Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.079
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 36: 359-383, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32692593

RESUMO

The proto-oncogenic epidermal growth factor (EGF) receptor (EGFR) is a tyrosine kinase whose sensitivity and response to growth factor signals that vary over time and space determine cellular behavior within a developing tissue. The molecular reorganization of the receptors on the plasma membrane and the enzyme-kinetic mechanisms of phosphorylation are key determinants that couple growth factor binding to EGFR signaling. To enable signal initiation and termination while simultaneously accounting for suppression of aberrant signaling, a coordinated coupling of EGFR kinase and protein tyrosine phosphatase activity is established through space by vesicular dynamics. The dynamical operation mode of this network enables not only time-varying growth factor sensing but also adaptation of the response depending on cellular context. By connecting spatially coupled enzymatic kinase/phosphatase processes and the corresponding dynamical systems description of the EGFR network, we elaborate on the general principles necessary for processing complex growth factor signals.


Assuntos
Receptores ErbB/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Animais , Biocatálise , Plasticidade Celular , Receptores ErbB/química , Humanos , Transdução de Sinais , Fatores de Tempo
2.
Cell ; 172(4): 744-757.e17, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29398113

RESUMO

Cell communication within tissues is mediated by multiple paracrine signals including growth factors, which control cell survival and proliferation. Cells and the growth factors they produce and receive constitute a circuit with specific properties that ensure homeostasis. Here, we used computational and experimental approaches to characterize the features of cell circuits based on growth factor exchange between macrophages and fibroblasts, two cell types found in most mammalian tissues. We found that the macrophage-fibroblast cell circuit is stable and robust to perturbations. Analytical screening of all possible two-cell circuit topologies revealed the circuit features sufficient for stability, including environmental constraint and negative-feedback regulation. Moreover, we found that cell-cell contact is essential for the stability of the macrophage-fibroblast circuit. These findings illustrate principles of cell circuit design and provide a quantitative perspective on cell interactions.


Assuntos
Comunicação Celular/fisiologia , Proliferação de Células/fisiologia , Fibroblastos/metabolismo , Macrófagos/metabolismo , Animais , Sobrevivência Celular/fisiologia , Feminino , Fibroblastos/citologia , Macrófagos/citologia , Masculino , Camundongos , Camundongos Transgênicos
3.
Mol Cell ; 83(22): 4047-4061.e6, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37977117

RESUMO

CDK4/6 inhibitors are remarkable anti-cancer drugs that can arrest tumor cells in G1 and induce their senescence while causing only relatively mild toxicities in healthy tissues. How they achieve this mechanistically is unclear. We show here that tumor cells are specifically vulnerable to CDK4/6 inhibition because during the G1 arrest, oncogenic signals drive toxic cell overgrowth. This overgrowth causes permanent cell cycle withdrawal by either preventing progression from G1 or inducing genotoxic damage during the subsequent S-phase and mitosis. Inhibiting or reverting oncogenic signals that converge onto mTOR can rescue this excessive growth, DNA damage, and cell cycle exit in cancer cells. Conversely, inducing oncogenic signals in non-transformed cells can drive these toxic phenotypes and sensitize the cells to CDK4/6 inhibition. Together, this demonstrates that cell cycle arrest and oncogenic cell growth is a synthetic lethal combination that is exploited by CDK4/6 inhibitors to induce tumor-specific toxicity.


Assuntos
Antineoplásicos , Neoplasias , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Proteína Supressora de Tumor p53/genética , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética
4.
Physiol Rev ; 100(2): 573-602, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670611

RESUMO

Parietal cells are responsible for gastric acid secretion, which aids in the digestion of food, absorption of minerals, and control of harmful bacteria. However, a fine balance of activators and inhibitors of parietal cell-mediated acid secretion is required to ensure proper digestion of food, while preventing damage to the gastric and duodenal mucosa. As a result, parietal cell secretion is highly regulated through numerous mechanisms including the vagus nerve, gastrin, histamine, ghrelin, somatostatin, glucagon-like peptide 1, and other agonists and antagonists. The tight regulation of parietal cells ensures the proper secretion of HCl. The H+-K+-ATPase enzyme expressed in parietal cells regulates the exchange of cytoplasmic H+ for extracellular K+. The H+ secreted into the gastric lumen by the H+-K+-ATPase combines with luminal Cl- to form gastric acid, HCl. Inhibition of the H+-K+-ATPase is the most efficacious method of preventing harmful gastric acid secretion. Proton pump inhibitors and potassium competitive acid blockers are widely used therapeutically to inhibit acid secretion. Stimulated delivery of the H+-K+-ATPase to the parietal cell apical surface requires the fusion of intracellular tubulovesicles with the overlying secretory canaliculus, a process that represents the most prominent example of apical membrane recycling. In addition to their unique ability to secrete gastric acid, parietal cells also play an important role in gastric mucosal homeostasis through the secretion of multiple growth factor molecules. The gastric parietal cell therefore plays multiple roles in gastric secretion and protection as well as coordination of physiological repair.


Assuntos
Ácido Gástrico/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Células Parietais Gástricas/metabolismo , Animais , Forma Celular , Homeostase , Humanos , Células Parietais Gástricas/efeitos dos fármacos , Potássio/metabolismo , Inibidores da Bomba de Prótons/farmacologia , Via Secretória , Transdução de Sinais
5.
Annu Rev Pharmacol Toxicol ; 63: 359-382, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36100222

RESUMO

The fibroblast growth factor (FGF) family, which comprises 22 structurally related proteins, plays diverse roles in cell proliferation, differentiation, development, and metabolism. Among them, two classical members (FGF1 and FGF4) and two endocrine members (FGF19 and FGF21) are important regulators of whole-body energy homeostasis, glucose/lipid metabolism, and insulin sensitivity. Preclinical studies have consistently demonstrated the therapeutic benefits of these FGFs for the treatment of obesity, diabetes, dyslipidemia, and nonalcoholic steatohepatitis (NASH). Several genetically engineered FGF19 and FGF21 analogs with improved pharmacodynamic and pharmacokinetic properties have been developed and progressed into various stages of clinical trials. These FGF analogs are effective in alleviating hepatic steatosis, steatohepatitis, and liver fibrosis in biopsy-confirmed NASH patients, whereas their antidiabetic and antiobesity effects are mildand vary greatly in different clinical trials. This review summarizes recent advances in biopharmaceutical development of FGF-based therapies against obesity-related metabolic complications, highlights major challenges in clinical implementation, and discusses possible strategies to overcome these hurdles.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Fatores de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/complicações , Obesidade/tratamento farmacológico
6.
Development ; 150(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010139

RESUMO

Tissue regeneration is not simply a local repair event occurring in isolation from the distant, uninjured parts of the body. Rather, evidence indicates that regeneration is a whole-animal process involving coordinated interactions between different organ systems. Here, we review recent studies that reveal how remote uninjured tissues and organ systems respond to and engage in regeneration. We also discuss the need for toolkits and technological advancements to uncover and dissect organ communication during regeneration.


Assuntos
Regeneração , Cicatrização , Animais
7.
Circ Res ; 135(3): 453-469, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38899461

RESUMO

BACKGROUND: Cardiac fibroblast activation contributes to adverse remodeling, fibrosis, and dysfunction in the pressure-overloaded heart. Although early fibroblast TGF-ß (transforming growth factor-ß)/Smad (small mother against decapentaplegic)-3 activation protects the pressure-overloaded heart by preserving the matrix, sustained TGF-ß activation is deleterious, accentuating fibrosis and dysfunction. Thus, endogenous mechanisms that negatively regulate the TGF-ß response in fibroblasts may be required to protect from progressive fibrosis and adverse remodeling. We hypothesized that Smad7, an inhibitory Smad that restrains TGF-ß signaling, may be induced in the pressure-overloaded myocardium and may regulate fibrosis, remodeling, and dysfunction. METHODS: The effects of myofibroblast-specific Smad7 loss were studied in a mouse model of transverse aortic constriction, using echocardiography, histological analysis, and molecular analysis. Proteomic studies in S7KO (Smad7 knockout) and overexpressing cells were used to identify fibroblast-derived mediators modulated by Smad7. In vitro experiments using cultured cardiac fibroblasts, fibroblasts populating collagen lattices, and isolated macrophages were used to dissect the molecular signals responsible for the effects of Smad7. RESULTS: Following pressure overload, Smad7 was upregulated in cardiac myofibroblasts. TGF-ß and angiotensin II stimulated fibroblast Smad7 upregulation via Smad3, whereas GDF15 (growth differentiation factor 15) induced Smad7 through GFRAL (glial cell line-derived neurotrophic factor family receptor α-like). MFS7KO (myofibroblast-specific S7KO) mice had increased mortality, accentuated systolic dysfunction and dilative remodeling, and accelerated diastolic dysfunction in response to transverse aortic constriction. Increased dysfunction in MFS7KO hearts was associated with accentuated fibrosis and increased MMP (matrix metalloproteinase)-2 activity and collagen denaturation. Secretomic analysis showed that Smad7 loss accentuates secretion of structural collagens and matricellular proteins and markedly increases MMP2 secretion. In contrast, Smad7 overexpression reduced MMP2 levels. In fibroblasts populating collagen lattices, the effects of Smad7 on fibroblast-induced collagen denaturation and pad contraction were partly mediated via MMP2 downregulation. Surprisingly, MFS7KO mice also exhibited significant macrophage expansion caused by paracrine actions of Smad7 null fibroblasts that stimulate macrophage proliferation and fibrogenic activation. Macrophage activation involved the combined effects of the fibroblast-derived matricellular proteins CD5L (CD5 antigen-like), SPARC (secreted protein acidic and rich in cysteine), CTGF (connective tissue growth factor), ECM1 (extracellular matrix protein 1), and TGFBI (TGFB induced). CONCLUSIONS: The antifibrotic effects of Smad7 in the pressure-overloaded heart protect from dysfunction and involve not only reduction in collagen deposition but also suppression of MMP2-mediated matrix denaturation and paracrine effects that suppress macrophage activation through inhibition of matricellular proteins.


Assuntos
Fibrose , Camundongos Knockout , Miofibroblastos , Proteína Smad7 , Remodelação Ventricular , Animais , Proteína Smad7/metabolismo , Proteína Smad7/genética , Camundongos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Células Cultivadas , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta/metabolismo , Masculino , Fibroblastos/metabolismo , Fibroblastos/patologia , Transdução de Sinais , Miocárdio/metabolismo , Miocárdio/patologia
8.
Genes Dev ; 32(17-18): 1141-1154, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30181360

RESUMO

Estrogen receptor α (ER) is the major driver of ∼75% of breast cancers, and multiple ER targeting drugs are routinely used clinically to treat patients with ER+ breast cancer. However, many patients relapse on these targeted therapies and ultimately develop metastatic and incurable disease, and understanding the mechanisms leading to drug resistance is consequently of utmost importance. It is now clear that, in addition to estrogens, ER function is modulated by other steroid receptors and multiple signaling pathways (e.g., growth factor and cytokine signaling), and many of these pathways affect drug resistance and patient outcome. Here, we review the mechanisms through which these pathways impact ER function and drug resistance as well as discuss the clinical implications.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptores de Esteroides/metabolismo , Transdução de Sinais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Citocinas/fisiologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo
9.
Mol Cell Proteomics ; 22(8): 100594, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37328066

RESUMO

Fibroblast growth factors (FGFs) are paracrine or endocrine signaling proteins that, activated by their ligands, elicit a wide range of health and disease-related processes, such as cell proliferation and the epithelial-to-mesenchymal transition. The detailed molecular pathway dynamics that coordinate these responses have remained to be determined. To elucidate these, we stimulated MCF-7 breast cancer cells with either FGF2, FGF3, FGF4, FGF10, or FGF19. Following activation of the receptor, we quantified the kinase activity dynamics of 44 kinases using a targeted mass spectrometry assay. Our system-wide kinase activity data, supplemented with (phospho)proteomics data, reveal ligand-dependent distinct pathway dynamics, elucidate the involvement of not earlier reported kinases such as MARK, and revise some of the pathway effects on biological outcomes. In addition, logic-based dynamic modeling of the kinome dynamics further verifies the biological goodness-of-fit of the predicted models and reveals BRAF-driven activation upon FGF2 treatment and ARAF-driven activation upon FGF4 treatment.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Fatores de Crescimento de Fibroblastos , Fatores de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fosforilação , Proliferação de Células , Espectrometria de Massas
10.
Biochem J ; 481(7): 547-564, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38533769

RESUMO

Activins are one of the three distinct subclasses within the greater Transforming growth factor ß (TGFß) superfamily. First discovered for their critical roles in reproductive biology, activins have since been shown to alter cellular differentiation and proliferation. At present, members of the activin subclass include activin A (ActA), ActB, ActC, ActE, and the more distant members myostatin and GDF11. While the biological roles and signaling mechanisms of most activins class members have been well-studied, the signaling potential of ActE has remained largely unknown. Here, we characterized the signaling capacity of homodimeric ActE. Molecular modeling of the ligand:receptor complexes showed that ActC and ActE shared high similarity in both the type I and type II receptor binding epitopes. ActE signaled specifically through ALK7, utilized the canonical activin type II receptors, ActRIIA and ActRIIB, and was resistant to the extracellular antagonists follistatin and WFIKKN. In mature murine adipocytes, ActE invoked a SMAD2/3 response via ALK7, like ActC. Collectively, our results establish ActE as a specific signaling ligand which activates the type I receptor, ALK7.


Assuntos
Proteínas de Transporte , Fator de Crescimento Transformador beta , Camundongos , Animais , Fator de Crescimento Transformador beta/metabolismo , Ligantes , Receptores de Ativinas/genética , Receptores de Ativinas/metabolismo , Ativinas/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(40): e2122382119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161959

RESUMO

Fibroblast growth factor 1 (FGF1) is an autocrine growth factor released from adipose tissue during over-nutrition or fasting to feeding transition. While local actions underlie the majority of FGF1's anti-diabetic functions, the molecular mechanisms downstream of adipose FGF receptor signaling are unclear. We investigated the effects of FGF1 on glucose uptake and its underlying mechanism in murine 3T3-L1 adipocytes and in ex vivo adipose explants from mice. FGF1 increased glucose uptake in 3T3-L1 adipocytes and epididymal WAT (eWAT) and inguinal WAT (iWAT). Conversely, glucose uptake was reduced in eWAT and iWAT of FGF1 knockout mice. We show that FGF1 acutely increased adipocyte glucose uptake via activation of the insulin-sensitive glucose transporter GLUT4, involving dynamic crosstalk between the MEK1/2 and Akt signaling proteins. Prolonged exposure to FGF1 stimulated adipocyte glucose uptake by MEK1/2-dependent transcription of the basal glucose transporter GLUT1. We have thus identified an alternative pathway to stimulate glucose uptake in adipocytes, independent from insulin, which could open new avenues for treating patients with type 2 diabetes.


Assuntos
Adipócitos , Fator 1 de Crescimento de Fibroblastos , Glucose , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(26): e2119602119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35733255

RESUMO

Seadragons are a remarkable lineage of teleost fishes in the family Syngnathidae, renowned for having evolved male pregnancy. Comprising three known species, seadragons are widely recognized and admired for their fantastical body forms and coloration, and their specific habitat requirements have made them flagship representatives for marine conservation and natural history interests. Until recently, a gap has been the lack of significant genomic resources for seadragons. We have produced gene-annotated, chromosome-scale genome models for the leafy and weedy seadragon to advance investigations of evolutionary innovation and elaboration of morphological traits in seadragons as well as their pipefish and seahorse relatives. We identified several interesting features specific to seadragon genomes, including divergent noncoding regions near a developmental gene important for integumentary outgrowth, a high genome-wide density of repetitive DNA, and recent expansions of transposable elements and a vesicular trafficking gene family. Surprisingly, comparative analyses leveraging the seadragon genomes and additional syngnathid and outgroup genomes revealed striking, syngnathid-specific losses in the family of fibroblast growth factors (FGFs), which likely involve reorganization of highly conserved gene regulatory networks in ways that have not previously been documented in natural populations. The resources presented here serve as important tools for future evolutionary studies of developmental processes in syngnathids and hold value for conservation of the extravagant seadragons and their relatives.


Assuntos
Genoma , Sequências Repetitivas de Ácido Nucleico , Smegmamorpha , Animais , Fatores de Crescimento de Fibroblastos/genética , Genômica , Masculino , Filogenia , Smegmamorpha/anatomia & histologia , Smegmamorpha/classificação , Smegmamorpha/genética
13.
Dev Dyn ; 253(2): 181-203, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37638700

RESUMO

In response to injury, humans and many other mammals form a fibrous scar that lacks the structure and function of the original tissue, whereas other vertebrate species can spontaneously regenerate damaged tissues and structures. Peripheral nerves have been identified as essential mediators of wound healing and regeneration in both mammalian and nonmammalian systems, interacting with the milieu of cells and biochemical signals present in the post-injury microenvironment. This review examines the diverse functions of peripheral nerves in tissue repair and regeneration, specifically during the processes of wound healing, blastema formation, and organ repair. We compare available evidence in mammalian and nonmammalian models, identifying critical nerve-mediated mechanisms for regeneration and providing future perspectives toward integrating these mechanisms into a therapeutic framework to promote regeneration.


Assuntos
Cicatriz , Mamíferos , Animais , Humanos
14.
Gut ; 73(9): 1543-1553, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38724220

RESUMO

OBJECTIVE: Previous studies indicate that eosinophils are recruited into the allograft following orthotopic liver transplantation and protect from ischaemia reperfusion (IR) injury. In the current studies, we aim to explore whether their protective function could outlast during liver repair. DESIGN: Eosinophil-deficient mice and adoptive transfer of bone marrow-derived eosinophils (bmEos) were employed to investigate the effects of eosinophils on tissue repair and regeneration after hepatic IR injury. Aside from exogenous cytokine or neutralising antibody treatments, mechanistic studies made use of a panel of mouse models of eosinophil-specific IL-4/IL-13-deletion, cell-specific IL-4rα-deletion in liver macrophages and hepatocytes and macrophage-specific deletion of heparin-binding epidermal growth factor-like growth factor (hb-egf). RESULT: We observed that eosinophils persisted over a week following hepatic IR injury. Their peak accumulation coincided with that of hepatocyte proliferation. Functional studies showed that eosinophil deficiency was associated with a dramatic delay in liver repair, which was normalised by the adoptive transfer of bmEos. Mechanistic studies demonstrated that eosinophil-derived IL-4, but not IL-13, was critically involved in the reparative function of these cells. The data further revealed a selective role of macrophage-dependent IL-4 signalling in liver regeneration. Eosinophil-derived IL-4 stimulated macrophages to produce HB-EGF. Moreover, macrophage-specific hb-egf deletion impaired hepatocyte regeneration after IR injury. CONCLUSION: Together, these studies uncovered an indispensable role of eosinophils in liver repair after acute injury and identified a novel crosstalk between eosinophils and macrophages through the IL-4/HB-EGF axis.


Assuntos
Eosinófilos , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Interleucina-4 , Regeneração Hepática , Macrófagos , Traumatismo por Reperfusão , Animais , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Regeneração Hepática/fisiologia , Traumatismo por Reperfusão/metabolismo , Interleucina-4/metabolismo , Camundongos , Eosinófilos/metabolismo , Macrófagos/metabolismo , Fígado/patologia , Fígado/metabolismo , Fígado/irrigação sanguínea , Hepatócitos/metabolismo , Interleucina-13/metabolismo , Transferência Adotiva , Camundongos Endogâmicos C57BL
15.
J Biol Chem ; 299(10): 105224, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673340

RESUMO

Following 3 decades of extensive research into PI3K signaling, it is now evidently clear that the underlying network does not equate to a simple ON/OFF switch. This is best illustrated by the multifaceted nature of the many diseases associated with aberrant PI3K signaling, including common cancers, metabolic disease, and rare developmental disorders. However, we are still far from a complete understanding of the fundamental control principles that govern the numerous phenotypic outputs that are elicited by activation of this well-characterized biochemical signaling network, downstream of an equally diverse set of extrinsic inputs. At its core, this is a question on the role of PI3K signaling in cellular information processing and decision making. Here, we review the determinants of accurate encoding and decoding of growth factor signals and discuss outstanding questions in the PI3K signal relay network. We emphasize the importance of quantitative biochemistry, in close integration with advances in single-cell time-resolved signaling measurements and mathematical modeling.


Assuntos
Fosfatidilinositol 3-Quinases , Transdução de Sinais , Humanos , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Biologia de Sistemas , Família de Proteínas EGF/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Neural/metabolismo , Doenças Metabólicas/metabolismo
16.
J Cell Biochem ; 125(2): e30515, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38213080

RESUMO

Vascular endothelial growth factor (VEGF) mediated angiogenesis is crucial for tumor progression. Isoforms of VEGF bind to different VEGF receptors (VEGFRs) to initiate angiogenesis specific cellular signaling. Inhibitors that target both the receptors and ligands are in clinical use to impede angiogenesis. Bevacizumab, a monoclonal antibody (mAb) approved by the Food and Drug Administration (FDA), binds in the VEGF receptor binding domain (RBD) of all soluble isoforms of VEGF and inhibits the VEGF-VEGFR interaction. Bevacizumab is also used in combination with other chemotherapeutic agents for a better therapeutic outcome. Understanding the intricate polymorphic character of VEGFA gene and the influence of missense or nonsynonymous mutations in the form of nonsynonymous polymorphisms (nsSNPs) on RBD of VEGF may aid in increasing the efficacy of this drug. This study has identified 18 potential nsSNPs in VEGFA gene that affect the VEGF RBD structure and alter its binding pattern to bevacizumab. The mutated RBDs, modeled using trRosetta, in addition to the changed pattern of secondary structure, post translational modification and stability compared to the wild type, have shown contrasting binding affinity and molecular interaction pattern with bevacizumab. Molecular docking analysis by ClusPro and visualization using PyMol and PDBsum tools have detected 17 nsSNPs with decreased binding affinity to bevacizumab and therefore may impact the treatment efficacy. Whereas VEGF RBD expressed due to rs1267535717 (R229H) nsSNP of VEGFA has increased affinity to the mAb. This study suggests that genetic characterization of VEGFA before bevacizumab mediated cancer treatment is essential in predicting the appropriate efficacy of the drug, as the treatment efficiency may vary at individual level.


Assuntos
Anticorpos Monoclonais Humanizados , Fator A de Crescimento do Endotélio Vascular , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Anticorpos Monoclonais/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Isoformas de Proteínas , Mutação , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico
17.
Funct Integr Genomics ; 24(5): 146, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207523

RESUMO

Hepatocellular carcinoma (HCC) is a major fatal cancer that is known for its high recurrence and metastasis. An increasing number of studies have shown that the tumor microenvironment is closely related to the metastasis and invasion of HCC. The HCC microenvironment is a complex integrated system composed of cellular components, the extracellular matrix (ECM), and signaling molecules such as chemokines, growth factors, and cytokines, which are generally regarded as crucial molecules that regulate a series of important processes, such as the migration and invasion of HCC cells. Considering the crucial role of signaling molecules, this review aims to elucidate the regulatory effects of chemokines, growth factors, and cytokines on HCC cells in their microenvironment to provide important references for clarifying the development of HCC and exploring effective therapeutic targets.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Transdução de Sinais , Microambiente Tumoral , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Citocinas/metabolismo , Quimiocinas/metabolismo , Matriz Extracelular/metabolismo , Animais
18.
Biochem Biophys Res Commun ; 735: 150745, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39395370

RESUMO

Diabetic retinopathy (DR) is the leading cause of blindness and visual loss in people with diabetes. It has been suggested that the progression of DR is associated with chronic inflammation and oxidative stress. The aim of the present work was to evaluate the ability of the natural compound madecassic acid (MEA) to reverse the negative impact of streptozotocin (STZ) on retinal injury in rats. Diabetic rats induced by STZ were treated with MEA at the doses of 10 and 20 mg/kg bw for 8 weeks. The study compared the efficacy of the drug in controlling high blood sugar levels and its impact on therapeutic targets such as SOD, CAT, GPx, NF-κB, TNF-α, IL-6, IL-1ß, VEGF, IGF, bFGF and Keap1/Nrf-2 pathway. The results showed that the treatment with MEA significantly restored the retinal SOD, CAT, and GPx levels in diabetic rats to the near-normal levels. Moreover, the level of inflammatory mediators (TNF-α, IL-1ß, IL-6) and growth factors (VEGF, IGF, bFGF) was significantly lower in retinas of animals treated with MEA as compared to retinas of diabetic animals. The study also established that MEA administration reduced the NF-κB protein and altered the Nrf-2/Keap1 pathway thereby reducing oxidative stress and inflammation. Furthermore, the use of MEA prevented the progression of the retinal capillary basement membrane thickening. It has been found that MEA offers significant protection to the retina and therefore, the compound may be useful in the treatment of DR in humans.

19.
J Neuroinflammation ; 21(1): 109, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678300

RESUMO

BACKGROUND: Identifying individuals with intracranial injuries following mild traumatic brain injury (mTBI), i.e. complicated mTBI cases, is important for follow-up and prognostication. The main aims of our study were (1) to assess the temporal evolution of blood biomarkers of CNS injury and inflammation in individuals with complicated mTBI determined on computer tomography (CT) and magnetic resonance imaging (MRI); (2) to assess the corresponding discriminability of both single- and multi-biomarker panels, from acute to chronic phases after injury. METHODS: Patients with mTBI (n = 207), defined as Glasgow Coma Scale score between 13 and 15, loss of consciousness < 30 min and post-traumatic amnesia < 24 h, were included. Complicated mTBI - i.e., presence of any traumatic intracranial injury on neuroimaging - was present in 8% (n = 16) on CT (CT+) and 12% (n = 25) on MRI (MRI+). Blood biomarkers were sampled at four timepoints following injury: admission (within 72 h), 2 weeks (± 3 days), 3 months (± 2 weeks) and 12 months (± 1 month). CNS biomarkers included were glial fibrillary acidic protein (GFAP), neurofilament light (NFL) and tau, along with 12 inflammation markers. RESULTS: The most discriminative single biomarkers of traumatic intracranial injury were GFAP at admission (CT+: AUC = 0.78; MRI+: AUC = 0.82), and NFL at 2 weeks (CT+: AUC = 0.81; MRI+: AUC = 0.89) and 3 months (MRI+: AUC = 0.86). MIP-1ß and IP-10 concentrations were significantly lower across follow-up period in individuals who were CT+ and MRI+. Eotaxin and IL-9 were significantly lower in individuals who were MRI+ only. FGF-basic concentrations increased over time in MRI- individuals and were significantly higher than MRI+ individuals at 3 and 12 months. Multi-biomarker panels improved discriminability over single biomarkers at all timepoints (AUCs > 0.85 for admission and 2-week models classifying CT+ and AUC ≈ 0.90 for admission, 2-week and 3-month models classifying MRI+). CONCLUSIONS: The CNS biomarkers GFAP and NFL were useful single diagnostic biomarkers of complicated mTBI, especially in acute and subacute phases after mTBI. Several inflammation markers were suppressed in patients with complicated versus uncomplicated mTBI and remained so even after 12 months. Multi-biomarker panels improved diagnostic accuracy at all timepoints, though at acute and 2-week timepoints, the single biomarkers GFAP and NFL, respectively, displayed similar accuracy compared to multi-biomarker panels.


Assuntos
Biomarcadores , Concussão Encefálica , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Humanos , Masculino , Biomarcadores/sangue , Feminino , Imageamento por Ressonância Magnética/métodos , Adulto , Pessoa de Meia-Idade , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/sangue , Concussão Encefálica/complicações , Adulto Jovem , Proteínas de Neurofilamentos/sangue , Proteína Glial Fibrilar Ácida/sangue , Idoso , Fatores de Tempo
20.
Chembiochem ; 25(1): e202300551, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37856284

RESUMO

Stress-activated signaling pathways orchestrate cellular behaviors and fates. Studying the precise role(s) of stress-activated protein kinases is challenging, because stress conditions induce adaptation and impose selection pressure. To meet this challenge, we have applied an optogenetic system with a single plasmid to express light-activated p38α or its upstream activator, MKK6, in conjunction with live-cell fluorescence microscopy. In starved cells, decaging of constitutively active p38α or MKK6 by brief exposure to UV light elicits rapid p38-mediated signaling, release of cytochrome c from mitochondria, and apoptosis with different kinetics. In parallel, light activation of p38α also suppresses autophagosome formation, similarly to stimulation with growth factors that activate PI3K/Akt/mTORC1 signaling. Active MKK6 negatively regulates serum-induced ERK activity, which is p38-independent as previously reported. Here, we reproduce that result with the one plasmid system and show that although decaging active p38α does not reduce basal ERK activity in our cells, it can block growth factor-stimulated ERK signaling in serum-starved cells. These results clarify the roles of MKK6 and p38α in dynamic signaling programs, which act in concert to actuate apoptotic death while suppressing cell survival mechanisms.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina , Proteínas Quinases Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Quinases p38 Ativadas por Mitógeno , MAP Quinase Quinase 6/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA