Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 58(34): 11670-11675, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31197930

RESUMO

Ordered graphitic carbon nanosheets (GCNs) were, for the first time, synthesized by the direct condensation of multifunctional phenylacetyl building blocks (monomers) in the presence of phosphorous pentoxide. The GCNs had highly ordered structures with random hole defects and oxygenated functional groups, showing paramagnetism. The results of combined structural and magnetic analyses indicate that the hole defects and functional groups are associated with the appearance and stabilization of unpaired spins. DFT calculations further suggest that the emergence of stabilized spin moments near the edge groups necessitates the presence of functionalized carbon atoms around the hole defects. That is, both hole defects and oxygenated functional groups are essential ingredients for the generation and stabilization of spins in GCNs.

2.
J Colloid Interface Sci ; 610: 573-582, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34863548

RESUMO

Design of advanced carbon nanomaterials with high-efficiency oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities is still imperative yet challenging for searching green and renewable energies. Herein, we synthesized ultrafine FeNi/(FeNi)9S8 nanoclusters encapsulated in nitrogen, sulfur-codoped graphitic carbon nanosheets (FeNi/(FeNi)9S8/N,S-CNS) by coordination regulated pyrolyzing the mixture of the metal precursors, dithizone and g-C3N4 at 800 °C. The as-prepared FeNi/(FeNi)9S8/N,S-CNS exhibited distinct electrocatalytic activity and stability for the ORR with positive onset (Eonset) and half-wave (E1/2) potentials (Eonset = 0.97 V; E1/2 = 0.86 V) and OER with the small overpotential (η = 283 mV) at 10 mA cm-2 in the alkaline media, outperforming commercial Pt/C and RuO2 catalysts. This research provides some constructive guidelines for preparing efficient, low-cost and stable nanocatalysts for electrochemical energy devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA