Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci China Life Sci ; 67(7): 1502-1513, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38478297

RESUMO

Various SARS-CoV-2-related coronaviruses have been increasingly identified in pangolins, showing a potential threat to humans. Here we report the infectivity and pathogenicity of the SARS-CoV-2-related virus, PCoV-GX/P2V, which was isolated from a Malayan pangolin (Manis javanica). PCoV-GX/P2V could grow in human hepatoma, colorectal adenocarcinoma cells, and human primary nasal epithelial cells. It replicated more efficiently in cells expressing human angiotensin-converting enzyme 2 (hACE2) as SARS-CoV-2 did. After intranasal inoculation to the hACE2-transgenic mice, PCoV-GX/P2V not only replicated in nasal turbinate and lungs, but also caused interstitial pneumonia, characterized by infiltration of mixed inflammatory cells and multifocal alveolar hemorrhage. Existing population immunity established by SARS-CoV-2 infection and vaccination may not protect people from PCoV-GX/P2V infection. These findings further verify the hACE2 utility of PCoV-GX/P2V by in vivo experiments using authentic viruses and highlight the importance for intensive surveillance to prevent possible cross-species transmission.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Camundongos Transgênicos , Pangolins , SARS-CoV-2 , Animais , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , SARS-CoV-2/patogenicidade , SARS-CoV-2/genética , COVID-19/virologia , Pangolins/virologia , Camundongos , Replicação Viral , Pulmão/virologia , Pulmão/patologia , Chlorocebus aethiops , Células Vero
2.
Sci Rep ; 14(1): 13865, 2024 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879684

RESUMO

Severe acute respiratory syndrome coronavirus 2 had devastating consequences for human health. Despite the introduction of several vaccines, COVID-19 continues to pose a serious health risk due to emerging variants of concern. DNA vaccines gained importance during the pandemic due to their advantages such as induction of both arms of immune response, rapid development, stability, and safety profiles. Here, we report the immunogenicity and protective efficacy of a DNA vaccine encoding spike protein with D614G mutation (named pcoSpikeD614G) and define a large-scale production process. According to the in vitro studies, pcoSpikeD614G expressed abundant spike protein in HEK293T cells. After the administration of pcoSpikeD614G to BALB/c mice through intramuscular (IM) route and intradermal route using an electroporation device (ID + EP), it induced high level of anti-S1 IgG and neutralizing antibodies (P < 0.0001), strong Th1-biased immune response as shown by IgG2a polarization (P < 0.01), increase in IFN-γ levels (P < 0.01), and increment in the ratio of IFN-γ secreting CD4+ (3.78-10.19%) and CD8+ (5.24-12.51%) T cells. Challenging K18-hACE2 transgenic mice showed that pcoSpikeD614G administered through IM and ID + EP routes conferred 90-100% protection and there was no sign of pneumonia. Subsequently, pcoSpikeD614G was evaluated as a promising DNA vaccine candidate and scale-up studies were performed. Accordingly, a large-scale production process was described, including a 36 h fermentation process of E. coli DH5α cells containing pcoSpikeD614G resulting in a wet cell weight of 242 g/L and a three-step chromatography for purification of the pcoSpikeD614G DNA vaccine.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Camundongos Endogâmicos BALB C , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinas de DNA , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Animais , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Camundongos , COVID-19/prevenção & controle , COVID-19/imunologia , Células HEK293 , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Feminino , Imunogenicidade da Vacina , Imunoglobulina G/sangue , Imunoglobulina G/imunologia
3.
Vaccines (Basel) ; 12(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39066404

RESUMO

The SARS-CoV-2 pandemic and the emergence of novel virus variants have had a dramatic impact on public health and the world economy, underscoring the need for detailed studies that explore the high efficacy of additional vaccines in animal models. In this study, we confirm the pathogenicity of the SARS-CoV-2/Leiden_008 isolate (GenBank accession number MT705206.1) in K18-hACE2 transgenic mice. Using this isolate, we show that a vaccine consisting of capsid virus-like particles (cVLPs) displaying the receptor-binding domain (RBD) of SARS-CoV-2 (Wuhan strain) induces strong neutralizing antibody responses and sterilizing immunity in K18-hACE2 mice. Furthermore, we demonstrate that vaccination with the RBD-cVLP vaccine protects mice from both a lethal infection and symptomatic disease. Our data also indicate that immunization significantly reduces inflammation and lung pathology associated with severe disease in mice. Additionally, we show that the survival of naïve animals significantly increases when sera from animals vaccinated with RBD-cVLP are passively transferred, prior to a lethal virus dose. Finally, the RBD-cVLP vaccine has a similar antigen composition to the clinical ABNCOV2 vaccine, which has shown non-inferiority to the Comirnaty mRNA vaccine in phase I-III trials. Therefore, our study provides evidence that this vaccine design is highly immunogenic and confers full protection against severe disease in mice.

4.
EBioMedicine ; 103: 105132, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677182

RESUMO

BACKGROUND: SARS-CoV-2 infection is considered as a relapsing inflammatory process with a dysregulation of IL-6 signalling. Classic IL-6 signalling is thought to represent a defence mechanism against pathogens. In contrast, IL-6 trans-signalling has pro-inflammatory effects. In severe COVID-19, therapeutic strategies have focused on global inhibition of IL-6, with controversial results. We hypothesized that specific blockade of IL-6 trans-signalling could inhibit inflammatory response preserving the host defence activity inherent to IL-6 classic signalling. METHODS: To test the role of the specific IL-6 trans-signalling inhibition by sgp130Fc in short- and long-term consequences of COVID-19, we used the established K18-hACE2 transgenic mouse model. Histological as well as immunohistochemical analysis, and pro-inflammatory marker profiling were performed. To investigate IL-6 trans-signalling in human cells we used primary lung microvascular endothelial cells and fibroblasts in the presence/absence of sgp130Fc. FINDINGS: We report that targeting IL-6 trans-signalling by sgp130Fc attenuated SARS-CoV-2-related clinical symptoms and mortality. In surviving mice, the treatment caused a significant decrease in lung damage. In vitro, IL-6 trans-signalling induced strong and persisting JAK1/STAT3 activation in endothelial cells and lung fibroblasts with proinflammatory effects, which were attenuated by sgp130Fc. Our data also suggest that in those cells with scant amounts of IL-6R, the induction of gp130 and IL-6 by IL-6:sIL-6R complex sustains IL-6 trans-signalling. INTERPRETATION: IL-6 trans-signalling fosters progression of COVID-19, and suggests that specific blockade of this signalling mode could offer a promising alternative to mitigate both short- and long-term consequences without affecting the beneficial effects of IL-6 classic signalling. These results have implications for the development of new therapies of lung injury and endotheliopathy in COVID-19. FUNDING: The project was supported by ISCIII, Spain (COV-20/00792 to MB, PI23/01351 to MARH) and the European Commission-Next generation EU (European Union) (Regulation EU 2020/2094), through CSIC's Global Health Platform (PTI Salud Global, SGL2103029 to MB). PID2019-110587RB-I00 (MB) supported by MICIN/AEI/10.13039/501100011033/and PID2022-143034OB-I00 (MB) by MICIN/AEI/10.13039/501100011033/FEDER. MAR-H acknowledges support from ISCIII, Spain and the European Commission-Next generation EU (European Union), through CSIC's Global Health PTI.


Assuntos
COVID-19 , Receptor gp130 de Citocina , Interleucina-6 , Camundongos Transgênicos , SARS-CoV-2 , Transdução de Sinais , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Infecções por Coronavirus/patologia , COVID-19/metabolismo , Tratamento Farmacológico da COVID-19 , Receptor gp130 de Citocina/metabolismo , Receptor gp130 de Citocina/antagonistas & inibidores , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Interleucina-6/metabolismo , Pulmão/patologia , Pulmão/virologia , Pulmão/metabolismo , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Pneumonia Viral/patologia , Pneumonia Viral/metabolismo , Receptores de Interleucina-6/metabolismo , Receptores de Interleucina-6/antagonistas & inibidores , Proteínas Recombinantes de Fusão/farmacologia , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA