RESUMO
Liamocins are molecules with a polyol lipid structure produced by rare strains of Aureobasidium pullulans. In recent years, liamocins have attracted attention due to their antibacterial, anticancer and surface-active properties, and promising potential applications have been identified in the food, agriculture, medical and pharmaceutical industries. This study is the first to investigate the effects of different carbon and nitrogen sources on the growth and liamocin production kinetics of A. pullulans NBRC 100716 strain. This strain was selected among six different A. pullulans strains whose liamocin productions were tested by us for the first time. In fermentations carried out in shaking water baths, the carbon source that most supported the liamocin production of this strain was fructose, and the nitrogen source was peptone-yeast extract combination. In the medium containing fructose and the peptone-yeast extract mixture, A. pullulans NBRC 100716 produced 4.26 g liamocin L-1. The specific liamocin production rate (qp) of the strain in this medium was 0.0090 g liamocin/g mo.h. This study is also the first to produce liamocin with a fructophilic A. pullulans strain. Present findings in this research also demonstrated the excellent biosurfactant capacity of the liamocin produced by this strain. The obtained liamocin reduced the water surface tension to a degree that can compete with synthetic surfactants. Furthermore, this is the first report to reveal that the fatty acid profile of liamocin obtained from A. pullulans NBRC 100716 contains an appreciable amount of unsaturated fatty acids and is similar to the composition of vegetable oil.
Assuntos
Aureobasidium , Carbono , Meios de Cultura , Fermentação , Nitrogênio , Nitrogênio/metabolismo , Carbono/metabolismo , Meios de Cultura/química , Aureobasidium/metabolismo , Cinética , Frutose/metabolismoRESUMO
The exhaustion of conventional light oils necessitates the shift towards unconventional sources such as biomass, heavy oil, oil shale, and coal. Non-catalytic thermal cracking by a free radical mechanism is at the heart of the upgrading, prior to refining into valuable products. However, thermal pyrolysis is hindered by the formation of asphaltenes, precursors to coke, limiting cracking, causing equipment fouling, and reducing product stability. Free radicals are inherently present in heavy fractions and are generated during thermal processes. This makes these reactive intermediates central to understanding these mechanisms and limiting coking. Electron spin resonance (ESR) spectroscopy facilitates such mechanistic studies. Over the past decade, there has been no review of using in-situ ESR for studying thermal processes. This work begins with a brief description of free radicals' chain reactions during thermal reactions and the wealth of information ESR provides. We then critically review the literature that uses ESR for mechanistic studies in thermal pyrolysis of biomass, heavy oil, shales, and coal. We conclude that limited literature exist, and more investigations are necessary. The key findings from existing literature are summarized to know the current state of knowledge. We also explicitly highlight the research gaps.
Assuntos
Biomassa , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radicais Livres/química , Pirólise , Catálise , Carvão Mineral/análise , Óleos/químicaRESUMO
Oil serves as the essential fuel and economic foundation of contemporary industry. However, the use of traditional light crude oil has exceeded its supply, making it challenging to meet the energy needs of humanity. Consequently, the extraction of heavy oil has become crucial in addressing this demand. This research focuses on the synthesis of several water-soluble catalysts that can work along with reservoir minerals to catalyze the hydrothermal cracking process of heavy oil. The goal is to effectively reduce the viscosity of heavy oil and lower the cost of its extraction. Based on the experimental findings, it was observed that when oil sample 1 underwent hydrothermal cracking at a temperature of 180 °C for a duration of 4 h, the amount of water added and catalyst used were 30% and 0.2% of the oil sample dosage, respectively. It was further discovered that the synthesized Mn(II)C was able to reduce the viscosity of oil sample 1 by 50.38%. The investigation revealed that the combination of Mn(II)C + K exhibited a significant synergistic catalytic impact on reducing viscosity. Initially, the viscosity reduction rate was 50.38%, which climbed to 61.02%. Subsequently, when catalyzed by the hydrogen supply agent isopropanol, the rate of viscosity reduction rose further to 91.22%. Several methods, such as freezing point analysis, thermogravimetric analysis, DSC analysis, component analysis, gas chromatography, wax crystal morphology analysis, and GC-MS analysis, were conducted on aqueous organic matter derived from heavy oil after undergoing different reaction systems. These analyses confirmed that the viscosity of the heavy oil was decreased. By studying the reaction mechanism of the model compound and analyzing the aqueous phase, the reaction largely involves depolymerization between macromolecules, breakdown of heteroatom chains, hydrogenation, ring opening, and other related consequences. These actions diminish the strength of the van der Waals force and hydrogen bond in the recombinant interval, impede the creation of a grid-like structure in heavy oil, and efficiently decrease its viscosity.
RESUMO
In order to study the synergistic effects of exogenous catalysts and in situ minerals in the reservoir during heavy oil aquathermolysis, in this paper, a series of simple supported transition metal complexes were prepared using sodium citrate, chloride salts and bentonite, and their catalytic viscosity reduction performances for heavy oil were investigated. Bentonite complex catalyst marked as B@Zn(II)L appears to be the most effective complex. B@Zn(II)L was characterized by scanning electron microscopy (SEM), Fourier-Transform Infrared (FTIR) spectroscopy, thermo-gravimetric analysis (TGA) and N2 adsorption-desorption isotherms. Under optimized conditions, the viscosity of the heavy oil was decreased by 88.3%. The reaction temperature was reduced by about 70 °C compared with the traditional reaction. The results of the group composition analysis and the elemental content of the heavy oil indicate that the resin and asphaltene content decreases, and the saturated and aromatic HC content increases. The results of TGA and DSC of the heavy oil show that the macromolecular substances in the heavy oil were cracked into small molecules with low boiling points by the reaction. GC-MS examination of water-soluble polar compounds post-reaction indicates that B@Zn(II)L can diminish the quantity of polar substances in heavy oil and lower the aromatic nature of these compounds. Thiophene and quinoline were utilized as model compounds to investigate the reaction mechanism. GC-MS analysis revealed that C-C, C-N and C-S bonds were cleaved during the reaction, leading to a decrease in the viscosity of heavy oil.
RESUMO
Analysis of the heavy fractions in crude oil has been important in petroleum industries. It is well known that heavy fractions such as vacuum gas oils (VGOs) include heteroatoms, of which sulfur and nitrogen are often characterized in many cases. We conducted research regarding the molecular species analysis of VGOs. Further refine processes using VGOs are becoming important when considering carbon recycling. In this work, we attempted to classify compounds within VGOs provided by Kuwait Institute for Scientific Research. Two VGOs were priorly distillated from Kuwait Export crude and Lower Fars crude. Quantitative analysis was performed mainly using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOFMS). MALDI-TOF-MS has been developed for analyzing high-molecular-weight compounds such as polymer and biopolymers. As matrix selection is one of the most important aspects in MALDI-TOFMS, the careful selection of a matrix was firstly evaluated, followed by analysis using a Kendrick plot with nominal mass series (z*). The objective was to evaluate if this work could provide an effective classification of VGOs compounds. The Kendrick plot is a well-known method for processing mass data. The difference in the Kendrick mass defect (KMD) between CnH2n-14S and CnH2n-20O is only 0.0005 mass units, which makes it difficult in general to distinguish these compounds. However, since the z* value showed effective differences during the classification of these compounds, qualitative analysis could be possible. The analysis using nominal mass series showed the potential to be used as an effective method in analyzing heavy fractions.
RESUMO
In challenging reservoirs where thermal recovery falls short, cold or chemical oil recovery methods are crucial. Spontaneous emulsification (SE), triggered by gentle disturbance, significantly enhances oil recovery. In elucidating SE mechanisms and kinetics, SE processes via direct contact between oil and aqueous phases without stirring were conducted. The effects of temperature, emulsifier concentration, pH, NaCl concentration, and the oil-to-water ratio on SE were investigated through droplet size analysis and turbidity measurements. Furthermore, the emulsification mechanism and derived emulsification kinetics based on turbidity data were obtained. The results underscore the feasibility of SE for oil-water systems, reducing viscous and capillary resistances without agitation. The emulsified oil mass increased with the temperature, pH, and aqueous-to-oil phase volume ratio while decreasing with the NaCl concentration. In this study, for GD-2 crude oil, the optimal emulsified oil amount occurred at a betaine surfactant (BetS-2) emulsifier concentration of 0.45%. Microscopic photo analysis indicated narrow particle size distributions and small droplets, which remained stable over time under various experimental conditions. A combined SE mechanism involving ultralow interfacial tension, interfacial turbulence due to Marangoni effects, and "diffusion and stranding" due to in situ emulsifier hydrophilicity, was speculated. Additionally, an analogous second-order kinetic equation for SE was proposed, indicating exceptional correlation with calculated and experimentally measured values. This study offers theoretical insight for enhancing oil recovery in chemical and cold production of heavy oil in oilfields.
RESUMO
Cold Heavy Oil Production with or without Sand, CHOP(S), facilities produce a significant portion of Canada's conventional oil. Methane venting from single-well CHOPS facilities in Saskatchewan, Canada was measured (i) using Bridger Photonics' airborne Gas Mapping LiDAR (GML) at 962 sites and (ii) on-site using an optical mass flux meter (VentX), ultrasonic flow meter, and QOGI camera at 11 sites. The strong correlation between ground measurements and airborne GML supported subsequent detailed analysis of the aerial data and to our knowledge is the first study to directly test the ability of airplane surveys to accurately reproduce mean emission rates of unsteady sources. Actual methane venting was found to be nearly four times greater than the industry-reported levels used in emission inventories, with â¼80% of all emissions attributed to casing gas venting. Further analysis of site-total emissions revealed potential gaps in regulations, with 14% of sites appearing to exceed regulated limits while accounting for 61% of measured methane emissions. Finally, the concept of marginal wells was adapted to consider the inferred cost of methane emissions under current carbon pricing. Results suggest that almost a third of all methane is emitted from environmentally marginal wells, where the inferred methane cost negates the value of the oil produced. Overall, the present results illustrate the importance of independent monitoring, reporting, and verification (MRV) to ensure accuracy in reporting and regulatory compliance, and to ensure mitigation targets are not foiled by a collection of disproportionately high-emitting sites.
Assuntos
Poluentes Atmosféricos , Metano , Metano/análise , Areia , Poluentes Atmosféricos/análise , Canadá , Aeronaves , Gás Natural/análise , Campos de Petróleo e GásRESUMO
In the heavy petroleum industry, the development of efficient demulsifiers for the effective breaking of interfacially active asphaltenes (IAA)-stabilized water-in-heavy oil (W/HO) emulsions is a highly attractive but challenging goal. Herein, a novel nitrogen and oxygen containing demulsifier (JXGZ) with strong hydrogen bonding has been successfully synthesized through combining esterification, polymerization and amidation. Bottle tests indicated that JXGZ is effectual in quickly demulsifying the IAA-stabilized W/HO emulsions; complete dehydration (100%) to the emulsions could be achieved in 4 min at 55 °C using 400 ppm of JXGZ. In addition, the effects of demulsifier concentration, temperature and time on the demulsification performance of JXGZ are systematically analyzed. Demulsification mechanisms reveal that the excellent demulsification performance of JXGZ is attributed to the strong hydrogen bonding between JXGZ and water molecules (dual swords synergistic effect under hydrogen bond reconstruction). The interaction of the "dual swords synergistic effect" generated by two types of hydrogen bonds can quickly break the non-covalent interaction force (π-π stacking, Van der Waals force, hydrogen bonds) of IAA at the heavy oil-water interface, quickly promote the aggregation and coalescence of water molecules and finally achieve the demulsification of W/HO emulsions. These findings indicate that the JXGZ demulsifier shows engineering application prospects in the demulsification of heavy oil-water emulsions, and this work provides the key information for developing more efficient chemical demulsifiers suitable for large-scale industrial applications.
Assuntos
Petróleo , Água , Emulsões/química , Ligação de Hidrogênio , Água/química , Óxido de DeutérioRESUMO
Treating wastewater using purple non-sulfur bacteria (PNSB) is an environmentally friendly technique that can simultaneously remove pollutants and lead to the accumulation of high-value cell inclusions. However, no PNSB system for treating heavy oil refinery wastewater (HORW) and recovering high-value cell inclusions has yet been developed. In this study, five batch PNSB systems dominated by Rhodopseudomonas were used to treat real HORW for 186 d. The effects of using different hydraulic retention times (HRT), sludge retention times (SRT), trace element solutions, phosphate loads, and influent loads were investigated, and the bacteriochlorophyll, carotenoid, and coenzyme Q10 concentrations were determined. The community structure and quantity of Rhodopseudomonas in the systems were determined using a high-sequencing technique and quantitative polymerase chain reaction technique. The long-term results indicated that phosphate was the limiting factor for treating HORW in the PNSB reactor. The soluble chemical oxygen demand (SCOD) removal rates were 67.03% and 85.26% without and with phosphate added, respectively, and the NH4+-N removal rates were 32.18% and 89.22%, respectively. The NO3--N concentration in the effluent was stable at 0-3 mg/L with or without phosphate added. Adding phosphate increased the Rhodopseudomonas relative abundance and number by 13.21% and 41.61%, respectively, to 57.35% and 8.52 × 106 gene copies/µL, respectively. The SRT was the limiting factor for SCOD removal, and the bacteria concentration was the limiting factor for nitrogen removal. Once the inflow load had been increased, the total nitrogen (TN) removal rate increased as the HRT increased. Maximum TN removal rates of 64.46%, 68.06%, 73.89%, 82.15%, and 89.73% were found at HRT of 7, 10, 13, 16, and 19 d, respectively. The highest bacteriochlorophyll, carotenoid, and coenzyme Q10 concentrations were 2.92, 4.99, and 4.53 mg/L, respectively. This study provided a simple and efficient method for treating HORW and reutilizing resources, providing theoretical support and parameter guidance for the application of Rhodopseudomonas in treating HORW.
Assuntos
Poluentes Ambientais , Rodopseudomonas , Águas Residuárias , Ubiquinona , Bacterioclorofilas , Esgotos , Carotenoides , Nitrogênio , Indústria de Petróleo e Gás , FosfatosRESUMO
Oil is the "blood" and economic lifeblood of modern industry, but traditional light crude oil has been over-consumed, and it has been difficult to meet human demand for energy, so the exploitation of heavy oil is particularly important. In this paper, an oil-soluble catalyst was synthesized to catalyze the pyrolysis reaction of heavy oil in collaboration with reservoir minerals, so as to achieve efficient viscosity reduction of heavy oil and reduce production costs. The experimental results showed that Zn(II)O + K had the best synergistic viscosity reduction effect after the aquathermolysis of No. 1 oil sample under the reaction conditions of 180 °C, 4 h, 30% of water, and 0.2% of catalyst, respectively, and the viscosity reduction rate was 61.74%. Under the catalysis of the isopropanol system, the viscosity reduction rate was increased to 91.22%. A series of characterizations such as freezing point, thermogravimetric analysis, DSC analysis, component analysis, gas chromatography, wax crystal morphology analysis, and GC-MS analysis of aqueous organic matter were carried out on heavy oil after reaction by different reaction systems, and it could be verified that the viscosity of heavy oil was reduced. Finally, through the study of the reaction mechanism of the model compound, combined with the aqueous phase analysis, it can be clearly found that the depolymerization between macromolecules, the breaking of heteroatom chains, hydrogenation, ring opening, and other effects mainly occur during the reaction, thereby weakening the van der Waals force and hydrogen bond of the recombinant interval, inhibiting the formation of grid structure in heavy oil and effectively reducing the viscosity of heavy oil.
RESUMO
To study the synergistic catalysis of an ex situ catalyst and in situ clay in the aquathermolysis of heavy oil, in this paper, a series of bentonite-supported catechol-metal complexes were prepared, and the catalytic viscosity reduction performance in the aquathermolysis of heavy oil was investigated. Under the optimized conditions, the viscosity can be reduced by 73%, and the pour point can be lowered by 15.0 °C at most, showing the synergistic catalysis of the ex situ catalyst and in situ clay in this aquathermolytic reaction. Thermogravimetry, physical adsorption-desorption, and scanning electron microscopy were conducted to characterize the thermal stability and microstructure of the ex situ catalyst. The components of the heavy oil before and after the reaction were fully characterized. Six model compounds were used to simulate the aquathermolysis reaction process. In order to study the mechanism of viscosity reduction after the catalytic aquathermolysis reaction, the compounds were analyzed by GC-MS. It is believed that these results will be beneficial in the future for related research in this field.
RESUMO
Natural bitumens consist of many molecules whose chemical composition depends on the oilfield and determines the physicochemical properties of the bitumens as materials. Infrared (IR) spectroscopy is the fastest and least expensive method to assess the chemical structure of organic molecules, which makes it attractive in terms of rapid prediction of the properties of natural bitumens based on their composition evaluated in this way. In this work, IR spectra were measured for ten samples of natural bitumens significantly different in properties and origin. Based on the ratios of certain IR absorption bands, bitumens are proposed to be divided into paraffinic, aromatic, and resinous. In addition, the internal relationship between IR spectral characteristics of bitumens, such as polarity, paraffinicity, branchiness, and aromaticity, is shown. A study of phase transitions in bitumens by differential scanning calorimetry was carried out, and the use of a heat flow differential to find hidden points of bitumens' glass transitions is proposed. Furthermore, the dependences of the total melting enthalpy of crystallizable paraffinic compounds on the aromaticity and branchiness of bitumens are demonstrated. A detailed study of bitumens' rheology in a wide temperature range was carried out, and characteristic features of rheological behavior for different bitumen classes are revealed. Based on the viscous properties of bitumens, their glass transition points were found and compared with the calorimetric glass transition temperatures and nominal solid-liquid transition points obtained from temperature dependences of bitumens' storage and loss moduli. The dependences of viscosity, flow activation energy, and glass transition temperature of bitumens on their IR spectral characteristics are shown, which can be used to predict the rheological properties of bitumens.
RESUMO
One of the primary methods for bitumen and heavy oil recovery is a steam-assisted gravity drainage (SAGD) process. However, the mechanisms related to wettability alteration under the SAGD process still need to be fully understood. In this study, we used MD simulation to evaluate the wettability alteration under a steam injection process for bitumen and heavy oil recovery. Various oil droplets with different asphaltene contents were considered to determine the effect of an asphaltene content on the adsorption of the oil droplets onto quartz surfaces and wettability alteration. Based on the MD simulation outputs, the higher the asphaltene content, the higher the adsorption energy between the bitumen/heavy oil and quartz surfaces due to coulombic interactions. Additionally, the quartz surfaces became more oil-wet at temperatures well beyond the water boiling temperature; however, they were extremely water-wet at ambient conditions. The results of this work provide in-depth information regarding wettability alteration during in situ thermal processes for bitumen and heavy oil recovery. Furthermore, they provide helpful information for optimizing the in situ thermal processes for successful operations.
RESUMO
In situ combustion of heavy oil is currently the most suitable thermal method that meets energy consumption and carbon dioxide emission requirements for heavy oil recovery. The combustion catalyst needs to perform multiple roles for application; it should be capable of catalyzing heavy oil combustion at high temperatures, as well as be able to migrate in the geological formation for injection. In this work, a hyperbranched polymer composite nanometal fluid was used as the injection vector for a heavy oil in situ combustion catalyst, which enabled the catalyst to rapidly migrate to the surface of the oil phase in porous media and promoted heavy oil cracking deposition at high temperatures. Platinum (Pt) nanoparticles encapsulated with cetyl-hyperbranched poly(amide-amine) (CPAMAM), with high interfacial activity, were synthesized by a facile phase-transfer method; the resulting material is called Pt@CPAMAM. Pt@CPAMAM has good dispersion, and as an aqueous solution, it can reduce the interfacial tension between heavy oil and water. As a catalyst, it can improve the conversion rate during the pyrolysis of heavy oil in a nitrogen atmosphere. The catalyst structure designed in this study is closer to that exhibited in practical geological formation applications, making it a potential method for preparing catalysts for use in heavy oil in situ combustion to resolve the problem of catalyst migration in the geological formation.
RESUMO
With the continuous growth of global energy demand and the late stage of conventional oilfield exploitation, the demand for developing and utilizing low-permeability heavy oil reservoirs is becoming increasingly urgent. However, the exploitation of low-permeability heavy oil reservoirs faces many challenges due to their high viscosity, low permeability, and complex geological conditions. To overcome these challenges, researchers have gradually introduced SC-CO2 as an oil displacement agent in the exploitation of heavy oil reservoirs. However, the oil displacement mechanism of SC-CO2 in low-permeability heavy oil reservoirs and its improvement mechanism are still not completely understood. The article provides a detailed study and understanding of the oil displacement mechanism of SC-CO2, which involves the expansion of heavy oil volume through SC-CO2 dissolution. This mechanism reduces the capillary resistance and flow resistance during the oil flow process. The permeation of CO2 disrupts the internal structure and arrangement of heavy oil, reducing its viscosity. CO2 extracts both light and heavy components from the heavy oil, reducing the residual oil saturation. In addition, the mechanism of improving the effect of oil displacement agents such as nanoparticles, polymers, and surfactants on SC-CO2 displacement was also explored. By further exploring the mechanisms and improvement mechanisms of SC-CO2 displacement for heavy oil, it can guide the selection and optimization of oil displacement agents. Furthermore, understanding the mechanism can also provide a theoretical basis for engineering practice and technical innovation. While the research on CO2 flooding is analyzed and evaluated, the obstacles and challenges that still exist at this stage are indicated, and future research work on CO2 in low-permeability heavy oil reservoirs is proposed.
RESUMO
The partial upgrading of "tar-like" Canadian bitumen is an essential process to reduce its viscosity to an acceptable range that meets the required pipeline specifications. An innovative and potentially greener solution has emerged in the form of microwave irradiation. This work proposes and demonstrates the use of an electrically powered commercial microwave along with carbon-based microwave susceptors (activated carbon, biochar, coke, and graphite) to promote localized thermal cracking within bitumen at a temperature as low as 150 °C, compared to the conventional method of 400 °C. The remarkable results show that just 0.1 wt% of carbon additives can reduce the viscosity of bitumen by 96% with just 10 min of microwaving at 200 °C. A Saturates, Aromatics, Resins, and Asphaltenes (SARA) analysis reveals that the mass fractions of light components (saturates) are almost doubled and that almost one-third of heavy polar hydrocarbon constituents are cracked and decomposed into much lighter molecules, resulting in higher-quality, less viscous bitumen. Furthermore, this study highlights the key role of the surface area and porosity of the carbon microwave susceptor in absorbing microwave radiation, offering exciting new avenues for optimization. Microwave-assisted partial upgrading of bitumen is a cost-effective and eco-friendly alternative to conventional upgrading, producing upgraded bitumen that requires significantly less diluent at a lower cost prior to pipeline transportation.
RESUMO
A combined treatment of heavy oil (HO) exposure and virus infection induces increased mortality in Japanese flounder (Paralichthys olivaceus). In this study, we addressed how HO exposure affects the immune system, especially antiviral activities, in Japanese flounder. The fish were infected with viral hemorrhagic septicemia virus (VHSV), followed by exposure to HO. We analyzed virus titers in the heart and mRNA expression in the kidney of surviving fish. The virus titers in fish exposed to heavy oil were higher than the threshold for onset. The results suggest that HO exposure may allow the replication of VHSV, leading to higher mortality in the co-treated group. Gene-expression profiling demonstrated that the expression of antiviral-activity-related genes, such as those for interferon and apoptosis induction, were lower in the co-treated group than in the group with VHSV infection only. These results helped explain the high virus titers in fish treated with both stressors. Thus, interferon production in the virus-infected cells and apoptosis induction by natural killer cells worked normally in the VHSV-infected fish without HO exposure, but these antiviral activities were slightly suppressed by HO exposure, possibly leading to extensive viral replication in the host cells and the occurrence of VHS.
Assuntos
Doenças dos Peixes , Linguado , Septicemia Hemorrágica Viral , Novirhabdovirus , Animais , Antivirais/farmacologia , InterferonsRESUMO
This study focuses on the gas-particle (G-P) partitioning of 16 polycyclic aromatic hydrocarbons (PAHs) from oil combustion, which is one of the important contributors of anthropogenic PAHs but has been rarely studied. The combustions of different types of oils involving ultra-light to heavy oils were investigated, and the PAH partitioning mechanism was determined by the widely used Junge-Pankow adsorption model, Koa absorption model, and dual sorption model, respectively. The results show that the source-specific diagnostic ratios of Ant/(Ant+Phe) are between 0.09 and 0.24, the estimated regression slopes of G-P partition coefficients (KP) of the total PAHs on their sub-cooled liquid vapor pressures (PLO) are in the range of - 0.34 to - 0.25, and the predicted fractions of PAHs in the particle phase (φ) by Koa absorption model are close to the measured values, while the log KPvalues of the LMW PAHs from the combustions of diesel and heavy oil are better represented by the dual sorption model. Our findings indicate that PAHs are derived from mixed sources that include the unburned original oil and combustion products, and the PAH partitioning mechanism is governed by the process of absorption into organic matter because of the unburned oil, but both adsorption and absorption exist simultaneously in the lighter PAHs from the combustions of heavier oils (i.e., diesel and heavy oil). Based on these findings, the understanding of the fate and transport of PAH emissions and the optimization of the emergency responses to accidents such as marine oil spills would be potentially improved.
Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Adsorção , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Gases/análise , Óleos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análiseRESUMO
Unconventional heavy oil ores (UHO) have been considered an important part of petroleum resources and an alternative source of chemicals and energy supply. Due to the participation of water and extractants, oil-solid separation (OSS) and oil-water separation (OWS) processes are inevitable in the industrial separation processes of UHO. Therefore, this critical review systematically reviews the basic theories of OSS and OWS, including solid wettability, contact angle, oil-solid interactions, structural characteristics of natural surfactants and interface characteristics of interfacially active asphaltene film. With the basic theories in mind, the corresponding OSS and OWS mechanisms are discussed. Finally, the present challenges and future research considerations are touched on to provide insights and theoretical fundamentals for OSS and OWS. Additionally, this critical review might even be useful for the provision of a framework of research prospects to guide future research directions in laboratories and industries that focus on the OSS and OWS processes in this important heavy oil production field.
Assuntos
Petróleo , Molhabilidade , Água/químicaRESUMO
Biosurfactant production at reactor level by Serratia marcescens SmSA was optimized and evaluated to enhance the heavy oil recovery on carbonate rocks. Temperature, agitation, and carbon/nitrogen (C/N) ratio were evaluated to optimize biosurfactant production by using a Taguchi (L9) design. The best conditions (C/N ratio: 6, 25 °C, and agitation: 100 rpm) were used to scale up the biosurfactant production with a 3-L bioreactor. The best aeration for biosurfactant production was 0.66 volume of air per volume of liquid per minute (vvm), producing the lowest surface tension (26 mN/m) in 14 h, with a biosurfactant yield of 14.26 g/L as a crude product and 2.85 g/L as a purified product, and a critical micelle concentration of 280 mg/L. The biosurfactant was characterized as a lipopeptide, and it was stable under extreme conditions: pH (2-12), salinity up to 200 g/L, and temperature up to 150 °C confirmed by thermogravimetric analysis. Enhanced oil recovery test was carried out with a carbonate core and heavy oil under reservoir conditions, obtaining an additional recovery of 8%, due to reduced interfacial tension and modified wettability of the rock. These findings highlight the potential application of S. marcescens SmSA biosurfactant in enhanced oil recovery.