Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33558237

RESUMO

The O1 serogroup of Vibrio cholerae causes pandemic cholera and is divided into the Ogawa and Inaba serotypes. The O-antigen is V. cholerae's immunodominant antigen, and the two serotypes, which differ by the presence or absence of a terminally methylated O-antigen, likely influence development of immunity to cholera and oral cholera vaccines (OCVs). However, there is no consensus regarding the relative immunological potency of each serotype, in part because previous studies relied on genetically heterogeneous strains. Here, we engineered matched serotype variants of a live OCV candidate, HaitiV, and used a germfree mouse model to evaluate the immunogenicity and protective efficacy of each vaccine serotype. By combining vibriocidal antibody quantification with single- and mixed-strain infection assays, we found that all three HaitiV variants-InabaV, OgawaV, and HikoV (bivalent Inaba/Ogawa)-were immunogenic and protective. None of the vaccine serotypes were superior across both of these vaccine metrics, suggesting that the impact of O1-serotype variation in OCV design, although detectable, is subtle. However, all three live vaccines significantly outperformed formalin-killed HikoV, supporting the idea that live OCV usage will bolster current cholera control practices. The potency of OCVs was found to be challenge strain-dependent, emphasizing the importance of appropriate strain selection for cholera challenge studies. Our findings and experimental approaches will be valuable for guiding the development of live OCVs and oral vaccines for additional pathogens.


Assuntos
Vacinas contra Cólera/imunologia , Imunogenicidade da Vacina , Sorogrupo , Vacinas Atenuadas/imunologia , Vibrio cholerae/imunologia , Administração Oral , Animais , Vacinas contra Cólera/administração & dosagem , Vacinas contra Cólera/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vibrio cholerae/genética
2.
Proc Natl Acad Sci U S A ; 116(27): 13523-13532, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31209039

RESUMO

Prolonged exposure to opioids results in analgesic tolerance, drug overdose, and death. The mechanism underlying morphine analgesic tolerance still remains unresolved. We show that morphine analgesic tolerance was significantly attenuated in germfree (GF) and in pan-antibiotic-treated mice. Reconstitution of GF mice with naïve fecal microbiota reinstated morphine analgesic tolerance. We further demonstrated that tolerance was associated with microbial dysbiosis with selective depletion in Bifidobacteria and Lactobacillaeae. Probiotics, enriched with these bacterial communities, attenuated analgesic tolerance in morphine-treated mice. These results suggest that probiotic therapy during morphine administration may be a promising, safe, and inexpensive treatment to prolong morphine's efficacy and attenuate analgesic tolerance. We hypothesize a vicious cycle of chronic morphine tolerance: morphine-induced gut dysbiosis leads to gut barrier disruption and bacterial translocation, initiating local gut inflammation through TLR2/4 activation, resulting in the activation of proinflammatory cytokines, which drives morphine tolerance.


Assuntos
Analgésicos Opioides/farmacologia , Tolerância a Medicamentos , Microbioma Gastrointestinal , Morfina/farmacologia , Probióticos/farmacologia , Animais , Disbiose/induzido quimicamente , Disbiose/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
3.
Gut ; 67(10): 1836-1844, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28790160

RESUMO

OBJECTIVE: In association with innate and adaptive immunity, the microbiota controls the colonisation resistance against intestinal pathogens. Caspase recruitment domain 9 (CARD9), a key innate immunity gene, is required to shape a normal gut microbiota. Card9-/- mice are more susceptible to the enteric mouse pathogen Citrobacter rodentium that mimics human infections with enteropathogenic and enterohaemorrhagic Escherichia coli. Here, we examined how CARD9 controls C. rodentium infection susceptibility through microbiota-dependent and microbiota-independent mechanisms. DESIGN: C. rodentium infection was assessed in conventional and germ-free (GF) wild-type (WT) and Card9-/- mice. To explore the impact of Card9-/-microbiota in infection susceptibility, GF WT mice were colonised with WT (WT→GF) or Card9-/- (Card9-/- →GF) microbiota before C. rodentium infection. Microbiota composition was determined by 16S rDNA gene sequencing. Inflammation severity was determined by histology score and lipocalin level. Microbiota-host immune system interactions were assessed by quantitative PCR analysis. RESULTS: CARD9 controls pathogen virulence in a microbiota-independent manner by supporting a specific humoral response. Higher susceptibility to C. rodentium-induced colitis was observed in Card9-/- →GF mice. The microbiota of Card9-/- mice failed to outcompete the monosaccharide-consuming C. rodentium, worsening the infection severity. A polysaccharide-enriched diet counteracted the ecological advantage of C. rodentium and the defective pathogen-specific antibody response in Card9-/- mice. CONCLUSIONS: CARD9 modulates the susceptibility to intestinal infection by controlling the pathogen virulence in a microbiota-dependent and microbiota-independent manner. Genetic susceptibility to intestinal pathogens can be overridden by diet intervention that restores humoural immunity and a competing microbiota.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Colite , Microbioma Gastrointestinal/fisiologia , Polissacarídeos , Imunidade Adaptativa/fisiologia , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Citrobacter rodentium/efeitos dos fármacos , Citrobacter rodentium/patogenicidade , Colite/imunologia , Colite/microbiologia , Dietoterapia/métodos , Interação Gene-Ambiente , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/fisiologia , Camundongos , Polissacarídeos/efeitos adversos , Polissacarídeos/metabolismo , Virulência/fisiologia
4.
Parasite Immunol ; 38(1): 37-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26407073

RESUMO

Animals are colonized by their indigenous microbiota from the early days of life. The estimated number of associated bacterial cells in humans is around of 10(14) per individual, most of them in the gut. Several studies have investigated the microbiota-host relationship, and the use of germfree animals has been an important tool in these studies. These animals, when infected with a pathogen, have shown to be sometimes more resistant and other times more susceptible than conventional animals. Leishmaniasis is a worldwide public health problem and presents a spectrum of clinical manifestations. However, very few studies have addressed the role of the indigenous microbiota on the outcome of this disease. In this review, we will highlight and discuss the data available on the ways by which the microbiota can influence the outcome of the disease in murine experimental models of cutaneous infection with Leishmania.


Assuntos
Bactérias/imunologia , Leishmania major/imunologia , Leishmaniose/imunologia , Microbiota/imunologia , Animais , Vida Livre de Germes , Humanos , Leishmaniose/parasitologia , Camundongos
5.
Am J Physiol Gastrointest Liver Physiol ; 308(4): G335-49, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25477375

RESUMO

"Black" pigment gallstones form in sterile gallbladder bile in the presence of excess bilirubin conjugates ("hyperbilirubinbilia") from ineffective erythropoiesis, hemolysis, or induced enterohepatic cycling (EHC) of unconjugated bilirubin. Impaired gallbladder motility is a less well-studied risk factor. We evaluated the spontaneous occurrence of gallstones in adult germfree (GF) and conventionally housed specific pathogen-free (SPF) Swiss Webster (SW) mice. GF SW mice were more likely to have gallstones than SPF SW mice, with 75% and 23% prevalence, respectively. In GF SW mice, gallstones were observed predominately in heavier, older females. Gallbladders of GF SW mice were markedly enlarged, contained sterile black gallstones composed of calcium bilirubinate and <1% cholesterol, and had low-grade inflammation, edema, and epithelial hyperplasia. Hemograms were normal, but serum cholesterol was elevated in GF compared with SPF SW mice, and serum glucose levels were positively related to increasing age. Aged GF and SPF SW mice had deficits in gallbladder smooth muscle activity. In response to cholecystokinin (CCK), gallbladders of fasted GF SW mice showed impaired emptying (females: 29%; males: 1% emptying), whereas SPF SW females and males emptied 89% and 53% of volume, respectively. Bilirubin secretion rates of GF SW mice were not greater than SPF SW mice, repudiating an induced EHC. Gallstones likely developed in GF SW mice because of gallbladder hypomotility, enabled by features of GF physiology, including decreased intestinal CCK concentration and delayed intestinal transit, as well as an apparent genetic predisposition of the SW stock. GF SW mice may provide a valuable model to study gallbladder stasis as a cause of black pigment gallstones.


Assuntos
Pigmentos Biliares/metabolismo , Colecistocinina/metabolismo , Vesícula Biliar/metabolismo , Cálculos Biliares/etiologia , Contração Muscular , Músculo Liso/metabolismo , Fatores Etários , Animais , Peso Corporal , Cálcio/metabolismo , Feminino , Vesícula Biliar/patologia , Vesícula Biliar/fisiopatologia , Cálculos Biliares/genética , Cálculos Biliares/metabolismo , Cálculos Biliares/patologia , Cálculos Biliares/fisiopatologia , Predisposição Genética para Doença , Vida Livre de Germes , Concentração de Íons de Hidrogênio , Modelos Logísticos , Masculino , Camundongos , Músculo Liso/patologia , Músculo Liso/fisiopatologia , Fatores de Risco , Fatores Sexuais , Especificidade da Espécie , Fatores de Tempo
6.
Front Immunol ; 14: 1272639, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090573

RESUMO

Background: Autoinflammation with infantile enterocolitis (AIFEC) is an often fatal disease caused by gain-of-function mutations in the NLRC4 inflammasome. This inflammasomopathy is characterized by macrophage activation syndrome (MAS)-like episodes as well as neonatal-onset enterocolitis. Although elevated IL-18 levels were suggested to take part in driving AIFEC pathology, the triggers for IL-18 production and its ensuing pathogenic effects in these patients are incompletely understood. Methods: Here, we developed and characterized a novel genetic mouse model expressing a murine version of the AIFEC-associated NLRC4V341A mutation from its endogenous Nlrc4 genomic locus. Results: NLRC4V341A expression in mice recapitulated increased circulating IL-18 levels as observed in AIFEC patients. Housing NLRC4V341A-expressing mice in germfree (GF) conditions showed that these systemic IL-18 levels were independent of the microbiota, and unmasked an additional IL-18-inducing effect of NLRC4V341A expression in the intestines. Remarkably, elevated IL-18 levels did not provoke detectable intestinal pathologies in NLRC4V341A-expressing mice, even not upon genetically ablating IL-18 binding protein (IL-18BP), which is an endogenous IL-18 inhibitor that has been used therapeutically in AIFEC. In addition, NLRC4V341A expression did not alter susceptibility to the NLRC4-activating gastrointestinal pathogens Salmonella Typhimurium and Citrobacter rodentium. Conclusion: As observed in AIFEC patients, mice expressing a murine NLRC4V341A mutant show elevated systemic IL-18 levels, suggesting that the molecular mechanisms by which this NLRC4V341A mutant induces excessive IL-18 production are conserved between humans and mice. However, while our GF and infection experiments argue against a role for commensal or pathogenic bacteria, identifying the triggers and mechanisms that synergize with IL-18 to drive NLRC4V341A-associated pathologies will require further research in this NLRC4V341A mouse model.


Assuntos
Enterocolite , Síndrome de Ativação Macrofágica , Humanos , Camundongos , Recém-Nascido , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Mutação , Síndrome de Ativação Macrofágica/genética , Enterocolite/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo
7.
Microbiol Spectr ; 11(3): e0510922, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37022171

RESUMO

Roux-en-Y gastric bypass surgery (RYGB) leads to improved glycemic control in individuals with severe obesity beyond the effects of weight loss alone. Here, We addressed the potential contribution of gut microbiota in mediating this favourable surgical outcome by using an established preclinical model of RYGB. 16S rRNA sequencing revealed that RYGB-treated Zucker fatty rats had altered fecal composition of various bacteria at the phylum and species levels, including lower fecal abundance of an unidentified Erysipelotrichaceae species, compared with both sham-operated (Sham) and body weight-matched to RYGB-treated (BWM) rats. Correlation analysis further revealed that fecal abundance of this unidentified Erysipelotrichaceae species linked with multiple indices of glycemic control uniquely in RYGB-treated rats. Sequence alignment of this Erysipelotrichaceae species identified Longibaculum muris to be the most closely related species, and its fecal abundance positively correlated with oral glucose intolerance in RYGB-treated rats. In fecal microbiota transplant experiments, the improved oral glucose tolerance of RYGB-treated compared with BWM rats could partially be transferred to recipient germfree mice, independently of body weight. Unexpectedly, providing L. muris as a supplement to RYGB recipient mice further improved oral glucose tolerance, while administering L. muris alone to chow-fed or Western style diet-challenged conventionally raised mice had minimal metabolic impact. Taken together, our findings provide evidence that the gut microbiota contributes to weight loss-independent improvements in glycemic control after RYGB and demonstrate how correlation of a specific gut microbiota species with a host metabolic trait does not imply causation. IMPORTANCE Metabolic surgery remains the most effective treatment modality for severe obesity and its comorbidities, including type 2 diabetes. Roux-en-Y gastric bypass (RYGB) is a commonly performed type of metabolic surgery that reconfigures gastrointestinal anatomy and profoundly remodels the gut microbiota. While it is clear that RYGB is superior to dieting when it comes to improving glycemic control, the extent to which the gut microbiota contributes to this effect remains untested. In the present study, we uniquely linked fecal Erysipelotrichaceae species, including Longibaculum muris, with indices of glycemic control after RYGB in genetically obese and glucose-intolerant rats. We further show that the weight loss-independent improvements in glycemic control in RYGB-treated rats can be transmitted via their gut microbiota to germfree mice. Our findings provide rare causal evidence that the gut microbiota contributes to the health benefits of metabolic surgery and have implications for the development of gut microbiota-based treatments for type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Derivação Gástrica , Microbioma Gastrointestinal , Obesidade Mórbida , Ratos , Camundongos , Animais , Obesidade Mórbida/microbiologia , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/microbiologia , RNA Ribossômico 16S/genética , Ratos Zucker , Obesidade/cirurgia , Redução de Peso
8.
mSphere ; 6(3)2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952662

RESUMO

Aerobic bacteria are frequent primocolonizers of the human naive intestine. Their generally accepted role is to eliminate oxygen, which would allow colonization by anaerobes that subsequently dominate bacterial gut populations. In this hypothesis-based study, we revisited this dogma experimentally in a germfree mouse model as a mimic of the germfree newborn. We varied conditions leading to the establishment of the dominant intestinal anaerobe Bacteroides thetaiotaomicron Two variables were introduced: Bacteroides inoculum size and preestablishment by bacteria capable or not of consuming oxygen. High Bacteroides inoculum size enabled its primocolonization. At low inocula, we show that bacterial preestablishment was decisive for subsequent Bacteroides colonization. However, even non-oxygen-respiring bacteria, a hemAEscherichia coli mutant and the intestinal obligate anaerobe Clostridium scindens, facilitated Bacteroides establishment. These findings, which are supported by recent reports, revise the long-held assumption that oxygen scavenging is the main role for aerobic primocolonizing bacteria. Instead, we suggest that better survival of aerobic bacteria ex vivo during vectorization between hosts could be a reason for their frequent primocolonization.


Assuntos
Bactérias/metabolismo , Bacteroides thetaiotaomicron/fisiologia , Intestinos/microbiologia , Oxigênio/metabolismo , Aerobiose , Animais , Bactérias/classificação , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Organismos Livres de Patógenos Específicos
9.
J Nat Med ; 75(4): 784-797, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34003414

RESUMO

Echinacoside (ECH), acteoside (ACT), and isoacteoside (ISAT), the typical phenylethanoid glycosides (PhGs) in cistanches herba, have various pharmacological activities. However, the ECH, ACT and ISAT have extremely low oral bioavailability, which is related to their metabolism under the intestinal flora. Previous studies showed that intestinal metabolites were the hepatoprotective substances in vivo, but the research on whether PhGs has effects without intestinal bacteria has not been studied. In this paper, ECH, ACT and ISAT were incubated with human or rat intestinal bacteria for 36 h. After incubating with human bacteria for 36 h, three prototype compounds were not detected and were mainly biotransformed to 3-HPP and HT. In the network pharmacology, a total of 6 common targets were obtained by analysing the prototypes, the metabolites and the liver injury. It was found that the combinations of three metabolites and common targets were more stable than those of the prototypes and common targets by molecular docking. Meanwhile, hepatocellular apoptosis, proliferation, inflammation and oxidative responses might play important roles in the mechanisms of the metabolites exerting hepatoprotective activities. Then normal and pseudo-sterile mice experiments were adopted to further compare the hepatoprotective activities of prototypes and metabolites. Animal experiment results showed that the prototypes and the metabolites in the normal mice had significantly hepatoprotective activity. Interestingly, in the pseudo-germfree mice, the metabolites showed significant hepatoprotective effect, but the prototypes had not effect. It indicated that the prototype cannot exert liver protective activity without the effect of intestinal bacteria.


Assuntos
Cistanche , Animais , Bactérias , Glicosídeos/farmacologia , Intestinos , Camundongos , Simulação de Acoplamento Molecular , Ratos
10.
Front Microbiol ; 11: 575595, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240233

RESUMO

Gut microbes have critical roles in maintaining host physiology, but their effects on epithelial chemosensory enteroendocrine cells (EEC) remain unclear. We investigated the role that the ubiquitous commensal gut bacterium Bacteriodes thetaiotaomicron (Bt) and its major fermentation products, acetate, propionate, and succinate (APS) have in shaping EEC networks in the murine gastrointestinal tract (GIT). The distribution and numbers of EEC populations were assessed in tissues along the GIT by fluorescent immunohistochemistry in specific pathogen free (SPF), germfree (GF) mice, GF mice conventionalized by Bt or Lactobacillus reuteri (Lr), and GF mice administered APS. In parallel, we also assessed the suitability of using intestinal crypt-derived epithelial monolayer cultures for these studies. GF mice up-regulated their EEC network, in terms of a general EEC marker chromogranin A (ChrA) expression, numbers of serotonin-producing enterochromaffin cells, and both hormone-producing K- and L-cells, with a corresponding increase in serum glucagon-like peptide-1 (GLP-1) levels. Bt conventionalization restored EEC numbers to levels in SPF mice with regional specificity; the effects on ChrA and L-cells were mainly in the small intestine, the effects on K-cells and EC cells were most apparent in the colon. By contrast, Lr did not restore EEC networks in conventionalized GF mice. Analysis of secretory epithelial cell monolayer cultures from whole small intestine showed that intestinal monolayers are variable and with the possible exclusion of GIP expressing cells, did not accurately reflect the EEC cell makeup seen in vivo. Regarding the mechanism of action of Bt on EECs, colonization of GF mice with Bt led to the production and accumulation of acetate, propionate and succinate (APS) in the caecum and colon, which when administered at physiological concentrations to GF mice via their drinking water for 10 days mimicked to a large extent the effects of Bt in GF mice. After withdrawal of APS, the changes in some EEC were maintained and, in some cases, were greater than during APS treatment. This data provides evidence of microbiota influences on regulating EEC networks in different regions of the GIT, with a single microbe, Bt, recapitulating its role in a process that may be dependent upon its fermentation products.

11.
mBio ; 11(2)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156806

RESUMO

Frequent and excessive use of antibiotics primes patients to Clostridioides difficile infection (CDI), which leads to fatal pseudomembranous colitis, with limited treatment options. In earlier reports, we used a drug repurposing strategy and identified amoxapine (an antidepressant), doxapram (a breathing stimulant), and trifluoperazine (an antipsychotic), which provided significant protection to mice against lethal infections with several pathogens, including C. difficile However, the mechanisms of action of these drugs were not known. Here, we provide evidence that all three drugs offered protection against experimental CDI by reducing bacterial burden and toxin levels, although the drugs were neither bacteriostatic nor bactericidal in nature and had minimal impact on the composition of the microbiota. Drug-mediated protection was dependent on the presence of the microbiota, implicating its role in evoking host defenses that promoted protective immunity. By utilizing transcriptome sequencing (RNA-seq), we identified that each drug increased expression of several innate immune response-related genes, including those involved in the recruitment of neutrophils, the production of interleukin 33 (IL-33), and the IL-22 signaling pathway. The RNA-seq data on selected genes were confirmed by quantitative real-time PCR (qRT-PCR) and protein assays. Focusing on amoxapine, which had the best anti-CDI outcome, we demonstrated that neutralization of IL-33 or depletion of neutrophils resulted in loss of drug efficacy. Overall, our lead drugs promote disease alleviation and survival in the murine model through activation of IL-33 and by clearing the pathogen through host defense mechanisms that critically include an early influx of neutrophils.IMPORTANCEClostridioides difficile is a spore-forming anaerobic bacterium and the leading cause of antibiotic-associated colitis. With few therapeutic options and high rates of disease recurrence, the need to develop new treatment options is urgent. Prior studies utilizing a repurposing approach identified three nonantibiotic Food and Drug Administration-approved drugs, amoxapine, doxapram, and trifluoperazine, with efficacy against a broad range of human pathogens; however, the protective mechanisms remained unknown. Here, we identified mechanisms leading to drug efficacy in a murine model of lethal C. difficile infection (CDI), advancing our understanding of the role of these drugs in infectious disease pathogenesis that center on host immune responses to C. difficile Overall, these studies highlight the crucial involvement of innate immune responses, as well as the importance of immunomodulation as a potential therapeutic option to combat CDI.


Assuntos
Amoxapina/uso terapêutico , Infecções por Clostridium/tratamento farmacológico , Doxapram/uso terapêutico , Imunidade Inata , Microbiota/efeitos dos fármacos , Trifluoperazina/uso terapêutico , Animais , Clostridioides difficile/efeitos dos fármacos , Reposicionamento de Medicamentos , Feminino , Imunomodulação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/imunologia , RNA-Seq , Organismos Livres de Patógenos Específicos
12.
J Clin Biochem Nutr ; 41(3): 169-74, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18299711

RESUMO

To determine why germfree (GF) mice are less productivity of proinflammatory cytokines than conventional (CV) mice, we studied serum levels of interleukin 10 (IL-10) and prostaglandin E(2) (PGE(2)) in mice after treatment with lipopolyssacharide (LPS). A single injection of LPS caused an elevation of IL-10 in serum from GF, LPS-GF (germfree mice given drinking water containing LPS) and CV mice. The response was highest in serum from GF mice, and was lower in serum from LPS-GF mice compared with GF mice. Before LPS injection, serum PGE(2) was significantly higher in CV and LPS-GF mice than in GF ones. After LPS injection, a higher level of PGE(2) was maintained over 12 h in CV mice after LPS injection, while the LPS treatment reduced the level in LPS-GF mice and increased the level in GF mice. The levels of IL-10 in culture medium from Kupffer cells treated with LPS showed similar results to serum in GF and CV mice. These results suggest that high levels of IL-10 in serum from germfree mice may be partly responsible for the lower in vivo responsiveness of these proinflammatory cytokines to LPS in these mice, although PGE(2) was not responsible for the lower responsiveness of these inflammatory cytokines to LPS.

13.
Front Microbiol ; 8: 1242, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744259

RESUMO

Human breast milk is recognized as one of multiple important sources of commensal bacteria for infant gut. Previous studies searched for the bacterial strains shared between breast milk and infant feces by isolating bacteria and performing strain-level bacterial genotyping, but only limited number of milk bacteria were identified to colonize infant gut, including bacteria from Bifidobacterium, Staphylococcus, Lactobacillus, and Escherichia/Shigella. Here, to identify the breast milk bacteria capable of colonizing gut without the interference of bacteria of origins other than the milk or the necessity to analyze infant feces, normal chow-fed germ-free mice were orally inoculated with the breast milk collected from a mother 2 days after vaginal delivery. According to 16S rRNA gene-based denaturant gradient gel electrophoresis and Illumina sequencing, bacteria at >1% abundance in the milk inoculum were only Streptococcus (56.0%) and Staphylococcus (37.4%), but in the feces of recipient mice were Streptococcus (80.3 ± 2.3%), Corynebacterium (10.0 ± 2.6 %), Staphylococcus (7.6 ± 1.6%), and Propionibacterium (2.1 ± 0.5%) that were previously shown as dominant bacterial genera in the meconium of C-section-delivered human babies; the abundance of anaerobic gut-associated bacteria, Faecalibacterium, Prevotella, Roseburia, Ruminococcus, and Bacteroides, was 0.01-1% in the milk inoculum and 0.003-0.01% in mouse feces; the abundance of Bifidobacterium spp. was below the detection limit of Illumina sequencing in the milk but at 0.003-0.01% in mouse feces. The human breast milk microbiota-associated mouse model may be used to identify additional breast milk bacteria that potentially colonize infant gut.

14.
Gut Microbes ; 7(2): 126-35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26979110

RESUMO

The scientific community has recently come to appreciate that, rather than existing as independent organisms, multicellular hosts and their microbiota comprise a complex evolving superorganism or metaorganism, termed a holobiont. This point of view leads to a re-evaluation of our understanding of different physiological processes and diseases. In this paper we focus on experimental and computational approaches which, when combined in one study, allowed us to dissect mechanisms (traditionally named host-microbiota interactions) regulating holobiont physiology. Specifically, we discuss several approaches for microbiota perturbation, such as use of antibiotics and germ-free animals, including advantages and potential caveats of their usage. We briefly review computational approaches to characterize the microbiota and, more importantly, methods to infer specific components of microbiota (such as microbes or their genes) affecting host functions. One such approach called transkingdom network analysis has been recently developed and applied in our study. (1) Finally, we also discuss common methods used to validate the computational predictions of host-microbiota interactions using in vitro and in vivo experimental systems.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/microbiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Animais , Bactérias/genética , Bactérias/metabolismo , Biologia Computacional , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA