Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Prep Biochem Biotechnol ; 53(5): 465-474, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35856452

RESUMO

Paraoxonase 2 (PON2) is considered as a potential anti-biofilm agent due to the highest lactonase activity among the PON family members implicating quorum quenching in gram-negative bacteria. However, PON2 is expressed mostly in insoluble fractions in the bacterial expression host which limits its application as an anti-biofilm agent. Therefore, obtaining the native human PON2 (HuPON2) protein in soluble form, better protein yield, stability, and enzymatic activities is essential. In this study, procedures for obtaining a high yield of the native form of HuPON2 in soluble and active forms were optimized. Guanidinium hydrochloride solubilized the HuPON2 protein, however, it is lethal for several bacteria, and thus a major problem for studying the various downstream application of the protein. Therefore, another refolding process for native HuPON2 was optimized. Owing to the promiscuous nature of HuPON2, we hypothesized that it could inhibit the biofilm formation in Mycobacterium smegmatis also. Interestingly, we observed a significant inhibition of the biofilm formation by HuPON2_Rf. However, the primary target of HuPON2 and the probable mechanism behind the quorum quenching in M. smegmatis need to be further explored, which would help widen the scope of HuPON2 as a potential anti-biofilm agent beyond the gram-negative bacteria.


Assuntos
Arildialquilfosfatase , Biofilmes , Humanos , Arildialquilfosfatase/metabolismo , Percepção de Quorum
2.
Molecules ; 27(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684327

RESUMO

The use of a proper sample processing methodology for maximum proteome coverage and high-quality quantitative data is an important choice to make before initiating a liquid chromatography-mass spectrometry (LC-MS)-based proteomics study. Popular sample processing workflows for proteomics involve in-solution proteome digestion and single-pot, solid-phase-enhanced sample preparation (SP3). We tested them on both HeLa cells and human plasma samples, using lysis buffers containing SDS, or guanidinium hydrochloride. We also studied the effect of using commercially available depletion mini spin columns before SP3, to increase proteome coverage in human plasma samples. Our results show that the SP3 protocol, using either buffer, achieves the highest number of quantified proteins in both the HeLa cells and plasma samples. Moreover, the use of depletion mini spin columns before SP3 results in a two-fold increase of quantified plasma proteins. With additional fractionation, we quantified nearly 1400 proteins, and examined lower-abundance proteins involved in neurodegenerative pathways and mitochondrial metabolism. Therefore, we recommend the use of the SP3 methodology for biological sample processing, including those after depletion of high-abundance plasma proteins.


Assuntos
Proteoma , Manejo de Espécimes , Cromatografia Líquida/métodos , Células HeLa , Humanos , Espectrometria de Massas/métodos , Proteoma/análise , Manejo de Espécimes/métodos
3.
Int J Mol Sci ; 21(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947921

RESUMO

There has been an increasing interest in the development of antimicrobial peptides (AMPs) and their synthetic mimics as a novel class of antibiotics to overcome the rapid emergence of antibiotic resistance. Recently, phenylglyoxamide-based small molecular AMP mimics have been identified as potential leads to treat bacterial infections. In this study, a new series of biphenylglyoxamide-based small molecular AMP mimics were synthesised from the ring-opening reaction of N-sulfonylisatin bearing a biphenyl backbone with a diamine, followed by the conversion into tertiary ammonium chloride, quaternary ammonium iodide and guanidinium hydrochloride salts. Structure-activity relationship studies of the analogues identified the octanesulfonyl group as being essential for both Gram-positive and Gram-negative antibacterial activity, while the biphenyl backbone was important for Gram-negative antibacterial activity. The most potent analogue was identified to be chloro-substituted quaternary ammonium iodide salt 15c, which possesses antibacterial activity against both Gram-positive (MIC against Staphylococcus aureus = 8 µM) and Gram-negative bacteria (MIC against Escherichia coli = 16 µM, Pseudomonas aeruginosa = 63 µM) and disrupted 35% of pre-established S. aureus biofilms at 32 µM. Cytoplasmic membrane permeability and tethered bilayer lipid membranes (tBLMs) studies suggested that 15c acts as a bacterial membrane disruptor. In addition, in vitro toxicity studies showed that the potent compounds are non-toxic against human cells at therapeutic dosages.


Assuntos
Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptidomiméticos/síntese química , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/toxicidade , Biofilmes/efeitos dos fármacos , Compostos de Bifenilo/química , Linhagem Celular , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Bicamadas Lipídicas , Potenciais da Membrana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptidomiméticos/farmacologia , Peptidomiméticos/toxicidade , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Compostos de Sulfonilureia/química
4.
Pharm Res ; 35(7): 137, 2018 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29744598

RESUMO

PURPOSE: To evaluate the different degrees of residual structure in the unfolded state of interferon-τ using chemical denaturation as a function of temperature by both urea and guanidinium hydrochloride. METHODS: Asymmetrical flow field-flow fractionation (AF4) using both UV and multi-angle laser light scattering (MALLS). Flow Microscopy. All subvisible particle imaging measurements were made using a FlowCAM flow imaging system. RESULTS: The two different denaturants provided different estimates of the conformational stability of the protein when extrapolated back to zero denaturant concentration. This suggests that urea and guanidinium hydrochloride (GnHCl) produce different degrees of residual structure in the unfolded state of interferon-τ. The differences were most pronounced at low temperature, suggesting that the residual structure in the denatured state is progressively lost when samples are heated above 25°C. The extent of expansion in the unfolded states was estimated from the m-values and was also measured using AF4. In contrast, the overall size of interferon-τ was determined by AF4 to decrease in the presence of histidine, which is known to bind to the native state, thereby providing conformational stabilization. Addition of histidine as the buffer resulted in formation of fewer subvisible particles over time at 50°C. Finally, the thermal aggregation was monitored using AF4 and the rate constants were found to be comparable to those determined previously by SEC and DLS. The thermal aggregation appears to be consistent with a nucleation-dependent mechanism with a critical nucleus size of 4 ± 1. CONCLUSION: Chemical denaturation of interferon-τ by urea or GnHCl produces differing amounts of residual structure in the denatured state, leading to differing estimates of conformational stability. AF4 was used to determine changes in size, both upon ligand binding as well as upon denaturation with GnHCl. Histidine appears to be the preferred buffer for interferon-τ, as shown by slower formation of soluble aggregates and reduced levels of subvisible particles when heated at 50°C.


Assuntos
Interferon Tipo I/química , Proteínas da Gravidez/química , Agregados Proteicos , Desnaturação Proteica , Desdobramento de Proteína , Água/química , Interferon Tipo I/análise , Interferon Tipo I/metabolismo , Soluções Farmacêuticas/química , Soluções Farmacêuticas/metabolismo , Espectroscopia Fotoeletrônica/métodos , Proteínas da Gravidez/análise , Proteínas da Gravidez/metabolismo , Agregados Proteicos/fisiologia , Água/metabolismo
5.
Front Neurosci ; 16: 943355, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203800

RESUMO

Amyloid formation is linked to devastating neurodegenerative diseases, motivating detailed studies of the mechanisms of amyloid formation. For Aß, the peptide associated with Alzheimer's disease, the mechanism and rate of aggregation have been established for a range of variants and conditions in vitro and in bodily fluids. A key outstanding question is how the relative stabilities of monomers, fibrils and intermediates affect each step in the fibril formation process. By monitoring the kinetics of aggregation of Aß42, in the presence of urea or guanidinium hydrochloride (GuHCl), we here determine the rates of the underlying microscopic steps and establish the importance of changes in relative stability induced by the presence of denaturant for each individual step. Denaturants shift the equilibrium towards the unfolded state of each species. We find that a non-ionic denaturant, urea, reduces the overall aggregation rate, and that the effect on nucleation is stronger than the effect on elongation. Urea reduces the rate of secondary nucleation by decreasing the coverage of fibril surfaces and the rate of nucleus formation. It also reduces the rate of primary nucleation, increasing its reaction order. The ionic denaturant, GuHCl, accelerates the aggregation at low denaturant concentrations and decelerates the aggregation at high denaturant concentrations. Below approximately 0.25 M GuHCl, the screening of repulsive electrostatic interactions between peptides by the charged denaturant dominates, leading to an increased aggregation rate. At higher GuHCl concentrations, the electrostatic repulsion is completely screened, and the denaturing effect dominates. The results illustrate how the differential effects of denaturants on stability of monomer, oligomer and fibril translate to differential effects on microscopic steps, with the rate of nucleation being most strongly reduced.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 225: 117510, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31520999

RESUMO

In the present study, we report the cooperative refolding/renaturation behaviour of guanidinium hydrochloride (GdnHCl) denatured bovine serum albumin (BSA) in the presence of cationic surfactant cetyltrimethylammonium bromide (CTAB), anionic surfactant sodium dodecyl sulphate (SDS) and their catanionic mixture in the solution of 60 mM sodium phosphate buffer of physiological pH 7.4, using artificial chaperone-assisted two-step method. Here, we have employed biophysical techniques to characterize the refolding mechanism of denatured BSA after 200 times of dilution in the presence of cationic, anionic surfactants and their catanionic mixture, separately. We have found that minimum refolding of diluted BSA in the presence of 1:1 rational mixture of CTAB and SDS (CTAB/SDS = 50/50), it may be due to the micelles formation which is responsible for the unordered microstructure aggregate formation. Other mixtures (CTAB/SDS = 20/80 and 80/20) slightly played an effective role during refolding process in the presence of methyl-ß-cyclodextrin. On other hand, CTAB and SDS are more effective and reflect a good renaturation tendency of denatured BSA solution separately and in existence of methyl-ß-cyclodextrin as compare to their mixture compositions. But overall, CTAB has the better renaturation tendency as compare to SDS in the existence of methyl-ß-cyclodextrin. These results ascribed the presence of charge head group and length of hydrophobic tail of CTAB surfactant that plays an important task during electrostatic and hydrophobic interactions at pH 7.4 at which BSA carries negative charge on their surface. These biophysical parameters suggest that, CTAB surfactant assisted artificial chaperone protocol may be utilized in the protein renaturation/refolding studies, which may address the associated problems of biotechnological industries for the development of efficient and inexpensive folding aides, which may also be used to produced genetically engineered cells related diseases, resulting from protein misfolding/aggregation.


Assuntos
Guanidina , Redobramento de Proteína , Soroalbumina Bovina/química , Animais , Fenômenos Biofísicos , Bovinos , Cetrimônio/farmacologia , Dicroísmo Circular , Difusão Dinâmica da Luz , Guanidina/farmacologia , Técnicas In Vitro , Chaperonas Moleculares , Desnaturação Proteica/efeitos dos fármacos , Redobramento de Proteína/efeitos dos fármacos , Renaturação Proteica/efeitos dos fármacos , Soroalbumina Bovina/efeitos dos fármacos , Dodecilsulfato de Sódio/farmacologia , Espectrometria de Fluorescência , Tensoativos/farmacologia , beta-Ciclodextrinas/química
7.
Clin Mass Spectrom ; 14 Pt B: 74-82, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34917763

RESUMO

Cerebrospinal fluid (CSF) tau and phospho-tau are well established biomarkers of Alzheimer's disease. While these measures are conventionally referred to as 'total tau' (T-tau) and 'phospho-tau' (P-tau), several truncated and modified tau forms exist that may relay additional diagnostic information. We evaluated the diagnostic performance of an endogenous tau peptide in CSF, tau 175-190, in the phosphorylated and non-phosphorylated state. A liquid chromatography-mass spectrometry (LC-MS) method was established to measure these peptides in CSF and was used to analyze two independent clinical cohorts; the first cohort included patients with Alzheimer's disease (AD, n = 15), Parkinson's disease (PD, n = 15), progressive supranuclear palsy (PSP, n = 15), and healthy controls (n = 15), the second cohort included AD patients (n = 16), and healthy controls (n = 24). In both cohorts T-tau and P-tau concentrations were determined by immunoassay. While tau 175-190 and P-tau 175-190 did not differentiate the study groups, the separation of AD and controls by T-tau (area under the ROC Curve (AUC) = 95%) and P-tau (AUC = 92%) was improved when normalizing the ELISA measurements to the concentrations of the endogenous peptides: T-tau/tau 175-190 (AUC = 100%), P-tau/P-tau 175-190 (AUC = 95%). The separation between patients and controls by T-tau (AUC = 88%) and P-tau (AUC = 82%) was similarly improved in the second cohort by taking the ratios of T-tau/tau 175-190 (AUC = 97%) and P-tau/P-tau 175-190 (AUC = 98%). In conclusion, our results suggest that the performance of the AD biomarkers T-tau and P-tau could be improved by normalizing their measurements to the endogenous peptides tau 175-190 and P-tau 175-190, possibly because these endogenous tau peptides serve to normalize for physiological, and disease-independent, secretion of tau from neurons to the extracellular space and the CSF. Finally, the observations made here add to the general applicability of mass spectrometry as a tool for rapid identification and accurate quantification of biomarker candidates.

8.
Rev. cuba. med. trop ; 74(2): e802, May.-Aug. 2022. tab, graf
Artigo em Espanhol | LILACS, CUMED | ID: biblio-1408907

RESUMO

RESUMEN Introducción: Los medios de colecta de muestras clínicas con capacidad de desnaturalizar virus reducen los riesgos de contagio durante el transporte y procesamiento. Objetivo: Emplear el medio de transporte de ácidos nucleicos (TAN) en muestras de exudado nasofaríngeo colectadas para el diagnóstico de SARS-CoV-2. Métodos: Se realizó un estudio experimental para demostrar la capacidad del medio de inactivar la infectividad viral. Se tomó como modelo de virus envuelto el virus Zika (VZk), cuyo nivel de bioseguridad es 2. Se evaluó el desempeño clínico del medio TAN para el diagnóstico de SARS-CoV-2. Se empleó una cepa del VZk propagada en la línea celular Vero y, previo a la infección de las células, el VZk se puso en contacto a intervalos de tiempo diferentes (2; 15 y 30 min) con el medio TAN puro; y luego se realizaron diluciones seriadas (10-1-10-4). La inactivación viral se evaluó por RT-PCR, en el sobrenadante y células colectadas, al culminar el periodo de propagación. El desempeño clínico del medio TAN se estimó tomando como referencia el CITOSWAB® VTM, en 30 exudados nasofaríngeos colectados para diagnóstico de la infección por SARS-CoV-2. Resultados: El VZk preservó su infectividad a diluciones del inóculo ≥ 10-2, independientemente del tiempo de contacto. La sensibilidad y especificidad clínica del medio TAN para el diagnóstico de SARS-CoV-2 fueron del 100 %, respectivamente. Conclusiones: Los resultados sugieren que muestras clínicas positivas a VZk en diluciones ≤ 10-1 del medio TAN pueden ser manipuladas de forma segura, lo que pudiera aplicarse potencialmente al diagnóstico molecular del SARS-CoV-2.


ABSTRACT Introduction: Collection media of clinical samples with the capacity to denature viruses reduce the risk of contagion during transportation and processing. Objective: To use the nucleic acids transport media (NATM) in nasopharyngeal swab samples collected for the diagnosis of SARS-CoV-2. Methods: An experimental study was conducted to demonstrate the medium capacity to inactivate viral infectivity. Zika virus (ZIKV), of biosafety level 2, was used as an enveloped virus model. The clinical performance of the NATM for the diagnosis of SARS-CoV-2 was evaluated. A ZIKV strain propagated in the Vero cell line was used and, prior to cells infection, ZIKV was in contact at different intervals (2; 15, and 30 min) with pure NATM; subsequently, serial dilutions (10-1-10-4) were performed. Viral inactivation was evaluated by RT-PCR in the supernatant and the collected cells when the propagation period was completed. CITOSWAB® VTM was used as reference to estimate the clinical performance of the NATM in 30 nasopharyngeal swabs collected for the diagnosis of SARS-CoV-2 infection. Results: ZIKV remained infectious at inoculum dilutions of ≥ 10-2, regardless of contact time. Clinical specificity and sensitivity of the NATM for the diagnosis of SARS-CoV-2 were 100%, respectively. Conclusions: Results suggest that ZIKV positive clinical samples at dilutions ≤ 10-1 of the NATM can be safely handled, which could potentially be applied to the molecular diagnosis of SARS-CoV-2.


Assuntos
Humanos
9.
J Biotechnol ; 240: 48-60, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27794496

RESUMO

Human interferon gamma is a cytokine belonging to a diverse group of interferons which have a crucial immunological function against mycobacteria and a wide variety of viral infections. To date, it has been approved for treatment of chronic granulomatous disease and malignant osteopetrosis, and its application as an immunotherapeutic agent against cancer is an increasing prospect. Recombinant human interferon gamma, as a lucrative biopharmaceutical, has been engineered in different expression systems including prokaryotic, protozoan, fungal (yeasts), plant, insect and mammalian cells. Human interferon gamma is commonly expressed in Escherichia coli, marketed as ACTIMMUNE®, however, the resulting product of the prokaryotic expression system is unglycosylated with a short half-life in the bloodstream; the purification process is tedious and makes the product costlier. Other expression systems also did not show satisfactory results in terms of yields, the biological activity of the protein or economic viability. Thus, the review aims to synthesise available information from previous studies on the production of human interferon gamma and its glycosylation patterns in different expression systems, to provide direction to future research in this field.


Assuntos
Interferon gama/biossíntese , Interferon gama/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Animais , Escherichia coli , Terapia Genética , Glicosilação , Humanos , Imunoterapia , Interferon gama/metabolismo , Interferon gama/uso terapêutico , Neoplasias/terapia , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico
10.
Colloids Surf B Biointerfaces ; 123: 96-105, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25260221

RESUMO

The primary objective of this study is to explore the interaction of ß-galactosidase with copper oxide nanoparticles (CuO NPs). Steady-state absorption, fluorescence and circular dichroism (CD) spectroscopic techniques have been employed to unveil the conformational changes of ß-galactosidase induced by the binding of CuO NPs. Temperature dependent fluorescence quenching results indicates a static quenching mechanism in the present case. The binding thermodynamic parameters delineate the predominant role of H-bonding and van der Waals forces between ß-galactosidase and CuO NPs binding process. The binding was studied by isothermal titration calorimetry (ITC) and the result revealed that the complexation is enthalpy driven, the ΔH°<0, ΔS°<0 indicates the formation of hydrogen bonds between ß-galactosidase and CuO NPs occurs. Disruption of the native conformation of the protein upon binding with CuO NPs is reflected through a reduced functionality (in terms of hydrolase activity) of the protein CuO NPs conjugate system in comparison to the native protein and CuO NPs exhibited a competitive mode of inhibition. This also supports the general belief that H-bond formation occurs with NPs is associated with a lesser extent of modification in the native structure. Morphological features and size distributions were investigated using transmission electron microscopy (TEM) and dynamic light scattering (DLS). Additionally the considerable increase in the Rh following the addition of CuO NPs accounts for the unfolding of ß-galactosidase. Chemical and thermal unfolding of ß-galactosidase, when carried out in the presence of CuO NPs, also indicated a small perturbation in the protein structure. These alterations in functional activity of nanoparticle bound ß-galactosidase which will have important consequences should be taken into consideration while using nanoparticles for diagnostic and therapeutic purposes.


Assuntos
Cobre/química , Guanidina/química , Nanopartículas Metálicas/química , beta-Galactosidase/química , Dicroísmo Circular , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Termodinâmica
11.
FEBS Lett ; 587(24): 3949-54, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24188824

RESUMO

Zinc-α2-glycoprotein (ZAG) is an adipokine with an MHC class I-like protein fold. Even though zinc causes ZAG to precipitate from plasma during protein purification, no zinc binding has been identified to date. Using mass spectrometry, we demonstrated that ZAG contains one strongly bound zinc ion, predicted to lie close to the α1 and α2 helical groove. UV, CD and fluorescence spectroscopies detected weak zinc binding to holo-ZAG, which can bind up to 15 zinc ions. Zinc binding to 11-(dansylamino) undecanoic acid was enhanced by holo-ZAG. Zinc binding may be important for ZAG binding to fatty acids and the ß-adrenergic receptor.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Zinco/metabolismo , Adipocinas , Sítios de Ligação , Ácidos Graxos/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/fisiologia , Estrutura Secundária de Proteína , Receptores Adrenérgicos beta/metabolismo , Especificidade por Substrato , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA