Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Plant J ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052425

RESUMO

The tiller angle is an important agronomic trait that determines plant architecture and grain yield in rice (Oryza sativa L.). However, the molecular regulation mechanism of the rice tiller angle remains unclear. Here, we identified a rice tiller angle gene, LARGE TILLER ANGLE 1 (LATA1), using the MutMap approach. LATA1 encodes a C3H2C3-type RING zinc finger E3 ligase and the conserved region of the RING zinc finger is essential for its E3 activity. LATA1 was highly expressed in the root and tiller base and LATA1-GFP fusion protein was specifically localized to the nucleus. The mutation of LATA1 significantly reduced indole-3-acetic acid content and attenuated lateral auxin transport, thereby resulting in defective shoot gravitropism and spreading plant architecture in rice. Further investigations found that LATA1 may indirectly affect gravity perception by modulating the sedimentation rate of gravity-sensing amyloplasts upon gravistimulation. Our findings provide new insights into the molecular mechanism underlying the rice tiller angle and new genetic resource for the improvement of plant architecture in rice.

2.
Plant J ; 118(6): 1732-1746, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38394056

RESUMO

Plants partly optimize their water recruitment from the growth medium by directing root growth toward a moisture source, a phenomenon termed hydrotropism. The default mechanism of downward growth, termed gravitropism, often functions to counteract hydrotropism when the water-potential gradient deviates from the gravity vector. This review addresses the identity of the root sites in which hydrotropism-regulating factors function to attenuate gravitropism and the interplay between these various factors. In this context, the function of hormones, including auxin, abscisic acid, and cytokinins, as well as secondary messengers, calcium ions, and reactive oxygen species in the conflict between these two opposing tropisms is discussed. We have assembled the available data on the effects of various chemicals and genetic backgrounds on both gravitropism and hydrotropism, to provide an up-to-date perspective on the interactions that dictate the orientation of root tip growth. We specify the relevant open questions for future research. Broadening our understanding of root mechanisms of water recruitment holds great potential for providing advanced approaches and technologies that can improve crop plant performance under less-than-optimal conditions, in light of predicted frequent and prolonged drought periods due to global climate change.


Assuntos
Gravitropismo , Reguladores de Crescimento de Plantas , Raízes de Plantas , Água , Gravitropismo/fisiologia , Raízes de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Água/metabolismo , Tropismo/fisiologia , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/metabolismo
3.
BMC Plant Biol ; 24(1): 485, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822229

RESUMO

BACKGROUND: Brassinosteroids (BRs) are a class of phytohormones that regulate a wide range of developmental processes in plants. BR-associated mutants display impaired growth and response to developmental and environmental stimuli. RESULTS: Here, we found that a BR-deficient mutant det2-1 displayed abnormal root gravitropic growth in Arabidopsis, which was not present in other BR mutants. To further elucidate the role of DET2 in gravity, we performed transcriptome sequencing and analysis of det2-1 and bri1-116, bri1 null mutant allele. Expression levels of auxin, gibberellin, cytokinin, and other related genes in the two mutants of det2-1 and bri1-116 were basically the same. However, we only found that a large number of JAZ (JASMONATE ZIM-domain) genes and jasmonate synthesis-related genes were upregulated in det2-1 mutant, suggesting increased levels of endogenous JA. CONCLUSIONS: Our results also suggested that DET2 not only plays a role in BR synthesis but may also be involved in JA regulation. Our study provides a new insight into the molecular mechanism of BRs on the root gravitropism.


Assuntos
Arabidopsis , Brassinosteroides , Perfilação da Expressão Gênica , Gravitropismo , Raízes de Plantas , Brassinosteroides/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Gravitropismo/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma , Mutação , Oxilipinas/metabolismo
4.
Plant Cell Environ ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809156

RESUMO

In epiphytes, aerial roots are important to combat water-deficient, nutrient-poor, and high-irradiance microhabitats. However, whether aerial roots can respond to gravity and whether auxin plays a role in regulating aerial root development remain open-ended questions. Here, we investigated the gravitropic response of the epiphytic orchid Phalaenopsis aphrodite. Our data showed that aerial roots of P. aphrodite failed to respond to gravity, and this was correlated with a lack of starch granules/statolith sedimentation in the roots and the absence of the auxin efflux carrier PIN2 gene. Using an established auxin reporter, we discovered that auxin maximum was absent in the quiescent center of aerial roots of P. aphrodite. Also, gravity failed to trigger auxin redistribution in the root caps. Hence, loss of gravity sensing and gravity-dependent auxin redistribution may be the genetic factors contributing to aerial root development. Moreover, the architectural and functional innovations that achieve fast gravitropism in the flowering plants appear to be lost in both terrestrial and epiphytic orchids, but are present in the early diverged orchid subfamilies. Taken together, our findings provide physiological and molecular evidence to support the notion that epiphytic orchids lack gravitropism and suggest diverse geotropic responses in the orchid family.

5.
J Exp Bot ; 75(2): 503-507, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38197460

RESUMO

Plant roots fulfil crucial tasks during a plant's life. As roots encounter very diverse conditions while exploring the soil for resources, their growth and development must be responsive to changes in the rhizosphere, resulting in root architectures that are tailor-made for all prevailing circumstances. Using multi-disciplinary approaches, we are gaining more intricate insights into the regulatory mechanisms directing root system architecture. This Special Issue provides insights into our advancement of knowledge on different aspects of root development and identifies opportunities for future research.


Assuntos
Interações Microbianas , Rizosfera , Solo
6.
J Integr Plant Biol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990128

RESUMO

Light and gravity coordinately regulate the directional growth of plants. Arabidopsis Gravitropic in the Light 1 (GIL1) inhibits the negative gravitropism of hypocotyls in red and far-red light, but the underlying molecular mechanisms remain elusive. Our study found that GIL1 is a plasma membrane-localized protein. In endodermal cells of the upper part of hypocotyls, GIL1 controls the negative gravitropism of hypocotyls. GIL1 directly interacts with PIN3 and inhibits the auxin transport activity of PIN3. Mutation of PIN3 suppresses the abnormal gravitropic response of gil1 mutant. The GIL1 protein is unstable in darkness but it is stabilized by red and far-red light. Together, our data suggest that light-stabilized GIL1 inhibits the negative gravitropism of hypocotyls by suppressing the activity of the auxin transporter PIN3, thereby enhancing the emergence of young seedlings from the soil.

7.
J Plant Physiol ; 296: 154224, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507925

RESUMO

Roots exhibit hydrotropism in response to moisture gradients, with the hydrotropism-related gene Mizu-kussei1 (MIZ1) playing a role in regulating root hydrotropism in an oblique orientation. However, the mechanisms underlying MIZ1-regulated root hydrotropism are not well understood. In this study, we employed obliquely oriented experimental systems to investigate root hydrotropism in Arabidopsis. We found that the miz1 mutant displays reduced root hydrotropism but increased root gravitropism following hydrostimulation, as compared to wild-type plants. Conversely, overexpression of AtMIZ1 leads to enhanced root hydrotropism but decreased root gravitropism following hydrostimulation, as compared to wild-type plants. Using co-immunoprecipitation followed by mass spectrometry (IP-MS), we explored proteins that interact with AtMIZ1, and we identified PGMC1 co-immunoprecipitated with MIZ1 in vivo. Furthermore, the miz1 mutant exhibited higher expression of the PGMC1 gene and increased phosphoglucomutase (PGM) activity, while AtMIZ1 overexpressors resulted in lower expression of the PGMC1 gene, reduced amyloplast amount, and reduced PGM activity in comparison to wild-type roots. In addition, different Arabidopsis natural accessions having difference in their hydrotropic response demonstrated expression level of PGMC1 was negatively correlated with hydrotropic root curvature and AtMIZ1 expression. Our results provide valuable insights into the role of amyloplast in MIZ1-regulated root hydrotropism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Água/metabolismo , Tropismo/genética , Gravitropismo/genética , Raízes de Plantas/metabolismo
8.
Rice (N Y) ; 17(1): 32, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717687

RESUMO

Traditional agriculture is becoming increasingly not adapted to global climate change. Compared with annual rice, perennial rice has strong environmental adaptation and needs fewer natural resources and labor inputs. Rhizome, a kind of underground stem for rice to achieve perenniallity, can grow underground horizontally and then bend upward, developing into aerial stems. The temperature has a great influence on plant development. To date, the effect of temperature on rhizome development is still unknown. Fine temperature treatment of Oryza longistaminata (OL) proved that compared with higher temperatures (28-30 ℃), lower temperature (17-19 ℃) could promote the sprouting of axillary buds and enhance negative gravitropism of branches, resulting in shorter rhizomes. The upward growth of branches was earlier at low temperature than that at high temperature, leading to a high frequency of shorter rhizomes and smaller branch angles. Comparative transcriptome showed that plant hormones played an essential role in the response of OL to temperature. The expressions of ARF17, ARF25 and FucT were up-regulated at low temperature, resulting in prospectively asymmetric auxin distribution, which subsequently induced asymmetric expression of IAA20 and WOX11 between the upper and lower side of the rhizome, further leading to upward growth of the rhizome. Cytokinin and auxin are phytohormones that can promote and inhibit bud outgrowth, respectively. The auxin biosynthesis gene YUCCA1 and cytokinin oxidase/dehydrogenase gene CKX4 and CKX9 were up-regulated, while cytokinin biosynthesis gene IPT4 was down-regulated at high temperature. Moreover, the D3 and D14 in strigolactones pathways, negatively regulating bud outgrowth, were up-regulated at high temperature. These results indicated that cytokinin, auxins, and strigolactones jointly control bud outgrowth at different temperatures. Our research revealed that the outgrowth of axillary bud and the upward growth of OL rhizome were earlier at lower temperature, providing clues for understanding the rhizome growth habit under different temperatures, which would be helpful for cultivating perennial rice.

9.
Plant Physiol Biochem ; 208: 108481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447424

RESUMO

Gravitropism is a vital mechanism through which plants adapt to their environment. Previous studies indicated that Ca2+ may play an important role in plant gravitropism. However, our understanding of the calcium signals in root gravitropism is still largely limited. Using a vertical stage confocal and transgenic Arabidopsis R-GECO1, our data showed that gravity stimulation enhances the occurrence of calcium spikes and increases the Ca2+ concentration in the lower side of the root cap. Furthermore, a close correlation was observed in the asymmetry of calcium signals with the inclination angles at which the roots were oriented. The frequency of calcium spikes on the lower side of 90°-rotated root decreases rapidly over time, whereas the asymmetric distribution of auxin readily strengthens for up to 3 h, indicating that the calcium spikes, promoted by gravity stimulation, may precede auxin as one of the early signals. In addition, the root gravitropism of starchless mutants is severely impaired. Correspondingly, no significant increase in calcium spike occurrence was observed in the root caps of these mutants within 15 min following a 90° rotation, indicating the involvement of starch grains in the formation of calcium spikes. However, between 30 and 45 min after a 90° rotation, asymmetric calcium spikes were indeed observed in the root of starchless mutants, suggesting that starch grains are not indispensable for the formation of calcium spikes. Besides, co-localization analysis suggests that the ER may function as calcium stores during the occurrence of calcium spikes. These findings provide further insights into plant gravitropism.


Assuntos
Arabidopsis , Gravitropismo , Cálcio , Raízes de Plantas/fisiologia , Arabidopsis/fisiologia , Ácidos Indolacéticos , Plantas , Amido
10.
Plants (Basel) ; 13(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256762

RESUMO

Gravitropism is the plant organ bending in response to gravity. Gravitropism, phototropism and sufficient mechanical strength define the optimal position of young shoots for photosynthesis. Etiolated wild-type Arabidopsis seedlings grown horizontally in the presence of sucrose had a lot more upright hypocotyls than seedlings grown without sucrose. We studied the mechanism of this effect at the level of cell wall biomechanics and biochemistry. Sucrose strengthened the bases of hypocotyls and decreased the content of mannans in their cell walls. As sucrose is known to increase the gravitropic bending of hypocotyls, and mannans have recently been shown to interfere with this process, we examined if the effect of sucrose on shoot gravitropism could be partially mediated by mannans. We compared cell wall biomechanics and metabolomics of hypocotyls at the early steps of gravitropic bending in Col-0 plants grown with sucrose and mannan-deficient mutant seedlings. Sucrose and mannans affected gravitropic bending via different mechanisms. Sucrose exerted its effect through cell wall-loosening proteins, while mannans changed the walls' viscoelasticity. Our data highlight the complexity of shoot gravitropism control at the cell wall level.

11.
Plant Commun ; : 100943, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897199

RESUMO

Rice tiller angle is a key agronomic trait that has significant effects on the establishment of a high-yield rice population. However, the molecular mechanism underlying the control of rice tiller angle remains to be clarified. Here, we characterized the novel tiller-angle gene LAZY4 (LA4) in rice through map-based cloning. LA4 encodes a C3H2C3-type RING zinc-finger E3 ligase localized in the nucleus, and an in vitro ubiquitination assay revealed that the conserved RING finger domain is essential for its E3 ligase activity. We found that expression of LA4 can be induced by gravistimulation and that loss of LA4 function leads to defective shoot gravitropism caused by impaired asymmetric auxin redistribution upon gravistimulation. Genetic analysis demonstrated that LA4 acts in a distinct pathway from the starch biosynthesis regulators LA2 and LA3, which function in the starch-statolith-dependent pathway. Further genetic analysis showed that LA4 regulates shoot gravitropism and tiller angle by acting upstream of LA1 to mediate lateral auxin transport upon gravistimulation. Our studies reveal that LA4 regulates shoot gravitropism and tiller angle upstream of LA1 through a novel pathway independent of the LA2-LA3-mediated gravity-sensing mechanism, providing new insights into the rice tiller-angle regulatory network.

12.
Plant Physiol Biochem ; 210: 108592, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569422

RESUMO

The present study investigates the phytotoxic potential of azelaic acid (AZA) on Arabidopsis thaliana roots. Effects on root morphology, anatomy, auxin content and transport, gravitropic response and molecular docking were analysed. AZA inhibited root growth, stimulated lateral and adventitious roots, and altered the root apical meristem by reducing meristem cell number, length and width. The treatment also slowed down the roots' gravitropic response, likely due to a reduction in statoliths, starch-rich organelles involved in gravity perception. In addition, auxin content, transport and distribution, together with PIN proteins' expression and localisation were altered after AZA treatment, inducing a reduction in auxin transport and its distribution into the meristematic zone. Computational simulations showed that AZA has a high affinity for the auxin receptor TIR1, competing with auxin for the binding site. The AZA binding with TIR1 could interfere with the normal functioning of the TIR1/AFB complex, disrupting the ubiquitin E3 ligase complex and leading to alterations in the response of the plant, which could perceive AZA as an exogenous auxin. Our results suggest that AZA mode of action could involve the modulation of auxin-related processes in Arabidopsis roots. Understanding such mechanisms could lead to find environmentally friendly alternatives to synthetic herbicides.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Dicarboxílicos , Proteínas F-Box , Gravitropismo , Ácidos Indolacéticos , Raízes de Plantas , Receptores de Superfície Celular , Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Gravitropismo/efeitos dos fármacos , Ácidos Dicarboxílicos/metabolismo , Proteínas F-Box/metabolismo , Receptores de Superfície Celular/metabolismo , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Simulação de Acoplamento Molecular
13.
J Plant Physiol ; 292: 154144, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38104389

RESUMO

Mizu-kussei1 (MIZ1) plays a crucial role in root hydrotropism, but it is still unclear whether auxin-mediated gravitropism is involved in MIZ1-modulated root hydrotropism. This study aimed to investigate whether the hydrotropism of the Arabidopsis miz1 mutants could be restored through pharmacological inhibition of auxin transport or genetic modification in root gravitropism. Our findings indicate that the hydrotropic defects of miz1 mutant can be partly recovered by using an auxin transport inhibitor. Furthermore, miz1/pin2 double mutants exhibit more pronounced defects in root gravitropism compared to the wild type, while still displaying a normal hydrotropic response similar to the wild type. These results suggest that the elimination of gravitropism enables miz1 roots to become hydrotropically responsive to moisture gradients.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Gravitropismo/genética , Ácidos Indolacéticos , Raízes de Plantas/genética , Água/fisiologia
14.
Vavilovskii Zhurnal Genet Selektsii ; 28(1): 33-43, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38465245

RESUMO

Gravitropism is an adaptive reaction of plants associated with the ability of various plant organs to be located and to grow in a certain direction relative to the gravity vector, while usually the asymmetric distribution of the phytohormone auxin is a necessary condition for the gravitropical bending of plant organs. Earlier, we described significant morphological changes in phloem fibers with a thickened cell wall located on different sides of the stem in the area of the gravitropic curvature. The present study is the first work devoted to the identification of genes encoding auxin transporters in cells at different stages of development and during gravity response. In this study, the flax genes encoding the AUX1/LAX, PIN-FORMED, PIN-LIKES, and ABCB auxin transporters were identified. A comparative analysis of the expression of these genes in flax phloem fibers at different stages of development revealed increased expression of some of these genes at the stage of intrusive growth (LusLAX2 (A, B), LuxPIN1-D, LusPILS7 (C, D)), at the early stage of tertiary cell wall formation (LusAUX1 (A, D), LusABCB1 (A, B), LusABCB15-A, LusPIN1 (A, B), LusPIN4-A, and LusPIN5-A), and at the late stage of tertiary cell wall development (LusLAX3 (A, B)). It was shown that in the course of gravitropism, the expression of many genes, including those responsible for the influx of auxin in cells (LusAUX1-D), in the studied families increased. Differential expression of auxin transporter genes was revealed during gravity response in fibers located on different sides of the stem (upper (PUL) and lower (OPP)). The difference was observed due to the expression of genes, the products of which are responsible for auxin intracellular transport (LusPILS3, LusPILS7-A) and its efflux (LusABCB15-B, LusABCB19-B). It was noted that the increased expression of PIN genes and ABCB genes was more typical of fibers on the opposite side. The results obtained allow us to make an assumption about the presence of differential auxin content in the fibers of different sides of gravistimulated flax plants, which may be determined by an uneven outflow of auxin. This study gives an idea of auxin carriers in flax and lays the foundation for further studies of their functions in the development of phloem fiber and in gravity response.

15.
Adv Sci (Weinh) ; 11(18): e2306129, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447146

RESUMO

Plants can autonomously adjust their growth direction based on the gravitropic response to maximize energy acquisition, despite lacking nerves and muscles. Endowing soft robots with gravitropism may facilitate the development of self-regulating systems free of electronics, but remains elusive. Herein, acceleration-regulated soft actuators are described that can respond to the gravitational field by leveraging the unique fluidity of liquid metal in its self-limiting oxide skin. The soft actuator is obtained by magnetic printing of the fluidic liquid metal heater circuit on a thermoresponsive liquid crystal elastomer. The Joule heat of the liquid metal circuit with gravity-regulated resistance can be programmed by changing the actuator's pose to induce the flow of liquid metal. The actuator can autonomously adjust its bending degree by the dynamic interaction between its thermomechanical response and gravity. A gravity-interactive soft gripper is also created with controllable grasping and releasing by rotating the actuator. Moreover, it is demonstrated that self-regulated oscillation motion can be achieved by interfacing the actuator with a monostable tape spring, allowing the electronics-free control of a bionic walker. This work paves the avenue for the development of liquid metal-based reconfigurable electronics and electronics-free soft robots that can perceive gravity or acceleration.


Assuntos
Gravitropismo , Robótica , Robótica/métodos , Robótica/instrumentação , Gravitropismo/fisiologia , Desenho de Equipamento/métodos , Metais/química , Cristais Líquidos , Plantas
16.
Plants (Basel) ; 13(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38498461

RESUMO

Tolerance to submergence-induced hypoxia is an important agronomic trait especially for crops in lowland and flooding-affected areas. Although rice (Oryza sativa) is considered a flood-tolerant crop, only limited cultivars display strong tolerance to prolonged submergence and/or hypoxic stress. Therefore, characterization of hypoxic resistant genes and/or germplasms have important theoretical and practical significance for rice breeding and sustained improvements. Previous investigations have demonstrated that loss-of-function of OsPIN2, a gene encoding an auxin efflux transporter, results in the loss of root gravitropism due to disrupted auxin transport in the root tip. In this study, we revealed a novel connection between OsPIN2 and reactive oxygen species (ROS) in modulating root gravitropism and hypoxia tolerance in rice. It is shown that the OsPIN2 mutant had decreased accumulation of ROS in root tip, due to the downregulation of glycolate oxidase encoding gene OsGOX6, one of the main H2O2 sources. The morphological defects of root including waved rooting and agravitropism in OsPIN2 mutant may be rescued partly by exogenous application of H2O2. The OsPIN2 mutant exhibited increased resistance to ROS toxicity in roots due to treatment with H2O2. Furthermore, it is shown that the OsPIN2 mutant had increased tolerance to hypoxic stress accompanied by lower ROS accumulation in roots, because the hypoxia stress led to over production of ROS in the roots of the wild type but not in that of OsPIN2 mutant. Accordingly, the anoxic resistance-related gene SUB1B showed differential expression in the root of the WT and OsPIN2 mutant in response to hypoxic conditions. Notably, compared with the wild type, the OsPIN2 mutant displayed a different pattern of auxin distribution in the root under hypoxia stress. It was shown that hypoxia stress caused a significant increase in auxin distribution in the root tip of the WT but not in that of the war1 mutant. In summary, these results suggested that OsPIN2 may play a role in regulating ROS accumulation probably via mediating auxin transport and distribution in the root tip, affecting root gravitropism and hypoxic tolerance in rice seedlings. These findings may contribute to the genetic improvement and identification of potential hypoxic tolerant lines in rice.

17.
Elife ; 122024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441122

RESUMO

Root gravitropic bending represents a fundamental aspect of terrestrial plant physiology. Gravity is perceived by sedimentation of starch-rich plastids (statoliths) to the bottom of the central root cap cells. Following gravity perception, intercellular auxin transport is redirected downwards leading to an asymmetric auxin accumulation at the lower root side causing inhibition of cell expansion, ultimately resulting in downwards bending. How gravity-induced statoliths repositioning is translated into asymmetric auxin distribution remains unclear despite PIN auxin efflux carriers and the Negative Gravitropic Response of roots (NGR) proteins polarize along statolith sedimentation, thus providing a plausible mechanism for auxin flow redirection. In this study, using a functional NGR1-GFP construct, we visualized the NGR1 localization on the statolith surface and plasma membrane (PM) domains in close proximity to the statoliths, correlating with their movements. We determined that NGR1 binding to these PM domains is indispensable for NGR1 functionality and relies on cysteine acylation and adjacent polybasic regions as well as on lipid and sterol PM composition. Detailed timing of the early events following graviperception suggested that both NGR1 repolarization and initial auxin asymmetry precede the visible PIN3 polarization. This discrepancy motivated us to unveil a rapid, NGR-dependent translocation of PIN-activating AGCVIII kinase D6PK towards lower PMs of gravity-perceiving cells, thus providing an attractive model for rapid redirection of auxin fluxes following gravistimulation.


Assuntos
Gravitropismo , Proteínas Quinases , Acilação , Transporte Biológico , Ácidos Indolacéticos
18.
Trends Plant Sci ; 29(7): 814-822, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38402016

RESUMO

The root angle plays a critical role in efficiently capturing nutrients and water from different soil layers. Steeper root angles enable access to mobile water and nitrogen from deeper soil layers, whereas shallow root angles facilitate the capture of immobile phosphorus from the topsoil. Thus, understanding the genetic regulation of the root angle is crucial for breeding crop varieties that can efficiently capture resources and enhance yield. Moreover, this understanding can contribute to developing varieties that effectively sequester carbon in deeper soil layers, supporting global carbon mitigation efforts. Here we review and consolidate significant recent discoveries regarding the molecular components controlling root angle in cereal crop species and outline the remaining research gaps in this field.


Assuntos
Grão Comestível , Raízes de Plantas , Raízes de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Grão Comestível/genética , Regulação da Expressão Gênica de Plantas , Produtos Agrícolas/genética , Solo/química , Nitrogênio/metabolismo
19.
J Adv Res ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295878

RESUMO

BACKGROUND: In plants, gravity directs bidirectional growth; it specifies upward growth of shoots and downward growth of roots. Due to gravity, roots establish robust anchorage and shoot, which enables to photosynthesize. It sets optimum posture and develops plant architecture to efficiently use resources like water, nutrients, CO2, and gaseous exchange. Hence, gravitropism is crucial for crop productivity as well as for the growth of plants in challenging climate. Some SGR members are known to affect tiller and shoot angle, organ size, and inflorescence stem in plants. AIM OF REVIEW: Although the SHOOT GRAVITROPISM (SGR) family plays a key role in regulating the fate of shoot gravitropism, little is known about its function compared to other proteins involved in gravity response in plant cells and tissues. Moreover, less information on the SGR family's physiological activities and biochemical responses in shoot gravitropism is available. This review scrutinizes and highlights the recent developments in shoot gravitropism and provides an outlook for future crop development, multi-application scenarios, and translational research to improve agricultural productivity. KEY SCIENTIFIC CONCEPTS OF REVIEW: Plants have evolved multiple gene families specialized in gravitropic responses, of which the SGR family is highly significant. The SGR family regulates the plant's gravity response by regulating specific physiological and biochemical processes such as transcription, cell division, amyloplast sedimentation, endodermis development, and vacuole formation. Here, we analyze the latest discoveries in shoot gravitropism with particular attention to SGR proteins in plant cell biology, cellular physiology, and homeostasis. Plant cells detect gravity signals by sedimentation of amyloplast (starch granules) in the direction of gravity, and the signaling cascade begins. Gravity sensing, signaling, and auxin redistribution (organ curvature) are the three components of plant gravitropism. Eventually, we focus on the role of multiple SGR genes in shoot and present a complete update on the participation of SGR family members in gravity.

20.
Cell Rep ; 43(2): 113763, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38358890

RESUMO

The lateral root angle or gravitropic set-point angle (GSA) is an important trait for root system architecture (RSA) that determines the radial expansion of the root system. The GSA therefore plays a crucial role for the ability of plants to access nutrients and water in the soil. Only a few regulatory pathways and mechanisms that determine GSA are known. These mostly relate to auxin and cytokinin pathways. Here, we report the identification of a small molecule, mebendazole (MBZ), that modulates GSA in Arabidopsis thaliana roots and acts via the activation of ethylene signaling. MBZ directly acts on the serine/threonine protein kinase CTR1, which is a negative regulator of ethylene signaling. Our study not only shows that the ethylene signaling pathway is essential for GSA regulation but also identifies a small molecular modulator of RSA that acts downstream of ethylene receptors and that directly activates ethylene signaling.


Assuntos
Arabidopsis , Mebendazol , Citocininas , Etilenos , Ácidos Indolacéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA