Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 737
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(42): e2306714120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37816062

RESUMO

Mutations in the Presenilin (PSEN1 and PSEN2) genes are the major cause of early-onset familial Alzheimer's disease (FAD). Presenilin (PS) is the catalytic subunit of the γ-secretase complex, which cleaves type I transmembrane proteins, such as Notch and the amyloid precursor protein (APP), and plays an evolutionarily conserved role in the protection of neuronal survival during aging. FAD PSEN1 mutations exhibit impaired γ-secretase activity in cell culture, in vitro, and knockin (KI) mouse brains, and the L435F mutation is the most severe in reducing γ-secretase activity and is located closest to the active site of γ-secretase. Here, we report that introduction of the codon-optimized wild-type human PSEN1 cDNA by adeno-associated virus 9 (AAV9) results in broadly distributed, sustained, low to moderate levels of human PS1 (hPS1) expression and rescues impaired γ-secretase activity in the cerebral cortex of Psen mutant mice either lacking PS or expressing the Psen1 L435F KI allele, as evaluated by endogenous γ-secretase substrates of APP and recombinant γ-secretase products of Notch intracellular domain and Aß peptides. Furthermore, introduction of hPS1 by AAV9 alleviates impairments of synaptic plasticity and learning and memory in Psen mutant mice. Importantly, AAV9 delivery of hPS1 ameliorates neurodegeneration in the cerebral cortex of aged Psen mutant mice, as shown by the reversal of age-dependent loss of cortical neurons and elevated microgliosis and astrogliosis. These results together show that moderate hPS1 expression by AAV9 is sufficient to rescue impaired γ-secretase activity, synaptic and memory deficits, and neurodegeneration caused by Psen mutations in mouse models.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Humanos , Camundongos , Animais , Idoso , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Mutação , Transtornos da Memória/genética , Transtornos da Memória/terapia , Presenilina-2/genética , Peptídeos beta-Amiloides/metabolismo
2.
Cell Mol Life Sci ; 81(1): 51, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252153

RESUMO

Retinitis pigmentosa (RP) and macular dystrophy (MD) cause severe retinal dysfunction, affecting 1 in 4000 people worldwide. This disease is currently assumed to be intractable, because effective therapeutic methods have not been established, regardless of genetic or sporadic traits. Here, we examined a RP mouse model in which the Prominin-1 (Prom1) gene was deficient and investigated the molecular events occurring at the outset of retinal dysfunction. We extracted the Prom1-deficient retina subjected to light exposure for a short time, conducted single-cell expression profiling, and compared the gene expression with and without stimuli. We identified the cells and genes whose expression levels change directly in response to light stimuli. Among the genes altered by light stimulation, Igf1 was decreased in rod photoreceptor cells and astrocytes under the light-stimulated condition. Consistently, the insulin-like growth factor (IGF) signal was weakened in light-stimulated photoreceptor cells. The recovery of Igf1 expression with the adeno-associated virus (AAV) prevented photoreceptor cell death, and its treatment in combination with the endothelin receptor antagonist led to the blockade of abnormal glial activation and the promotion of glycolysis, thereby resulting in the improvement of retinal functions, as assayed by electroretinography. We additionally demonstrated that the attenuation of mammalian/mechanistic target of rapamycin (mTOR), which mediates IGF signalling, leads to complications in maintaining retinal homeostasis. Together, we propose that combinatorial manipulation of distinct mechanisms is useful for the maintenance of the retinal condition.


Assuntos
Degeneração Macular , Doenças Retinianas , Retinose Pigmentar , Animais , Camundongos , Endotelinas , Fator de Crescimento Insulin-Like I/genética , Retina , Células Fotorreceptoras Retinianas Bastonetes
3.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35197297

RESUMO

Muller glia (MG) play a central role in reactive gliosis, a stress response associated with rare and common retinal degenerative diseases, including age-related macular degeneration (AMD). The posttranslational modification citrullination​ targeting glial fibrillary acidic protein (GFAP) in MG was initially discovered in a panocular chemical injury model. Here, we report in the paradigms of retinal laser injury, a genetic model of spontaneous retinal degeneration (JR5558 mice) and human wet-AMD tissues that MG citrullination is broadly conserved. After laser injury, GFAP polymers that accumulate in reactive MG are citrullinated in MG endfeet and glial cell processes. The enzyme responsible for citrullination, peptidyl arginine deiminase-4 (PAD4), localizes to endfeet and associates with GFAP polymers. Glial cell-specific PAD4 deficiency attenuates retinal hypercitrullination in injured retinas, indicating PAD4 requirement for MG citrullination. In retinas of 1-mo-old JR5558 mice, hypercitrullinated GFAP and PAD4 accumulate in MG endfeet/cell processes in a lesion-specific manner. Finally, we show that human donor maculae from patients with wet-AMD also feature the canonical endfeet localization of hypercitrullinated GFAP. Thus, we propose that endfeet are a "citrullination bunker" that initiates and sustains citrullination in retinal degeneration.


Assuntos
Citrulinação , Gliose/metabolismo , Neuroglia/metabolismo , Degeneração Retiniana/metabolismo , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Macular Exsudativa/metabolismo
4.
Glia ; 72(3): 546-567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37987116

RESUMO

Although brain scars in adults have been extensively studied, there is less data available regarding scar formation during the neonatal period, and the involvement of peripheral immune cells in this process remains unexplored in neonates. Using a murine model of neonatal hypoxic-ischemic encephalopathy (HIE) and confocal microscopy, we characterized the scarring process and examined the recruitment of peripheral immune cells to cortical and hippocampal scars for up to 1 year post-insult. Regional differences in scar formation were observed, including the presence of reticular fibrotic networks in the cortex and perivascular fibrosis in the hippocampus. We identified chemokines with chronically elevated levels in both regions and demonstrated, through a parabiosis-based strategy, the recruitment of lymphocytes, neutrophils, and monocyte-derived macrophages to the scars several weeks after the neonatal insult. After 1 year, however, neutrophils and lymphocytes were absent from the scars. Our data indicate that peripheral immune cells are transient components of HIE-induced brain scars, opening up new possibilities for late therapeutic interventions.


Assuntos
Cicatriz , Hipóxia-Isquemia Encefálica , Adulto , Animais , Humanos , Camundongos , Cicatriz/patologia , Encéfalo/patologia , Macrófagos , Hipóxia-Isquemia Encefálica/patologia
5.
J Neurochem ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943350

RESUMO

Astrocytes provide metabolic support to neurons, maintain ionic and water homeostasis, and uptake and recycle neurotransmitters. After exposure to the prototypical PAMP lipopolysaccharide (LPS), reactive astrocytes increase the expression of pro-inflammatory genes, facilitating neurodegeneration. In this study, we analyzed the expression of homeostatic genes in astrocytes exposed to LPS and identified the epigenetic factors contributing to the suppression of homeostatic genes in reactive astrocytes. Primary astrocytic cultures were acutely exposed to LPS and allowed to recover for 24, 72 h, and 7 days. As expected, LPS exposure induced reactive astrogliosis and increased the expression of pro-inflammatory IL-1B and IL-6. Interestingly, the acute exposure resulted in persistent hypermethylation of astroglial DNA. Similar hypermethylation was observed in highly reactive astrocytes from the traumatic brain injury (TBI) penumbra in vivo. Hypermethylation was accompanied by decreased expression of homeostatic genes including LDHA and Scl16a1 (MCT1) both involved in the lactate shuttle to neurons; glutamine synthase (GS) responsible for glutamate processing; Kcnj10 (Kir4.1) important for K+ homeostasis, and the water channel aquaporin-4 (Aqp4). Furthermore, the master regulator of DNA methylation, MAFG-1, as well as DNA methyl transferases DNMT1 and DNMT3a were overexpressed. The downregulation of homeostatic genes correlated with increased methylation of CpG islands in their promoters, as assessed by methylation-sensitive PCR and increased DNMT3a binding to the GS promoter. Treatment with decitabine, a DNMT inhibitor, prevented the LPS- and the HMGB-1-induced downregulation of homeostatic genes. Decitabine treatment also prevented the neurotoxic effects of these astrocytes in primary cortical cultures. In summary, our findings reveal that the pathological remodeling of reactive astrocytes encompasses not only the pro-inflammatory response but, significantly, also entails a long-term suppression of homeostatic gene expression with methylation of crucial CpG islands within their promoters.

6.
Neurobiol Dis ; 198: 106554, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38844243

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder that severely affects the basal ganglia and regions of the cerebral cortex. While astrocytosis and microgliosis both contribute to basal ganglia pathology, the contribution of gliosis and potential factors driving glial activity in the human HD cerebral cortex is less understood. Our study aims to identify nuanced indicators of gliosis in HD which is challenging to identify in the severely degenerated basal ganglia, by investigating the middle temporal gyrus (MTG), a cortical region previously documented to demonstrate milder neuronal loss. Immunohistochemistry was conducted on MTG paraffin-embedded tissue microarrays (TMAs) comprising 29 HD and 35 neurologically normal cases to compare the immunoreactivity patterns of key astrocytic proteins (glial fibrillary acidic protein, GFAP; inwardly rectifying potassium channel 4.1, Kir4.1; glutamate transporter-1, GLT-1; aquaporin-4, AQP4), key microglial proteins (ionised calcium-binding adapter molecule-1, IBA-1; human leukocyte antigen (HLA)-DR; transmembrane protein 119, TMEM119; purinergic receptor P2RY12, P2RY12), and indicators of proliferation (Ki-67; proliferative cell nuclear antigen, PCNA). Our findings demonstrate an upregulation of GFAP+ protein expression attributed to the presence of more GFAP+ expressing cells in HD, which correlated with greater cortical mutant huntingtin (mHTT) deposition. In contrast, Kir4.1, GLT-1, and AQP4 immunoreactivity levels were unchanged in HD. We also demonstrate an increased number of IBA-1+ and TMEM119+ microglia with somal enlargement. IBA-1+, TMEM119+, and P2RY12+ reactive microglia immunophenotypes were also identified in HD, evidenced by the presence of rod-shaped, hypertrophic, and dystrophic microglia. In HD cases, IBA-1+ cells contained either Ki-67 or PCNA, whereas GFAP+ astrocytes were devoid of proliferative nuclei. These findings suggest cortical microgliosis may be driven by proliferation in HD, supporting the hypothesis of microglial proliferation as a feature of HD pathophysiology. In contrast, astrocytes in HD demonstrate an altered GFAP expression profile that is associated with the degree of mHTT deposition.


Assuntos
Astrócitos , Proliferação de Células , Doença de Huntington , Microglia , Humanos , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Microglia/metabolismo , Microglia/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Proliferação de Células/fisiologia , Adulto , Idoso , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Gliose/metabolismo , Gliose/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Membrana , Proteínas dos Microfilamentos
7.
Eur J Neurosci ; 59(11): 3009-3029, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38576159

RESUMO

Metabolic disorders are risk factors for stroke exacerbating subsequent complications. Rapidly after brain injury, a glial scar forms, preventing excessive inflammation and limiting axonal regeneration. Despite the growing interest in wound healing following brain injury, the formation of a glial scar in the context of metabolic disorders is poorly documented. In this study, we used db/db mice to investigate the impact of metabolic perturbations on brain repair mechanisms, with a focus on glial scarring. First, we confirmed the development of obesity, poor glucose regulation, hyperglycaemia and liver steatosis in these mice. Then, we observed that 3 days after a 30-min middle cerebral artery occlusion (MCAO), db/db mice had larger infarct area compared with their control counterparts. We next investigated reactive gliosis and glial scar formation in db/+ and db/db mice. We demonstrated that astrogliosis and microgliosis were exacerbated 3 days after stroke in db/db mice. Furthermore, we also showed that the synthesis of extracellular matrix (ECM) proteins (i.e., chondroitin sulphate proteoglycan, collagen IV and tenascin C) was increased in db/db mice. Consequently, we demonstrated for the first time that metabolic disorders impair reactive gliosis post-stroke and increase ECM deposition. Given that the damage size is known to influence glial scar, this study now raises the question of the direct impact of hyperglycaemia/obesity on reactive gliosis and glia scar. It paves the way to promote the development of new therapies targeting glial scar formation to improve functional recovery after stroke in the context of metabolic disorders.


Assuntos
Cicatriz , Gliose , Infarto da Artéria Cerebral Média , Animais , Gliose/metabolismo , Gliose/patologia , Camundongos , Cicatriz/metabolismo , Cicatriz/patologia , Infarto da Artéria Cerebral Média/metabolismo , Neuroglia/metabolismo , Neuroglia/patologia , Masculino , Camundongos Endogâmicos C57BL , Doenças Metabólicas/metabolismo , Doenças Metabólicas/etiologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Obesidade/metabolismo , Obesidade/complicações , Proteínas da Matriz Extracelular/metabolismo , Hiperglicemia/metabolismo
8.
J Neuroinflammation ; 21(1): 18, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212822

RESUMO

Lipoxins are small lipids that are potent endogenous mediators of systemic inflammation resolution in a variety of diseases. We previously reported that Lipoxins A4 and B4 (LXA4 and LXB4) have protective activities against neurodegenerative injury. Yet, lipoxin activities and downstream signaling in neuroinflammatory processes are not well understood. Here, we utilized a model of posterior uveitis induced by lipopolysaccharide endotoxin (LPS), which results in rapid retinal neuroinflammation primarily characterized by activation of resident macroglia (astrocytes and Müller glia), and microglia. Using this model, we observed that each lipoxin reduces acute inner retinal inflammation by affecting endogenous glial responses in a cascading sequence beginning with astrocytes and then microglia, depending on the timing of exposure; prophylactic or therapeutic. Subsequent analyses of retinal cytokines and chemokines revealed inhibition of both CXCL9 (MIG) and CXCL10 (IP10) by each lipoxin, compared to controls, following LPS injection. CXCL9 and CXCL10 are common ligands for the CXCR3 chemokine receptor, which is prominently expressed in inner retinal astrocytes and ganglion cells. We found that CXCR3 inhibition reduces LPS-induced neuroinflammation, while CXCR3 agonism alone induces astrocyte reactivity. Together, these data uncover a novel lipoxin-CXCR3 pathway to promote distinct anti-inflammatory and proresolution cascades in endogenous retinal glia.


Assuntos
Lipoxinas , Neuroglia , Doenças Neuroinflamatórias , Receptores CXCR3 , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Lipoxinas/farmacologia , Lipoxinas/metabolismo , Neuroglia/metabolismo , Animais
9.
Toxicol Pathol ; : 1926233241253255, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828567

RESUMO

Gliosis, including microgliosis and astrocytosis, can be challenging to interpret in nonclinical studies. Incidences of glial foci in brains and spinal cords of control rats and nonhuman primates (NHPs) were reviewed in the historical control databases from two contract research organizations, including one specializing in neuropathology. In the brain, minimal to mild (grades 1-2) microgliosis was the most common diagnosis, especially in NHPs, although occasional moderate or marked microgliosis (grades 3 and 4) was encountered in both species. Microgliosis was more common in the cerebral cortex, cerebellum, and medulla oblongata in both species and was frequent in the white matter (brain), thalamus, and basal nuclei of NHPs. Gliosis ("not otherwise specified") of minimal severity was diagnosed in similar brain sub-sites for both species and was more common in NHPs compared with rats. Astrocytosis was most prominent in the cerebellum (molecular layer) of NHPs but was otherwise uncommon. In the spinal cord, microgliosis was most common in the lateral white matter tracts in rats and NHPs, and in the dorsal white matter tracts in NHPs. These data indicate that low-grade spontaneous glial responses occur with some frequency in control animals of two common nonclinical species.

10.
Brain ; 146(8): 3416-3430, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36825472

RESUMO

Epilepsy, characterized by recurrent unprovoked seizures resulting from a wide variety of causes, is one of the world's most prominent neurological disabilities. Seizures, which are an expression of neuronal network dysfunction, occur in a positive feedback loop of concomitant factors, including neuro-inflammatory responses, where seizures generate more seizures. Among other pathways involved in inflammatory responses, the JAK/STAT signalling pathway has been proposed to participate in epilepsy. Here, we tested an in vitro model of temporal lobe epilepsy, with the hypothesis that acute blockage of STAT3-phosphorylation during epileptogenesis would prevent structural damage in the hippocampal circuitry and the imprinting of both neural epileptic activity and inflammatory glial states. We performed calcium imaging of spontaneous circuit dynamics in organotypic hippocampal slices previously exposed to epileptogenic conditions through the blockage of GABAergic synaptic transmission. Epileptogenic conditions lead to epileptic dynamics imprinted on circuits in terms of increased neuronal firing and circuit synchronization, increased correlated activity in neuronal pairs and decreased complexity in synchronization patterns. Acute blockage of the STAT3-phosphorylation during epileptogenesis prevented the imprinting of epileptic activity patterns, general cell loss, loss of GABAergic neurons and the persistence of reactive glial states. This work provides mechanistic evidence that blocking the STAT3 signalling pathway during epileptogenesis can prevent patho-topological persistent reorganization of neuro-glial circuits.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Humanos , Convulsões/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Neurônios GABAérgicos/metabolismo , Fator de Transcrição STAT3/metabolismo
11.
Brain ; 146(2): 549-560, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35978480

RESUMO

Drug-resistant mesial-temporal lobe epilepsy is a devastating disease with seizure onset in the hippocampal formation. A fraction of hippocampi samples from epilepsy-surgical procedures reveals a peculiar histological pattern referred to as 'gliosis only' with unresolved pathogenesis and enigmatic sequelae. Here, we hypothesize that 'gliosis only' represents a particular syndrome defined by distinct clinical and molecular characteristics. We curated an in-depth multiparameter integration of systematic clinical, neuropsychological as well as neuropathological analysis from a consecutive cohort of 627 patients, who underwent hippocampectomy for drug-resistant temporal lobe epilepsy. All patients underwent either classic anterior temporal lobectomy or selective amygdalohippocampectomy. On the basis of their neuropathological exam, patients with hippocampus sclerosis and 'gliosis only' were characterized and compared within the whole cohort and within a subset of matched pairs. Integrated transcriptional analysis was performed to address molecular differences between both groups. 'Gliosis only' revealed demographics, clinical and neuropsychological outcome fundamentally different from hippocampus sclerosis. 'Gliosis only' patients had a significantly later seizure onset (16.3 versus 12.2 years, P = 0.005) and worse neuropsychological outcome after surgery compared to patients with hippocampus sclerosis. Epilepsy was less amendable by surgery in 'gliosis only' patients, resulting in a significantly worse rate of seizure freedom after surgery in this subgroup (43% versus 68%, P = 0.0001, odds ratio = 2.8, confidence interval 1.7-4.7). This finding remained significant after multivariate and matched-pairs analysis. The 'gliosis only' group demonstrated pronounced astrogliosis and lack of significant neuronal degeneration in contrast to characteristic segmental neuron loss and fibrillary astrogliosis in hippocampus sclerosis. RNA-sequencing of gliosis only patients deciphered a distinct transcriptional programme that resembles an innate inflammatory response of reactive astrocytes. Our data indicate a new temporal lobe epilepsy syndrome for which we suggest the term 'Innate inflammatory gliosis only'. 'Innate inflammatory gliosis only' is characterized by a diffuse gliosis pattern lacking restricted hippocampal focality and is poorly controllable by surgery. Thus, 'innate inflammatory gliosis only' patients need to be clearly identified by presurgical examination paradigms of pharmacoresistant temporal lobe epilepsy patients; surgical treatment of this subgroup should be considered with great precaution. 'Innate inflammatory gliosis only' requires innovative pharmacotreatment strategies.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Esclerose Hipocampal , Humanos , Epilepsia do Lobo Temporal/patologia , Gliose/patologia , Esclerose/patologia , Hipocampo/patologia , Lobo Temporal/patologia , Epilepsia Resistente a Medicamentos/complicações , Resultado do Tratamento
12.
Cell Mol Life Sci ; 80(6): 139, 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149826

RESUMO

Currently, no effective therapeutics exist for the treatment of incurable neurodegenerative diseases such as Alzheimer's disease (AD). The cellular prion protein (PrPC) acts as a high-affinity receptor for amyloid beta oligomers (AßO), a main neurotoxic species mediating AD pathology. The interaction of AßO with PrPC subsequently activates Fyn tyrosine kinase and neuroinflammation. Herein, we used our previously developed peptide aptamer 8 (PA8) binding to PrPC as a therapeutic to target the AßO-PrP-Fyn axis and prevent its associated pathologies. Our in vitro results indicated that PA8 prevents the binding of AßO with PrPC and reduces AßO-induced neurotoxicity in mouse neuroblastoma N2a cells and primary hippocampal neurons. Next, we performed in vivo experiments using the transgenic 5XFAD mouse model of AD. The 5XFAD mice were treated with PA8 and its scaffold protein thioredoxin A (Trx) at a 14.4 µg/day dosage for 12 weeks by intraventricular infusion through Alzet® osmotic pumps. We observed that treatment with PA8 improves learning and memory functions of 5XFAD mice as compared to Trx-treated 5XFAD mice. We found that PA8 treatment significantly reduces AßO levels and Aß plaques in the brain tissue of 5XFAD mice. Interestingly, PA8 significantly reduces AßO-PrP interaction and its downstream signaling such as phosphorylation of Fyn kinase, reactive gliosis as well as apoptotic neurodegeneration in the 5XFAD mice compared to Trx-treated 5XFAD mice. Collectively, our results demonstrate that treatment with PA8 targeting the AßO-PrP-Fyn axis is a promising and novel approach to prevent and treat AD.


Assuntos
Doença de Alzheimer , Aptâmeros de Peptídeos , Proteínas PrPC , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Proteínas PrPC/metabolismo , Modelos Animais de Doenças
13.
Neurol Sci ; 45(5): 2365-2366, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38291195

RESUMO

The Marchiafava-Bignami disease has a curious backstory, namely, the publication in 1898 of the Contribution to the Study of Nonsuppurative Encephalitis (Carducci A in Riv Psicol Psichiat Neuropat 8-9:125-135, 1898), in which the neo-graduate Agostino Carducci described the disease that the pathologists Ettore Marchiafava and Amico Bignami would report 5 years later.


Assuntos
Encefalite , Doença de Marchiafava-Bignami , Humanos , Doença de Marchiafava-Bignami/diagnóstico por imagem , Corpo Caloso , Imageamento por Ressonância Magnética
14.
Mol Cell Proteomics ; 21(1): 100180, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808356

RESUMO

Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAPTg;Gfap+/R236H) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAPTg;Gfap+/R236H versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD. Relative protein-level differences were confirmed by a targeted proteomics assay, including proteins related to astrocytes and oligodendrocytes. Of particular interest was the decreased level of the oligodendrocyte protein, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (Ugt8), since Ugt8-deficient mice exhibit a phenotype similar to GFAPTg;Gfap+/R236H mice (e.g., tremors, ataxia, hind-limb paralysis). In addition, decreased levels of myelin-associated proteins were found in the GFAPTg;Gfap+/R236H mice, consistent with the role of Ugt8 in myelin synthesis. Fabp7 upregulation in GFAPTg;Gfap+/R236H mice was also selected for further investigation due to its uncharacterized association to AxD, critical function in astrocyte proliferation, and functional ability to inhibit the anti-inflammatory PPAR signaling pathway in models of amyotrophic lateral sclerosis (ALS). Within Gfap+ astrocytes, Fabp7 was markedly increased in the hippocampus, a brain region subjected to extensive pathology and chronic reactive gliosis in GFAPTg;Gfap+/R236H mice. Last, to determine whether the findings in GFAPTg;Gfap+/R236H mice are present in the human condition, AxD patient and control samples were analyzed by Western blot, which indicated that Type I AxD patients have a significant fourfold upregulation of FABP7. However, immunohistochemistry analysis showed that UGT8 accumulates in AxD patient subpial brain regions where abundant amounts of Rosenthal fibers are located, which was not observed in the GFAPTg;Gfap+/R236H mice.


Assuntos
Doença de Alexander , Doença de Alexander/genética , Doença de Alexander/metabolismo , Doença de Alexander/patologia , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Gliose/metabolismo , Gliose/patologia , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Proteômica
15.
Artigo em Inglês | MEDLINE | ID: mdl-38832954

RESUMO

BACKGROUND: The aim of this study is to evaluate long-term anatomical and functional outcomes of autologous internal limiting membrane (ILM) transplantation in refractory highly myopic macular holes (HMMHs). METHODS: Retrospective interventional analysis of 13 eyes with refractory HMMH undergoing autologous ILM transplantation with gas tamponade. Best-corrected visual acuity (BCVA, Snellen), optical coherence tomography and fundus photography were scheduled at baseline and every follow-up visit (1, 3, 6, 12, 18, 24 months and the most recent). Preoperatively, we collected minimum linear diameter (MLD) and basal diameter (BD). Post-operatively, rates of external limiting membrane (ELM)/ellipsoid zone (EZ) restoration, excessive gliosis and subfoveal retinal pigmented epithelium (RPE) atrophy were evaluated. RESULTS: Average AXL was 31.45 ± 2.07 mm and mean follow-up was 47.2 ± 31.4 months. Anatomical success was reached in 7/13 eyes (54%), while 2 cases showed persisting HMMH, 2 cases had early recurrence and 2 cases late recurrence. BCVA went from 0.19 ± 0.18 to 0.22 ± 0.20 at final follow-up (p = 0.64), improving in 5/13 eyes (38%). One eye showed continuous ELM and EZ lines, while another eye showed an irregular ELM but no EZ. Post-operatively, 5 eyes (71%) developed progressive atrophy of the subfoveal RPE, while excessive gliosis was reported in 3 eyes (43%). Furthermore, one patient developed post-operative chronic macular edema-like changes in the perifoveal area. CONCLUSION: Autologous ILM transplantation showed controversial anatomical outcomes and and poor visual results in refractory HMMH. Moreover, progressive subfoveal patchy atrophy and excessive gliosis are possible post-operative complications.

16.
Int J Mol Sci ; 25(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38397023

RESUMO

Microglia and astrocytes are essential in sustaining physiological networks in the central nervous system, with their ability to remodel the extracellular matrix, being pivotal for synapse plasticity. Recent findings have challenged the traditional view of homogenous glial populations in the brain, uncovering morphological, functional, and molecular heterogeneity among glial cells. This diversity has significant implications for both physiological and pathological brain states. In the present study, we mechanically induced a Schaffer collateral lesion (SCL) in mouse entorhino-hippocampal slice cultures to investigate glial behavior, i.e., microglia and astrocytes, under metalloproteinases (MMPs) modulation in the lesioned area, CA3, and the denervated region, CA1. We observed distinct response patterns in the microglia and astrocytes 3 days after the lesion. Notably, GFAP-expressing astrocytes showed no immediate changes post-SCL. Microglia responses varied depending on their anatomical location, underscoring the complexity of the hippocampal neuroglial network post-injury. The MMPs inhibitor GM6001 did not affect microglial reactions in CA3, while increasing the number of Iba1-expressing cells in CA1, leading to a withdrawal of their primary branches. These findings highlight the importance of understanding glial regionalization following neural injury and MMPs modulation and pave the way for further research into glia-targeted therapeutic strategies for neurodegenerative disorders.


Assuntos
Microglia , Colaterais de Schaffer , Camundongos , Animais , Microglia/patologia , Hipocampo/patologia , Astrócitos/patologia , Metaloproteinases da Matriz
17.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255772

RESUMO

Parkinson's disease (PD) is a complex disorder characterized by the impairment of the dopaminergic nigrostriatal system. PD has duplicated its global burden in the last few years, becoming the leading neurological disability worldwide. Therefore, there is an urgent need to develop innovative approaches that target multifactorial underlying causes to potentially prevent or limit disease progression. Accumulating evidence suggests that neuroinflammatory responses may play a pivotal role in the neurodegenerative processes that occur during the development of PD. Cortistatin is a neuropeptide that has shown potent anti-inflammatory and immunoregulatory effects in preclinical models of autoimmune and neuroinflammatory disorders. The goal of this study was to explore the therapeutic potential of cortistatin in a well-established preclinical mouse model of PD induced by acute exposure to the neurotoxin 1-methil-4-phenyl1-1,2,3,6-tetrahydropyridine (MPTP). We observed that treatment with cortistatin mitigated the MPTP-induced loss of dopaminergic neurons in the substantia nigra and their connections to the striatum. Consequently, cortistatin administration improved the locomotor activity of animals intoxicated with MPTP. In addition, cortistatin diminished the presence and activation of glial cells in the affected brain regions of MPTP-treated mice, reduced the production of immune mediators, and promoted the expression of neurotrophic factors in the striatum. In an in vitro model of PD, treatment with cortistatin also demonstrated a reduction in the cell death of dopaminergic neurons that were exposed to the neurotoxin. Taken together, these findings suggest that cortistatin could emerge as a promising new therapeutic agent that combines anti-inflammatory and neuroprotective properties to regulate the progression of PD at multiple levels.


Assuntos
Neuropeptídeos , Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/tratamento farmacológico , Neurotoxinas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
18.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612500

RESUMO

Increased intraocular pressure (IOP) is the most important risk factor for glaucoma. The role of IOP fluctuation, independently from elevated IOP, has not yet been confirmed in glaucoma. We investigated the effects of IOP fluctuation itself on retinal neurodegeneration. Male rats were treated with IOP-lowering eyedrops (brinzolamide and latanoprost) on Mondays and Thursdays (in the irregular instillation group) or daily (in the regular instillation group), and saline was administered daily in the normal control group for 8 weeks. The IOP standard deviation was higher in the irregular instillation group than the regular instillation group or the control group. The degree of oxidative stress, which was analyzed by labeling superoxide, oxidative DNA damage, and nitrotyrosine, was increased in the irregular instillation group. Macroglial activation, expressed by glial fibrillary acidic protein in the optic nerve head and retina, was observed with the irregular instillation of IOP-lowering eyedrops. Microglial activation, as indicated by Iba-1, and the expression of TNF-α did not show a significant difference between the irregular instillation and control groups. Expression of cleaved caspase-3 was upregulated and the number of retinal ganglion cells (RGCs) was decreased in the irregular instillation group. Our findings indicate that IOP fluctuations could be induced by irregular instillation of IOP-lowering eyedrops and this could lead to the degeneration of RGCs, probably through increased oxidative stress and macrogliosis.


Assuntos
Glaucoma , Pressão Intraocular , Masculino , Animais , Ratos , Retina , Glaucoma/tratamento farmacológico , Células Ganglionares da Retina , Soluções Oftálmicas
19.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542434

RESUMO

Aucubin, an iridoid glycoside, possesses beneficial bioactivities in many diseases, but little is known about its neuroprotective effects and mechanisms in brain ischemia and reperfusion (IR) injury. This study evaluated whether aucubin exhibited neuroprotective effects against IR injury in the hippocampal CA1 region through anti-inflammatory activity in gerbils. Aucubin (10 mg/kg) was administered intraperitoneally once a day for one week prior to IR. Neuroprotective effects of aucubin were assessed by neuronal nuclei (NeuN) immunofluorescence and Floro-Jade C (FJC) histofluorescence. Microgliosis and astrogliosis were evaluated using immunohistochemistry with anti-ionized calcium binding adapter protein 1 (Iba1) and glial fibrillary acidic protein (GFAP). Protein levels of proinflammatory cytokines interleukin1 beta (IL1ß) and tumor necrosis factor alpha (TNFα) were assayed using enzyme-linked immunosorbent assay and Western blot. Changes in toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway were assessed by measuring levels of TLR4, inhibitor of NF-κB alpha (IκBα), and NF-κB p65 using Western blot. Aucubin treatment protected pyramidal neurons from IR injury. IR-induced microgliosis and astrogliosis were suppressed by aucubin treatment. IR-induced increases in IL1ß and TNFα levels were significantly alleviated by the treatment. IR-induced upregulation of TLR4 and downregulation of IκBα were significantly prevented by aucubin treatment, and IR-induced nuclear translocation of NF-κB was reversed by aucubin treatment. Briefly, aucubin exhibited neuroprotective effects against brain IR injury, which might be related to the attenuation of neuroinflammation through inhibiting the TLR-4/NF-κB signaling pathway. These results suggest that aucubin pretreatment may be a potential approach for the protection of brain IR injury.


Assuntos
Isquemia Encefálica , Glucosídeos Iridoides , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Inibidor de NF-kappaB alfa/metabolismo , Gerbillinae/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor 4 Toll-Like/metabolismo , Gliose , Transdução de Sinais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia , Infarto Cerebral , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
20.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338969

RESUMO

In humans and animal models, temporal lobe epilepsy (TLE) is associated with reorganization of hippocampal neuronal networks, gliosis, neuroinflammation, and loss of integrity of the blood-brain barrier (BBB). More than 30% of epilepsies remain intractable, and characterization of the molecular mechanisms involved in BBB dysfunction is essential to the identification of new therapeutic strategies. In this work, we induced status epilepticus in rats through injection of the proconvulsant drug pilocarpine, which leads to TLE. Using RT-qPCR, double immunohistochemistry, and confocal imaging, we studied the regulation of reactive glia and vascular markers at different time points of epileptogenesis (latent phase-3, 7, and 14 days; chronic phase-1 and 3 months). In the hippocampus, increased expression of mRNA encoding the glial proteins GFAP and Iba1 confirmed neuroinflammatory status. We report for the first time the concomitant induction of the specific proteins CD31, PDGFRß, and ColIV-which peak at the same time points as inflammation-in the endothelial cells, pericytes, and basement membrane of the BBB. The altered expression of these proteins occurs early in TLE, during the latent phase, suggesting that they could be associated with the early rupture and pathogenicity of the BBB that will contribute to the chronic phase of epilepsy.


Assuntos
Barreira Hematoencefálica , Epilepsia do Lobo Temporal , Epilepsia , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Estado Epiléptico , Animais , Humanos , Ratos , Barreira Hematoencefálica/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Neuroglia/metabolismo , Pericitos/metabolismo , Pilocarpina/efeitos adversos , Ratos Sprague-Dawley , Estado Epiléptico/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA