resolution diffusion imaging in healthy control and brain tumor volunteers. STATISTICAL TEST: Bland-Altman analysis. RESULTS: The scan time for high in-plane (0.86 mm2 ) resolution, distortion-free, and whole brain diffusion imaging were reduced from 10 to 5 minutes with the sequence optimizations. All of the mean apparent diffusion coefficient (ADC) values in phantom were within the 95% confidence interval in the Bland-Altman plot. The proposed acquisition with a total off-resonance coverage of 597.2 Hz wider than the expected bandwidth of 500 Hz in human brain could yield a distortion-free image without foldover artifacts. Compared with EPI, therefore, this approach allowed direct image matching with the anatomical images and enabled improved delineation of the tumor boundaries. DATA CONCLUSION: The proposed high-resolution diffusion imaging approach is clinically feasible on C3T due to a combination of hardware and sequence improvements. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 1 J. Magn. Reson. Imaging 2020;51:296-310.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagem Ecoplanar , Estudos de Viabilidade , Humanos , Imagens de Fantasmas , Estudos Prospectivos , Reprodutibilidade dos Testes
16.
J Appl Clin Med Phys ; 21(11): 322-332, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33073909

RESUMO

Comprehensive characterization of geometric distortions for MRI simulators and MRI-guided treatment delivery systems is typically performed with large phantoms that are costly and unwieldy to handle. Here we propose an easily implementable methodology for MR distortion determination of the entire imaging space of the scanner through the use of a compact commercially available distortion phantom. The MagphanRT phantom was scanned at several locations within a MR scanner. From each scan, an approximate location of the phantom was determined from a subset of the fiducial spheres. The fiducial displacements were determined, and a displacement field was fitted to the displacement data using the entire multi-scan data set. An orthogonal polynomial expansion fitting function was used that had been augmented to include independent rigid-body transformations for each scan. The rigid-body portions of the displacement field were thereafter discarded, and the resultant fit then represented the distortion field. Multi-positional scans of the phantom were used successfully to determine the distortion field with extended coverage. A single scan of the phantom covered 20 cm in its smallest dimension. By stitching together overlapping scans we extended the distortion measurements to 30 cm. No information about the absolute location or orientation of each scan was required. The method, termed the Multi-Scan Expansion (MSE) method, can be easily applied for larger field-of-views (FOVs) by using a combination of larger phantom displacements and more scans. The implementation of the MSE method allows for distortion determination beyond the physical limitations of the phantom. The method is scalable to the user's needs and does not require any specialized equipment. This approach could open up for easier determination of the distortion magnitude at distances further from the scanner's isocenter. This is especially important in the newly proposed methodologies of MR-only simulation in RT and in adaptive replanning in MR linac systems.


Assuntos
Imageamento por Ressonância Magnética , Aceleradores de Partículas , Algoritmos , Simulação por Computador , Humanos , Imagens de Fantasmas
17.
Artigo em Japonês | MEDLINE | ID: mdl-32684563

RESUMO

High tissue contrast in magnetic resonance imaging (MRI) allows better radiotherapy planning. However, geometric distortion in MRI induces inaccuracies affecting such planning, making it necessary to evaluate the characteristics of such geometric distortion. Although many studies have considered geometric distortion, most of these involved measurements performed only a few times. In this study, we evaluated MRI device-specific geometric distortion over long term and measured its variation by using an automatic analysis tool. The result showed that geometric distortion increased with distance from the center along both lateral and longitudinal directions. Specifically, the average distortion rate and average diameter error over the full measurement period increased by up to 1.02% and 1.96 mm, respectively, when using T1 weighted Image (WI) 3D fast spoiled gradient echo (FSPGR) at R15. In the case of T2 WI 2D fast spin echo (FSE) at R15, the standard deviation of the distortion rate and diameter error increased up to 0.38%, 0.72 mm, respectively. We conclude that periodic quality assurance of geometric distortion should be performed in order to maintain geometric distortion within allowable values.


Assuntos
Imageamento por Ressonância Magnética , Planejamento da Radioterapia Assistida por Computador , Imagens de Fantasmas
18.
Magn Reson Med ; 81(3): 1979-1992, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30393895

RESUMO

PURPOSE: Prostate diffusion-weighted MRI scans can suffer from geometric distortions, signal pileup, and signal dropout attributed to differences in tissue susceptibility values at the interface between the prostate and rectal air. The aim of this work is to present and validate a novel model based reconstruction method that can correct for these distortions. METHODS: In regions of severe signal pileup, standard techniques for distortion correction have difficulty recovering the underlying true signal. Furthermore, because of drifts and inaccuracies in the determination of center frequency, echo planar imaging (EPI) scans can be shifted in the phase-encoding direction. In this work, using a B0 field map and a set of EPI data acquired with blip-up and blip-down phase encoding gradients, we model the distortion correction problem linking the distortion-free image to the acquired raw corrupted k-space data and solve it in a manner analogous to the sensitivity encoding method. Both a quantitative and qualitative assessment of the proposed method is performed in vivo in 10 patients. RESULTS: Without distortion correction, mean Dice similarity scores between a reference T2W and the uncorrected EPI images were 0.64 and 0.60 for b-values of 0 and 500 s/mm2 , respectively. Compared to the Topup (distortion correction method commonly used for neuro imaging), the proposed method achieved Dice scores (0.87 and 0.85 versus 0.82 and 0.80) and better qualitative results in patients where signal pileup was present because of high rectal gas residue. CONCLUSION: Model-based reconstruction can be used for distortion correction in prostate diffusion MRI.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Processamento de Imagem Assistida por Computador/métodos , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Idoso , Algoritmos , Artefatos , Difusão , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos
19.
J Magn Reson Imaging ; 50(5): 1614-1619, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30990941

RESUMO

BACKGROUND: Evaluation of prostate MRI relies on diffusion-weighted imaging (DWI), commonly distorted by susceptibility artifacts, thereby creating a need for approaches to correct such distortion. PURPOSE: To compare geometric distortion on prostate MRI between standard DWI and a geometric distortion correction method for DWI described as static distortion correction DWI (SDC DWI). STUDY TYPE: Retrospective case study. POPULATION: Thirty patients (ages 31-81 years) undergoing prostate MRI. SEQUENCE: Geometric distortions from echo planar imaging were corrected with the SDC DWI protocol, which first acquires a B0 -field map to estimate geometric distortions. ASSESSMENT: Contours of the prostate were placed on axial T2 -weighted imaging (T2 WI) as an anatomic standard. Pixel shifts and apparent diffusion coefficient (ADC) values were compared between prostate contours applied to the SDC DWI and standard DWI sequences. Detailed characterization of the impact of SDC DWI was performed in three representative patients. STATISTICAL TESTS: One-way analysis of variance (ANOVA) test, Spearman correlation test, and Bland-Altman plots were calculated. RESULTS: There was significantly greater overlap of the SDC DWI prostate region of interest (ROI) with T2 WI than standard DWI with T2 WI (10.56 cm2 ± 3.14, P < 0.05). R2 of ADC values from standard DWI vs. SDC DWI in the 30 patients ranged from 0.02-0.94 (mean 0.60). A patient without susceptibility artifact demonstrated minimal pixel shift ranging from 0.6-1.3 mm and high correlation of ADC values (R2 = 0.89) between SDC DWI and standard DWI. A patient with rectal gas showed greater pixel shift (range: -2.5 to -0.5 mm) and less ADC value correlation (R2 = 0.69). A patient with a pelvic phlebolith adjacent to the prostate showed an even greater pixel shift (range: 10-16 mm) and decreased ADC correlation (R2 = 0.21). DATA CONCLUSION: SDC DWI appears to correct for susceptibility-related pixel shifts in the prostate compared with standard DWI, which may have value for assessing prostate lesions obscured by geometric warping. Level of Evidence 4 Technical Efficacy Stage 1 J. Magn. Reson. Imaging 2019;50:1614-1619.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Artefatos , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Estudos Retrospectivos , Ultrassonografia
20.
J Appl Clin Med Phys ; 20(3): 27-36, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30756456

RESUMO

BACKGROUND AND PURPOSE: Intraprostatic fiducial markers (FM) improve the accuracy of radiotherapy (RT) delivery. Here we assess geometric integrity and contouring consistency using a T2*-weighted (T2*W) sequence alone, which allows visualization of the FM. MATERIAL AND METHODS: Ten patients scanned within the Prostate Advances in Comparative Evidence (PACE) trial (NCT01584258) had prostate images acquired with computed tomography (CT) and Magnetic Resonance (MR) Imaging: T2-weighted (T2W) and T2*W sequences. The prostate was contoured independently on each imaging dataset by three clinicians. Interobserver variability was assessed using comparison indices with Monaco ADMIRE (research version 2.0, Elekta AB) and examined for statistical differences between imaging sets. CT and MR images of two test objects were acquired to assess geometric distortion and accuracy of marker positioning. The first was a linear test object comprising straight tubes in three orthogonal directions, the second was a smaller test object with markers suspended in gel. RESULTS: Interobserver variability for prostate contouring was lower for both T2W and T2*W compared to CT, this was statistically significant when comparing CT and T2*W images. All markers are visible in T2*W images with 29/30 correctly identified, only 3/30 are visible in T2W images. Assessment of geometric distortion revealed in-plane displacements were under 0.375 mm in MRI, and through plane displacements could not be detected. The signal loss in the MR images is symmetric in relation to the true marker position shown in CT images. CONCLUSION: Prostate T2*W images are geometrically accurate, and yield consistent prostate contours. This single sequence can be used to identify FM and for prostate delineation in a mixed MR-CT workflow.


Assuntos
Marcadores Fiduciais , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Biomarcadores/metabolismo , Humanos , Masculino , Variações Dependentes do Observador , Neoplasias da Próstata/metabolismo , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA