Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832838

RESUMO

Theoretically, tandem quantum-dot light-emitting diodes (QLEDs) hold great promise for achieving both high efficiency and high stability in display applications. However, in practice, their operational stability remains considerably inferior to that of state-of-the-art devices. In this study, we developed a new tandem structure with optimal electrical and optical performance to simultaneously improve the efficiency and stability of tandem QLEDs. Electrically, upon development of a barrier-free interconnecting layer enabled by an indium-zinc oxide bridging layer and a conductive ZnMgO layer, the driving voltage of the tandem QLEDs is remarkably reduced. Optically, upon development of a top-emitting structure and optimization of the cavity length guided by a theoretical simulation, a maximum light extraction efficiency is achieved. As a result, the red tandem QLEDs exhibit a maximum external quantum efficiency of 49.01% and a T95 lifetime at 1000 cd/m2 of >50 000 h, making them one of the most efficient and stable QLEDs ever reported.

2.
Small ; 20(24): e2310992, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38155518

RESUMO

With the rapid development and increasing popularity of electric vehicles and wearables, battery safety has become a leading focus in the field of energy storage research. Specifically, aluminum-ion batteries are gaining increasing attention as low-cost energy-storage systems with high safety levels and theoretical energy density. However, the dense alumina passivation layer on the aluminum anode surface and slow kinetic performance of commonly used ionic liquid electrolytes still render poor performance. This report presents a new type of aluminum-derived lithium-ion battery (ALIB) that maintains a certain discharge performance under damaging conditions, including continuous bending, high- and low-temperature environments, and shearing. This new ALIB effectively meets the current demand for flexible and wearable batteries. The prepared ALIB achieves a stable cycle of 130 mAh g-1 specific capacity and ≈260 Wh kg-1 theoretical energy density at a wide voltage platform of 2 V and a test temperature of 25 °C without undergoing combustion. Additionally, the study analyzes the reaction mechanism of this ALIB based on density functional theory and conducts ex situ XRD and XPS analyses to elucidate the underlying storage mechanism.

3.
Small ; 20(3): e2304839, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702144

RESUMO

The construction of nanostructured Z-scheme heterostructure is a powerful strategy for realizing high-performance photoelectrochemical (PEC) devices such as self-powered photodetectors and water splitting. Considering the band structure and internal electric field direction, BiVO4 is a promising candidate to construct SnS2 -based heterostructure. Herein, the direct Z-scheme heterostructure of vertically oriented SnS2 nanosheet on BiVO4 nanoflower is rationally fabricated for efficient self-powered PEC photodetectors. The Z-scheme heterostructure is identified by ultraviolet photoelectron spectroscopy, photoluminescence spectroscopy, PEC measurement, and water splitting. The SnS2 /BiVO4 heterostructure shows a superior photodetection performance such as excellent photoresponsivity (10.43 mA W-1 ), fast response time (6 ms), and long-term stability. Additionally, by virtue of efficient Z-scheme charge transfer and unique light-trapping nanostructure, the SnS2 /BiVO4 heterostructure also displays a remarkable photocatalytic hydrogen production rate of 54.3 µmol cm-2 h-1 in Na2 SO3 electrolyte. Furthermore, the synergistic effect between photo-activation and bias voltage further improves the PEC hydrogen production rate of 360 µmol cm-2 h-1 at 0.8 V, which is an order of magnitude above the BiVO4 . The results provide useful inspiration for designing direct Z-scheme heterostructures with special nanostructured morphology to signally promote the performance of PEC devices.

4.
Molecules ; 29(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611956

RESUMO

The rational design of covalent organic frameworks (COFs) with hydrochromic properties is of significant value because of the facile and rapid detection of water in diverse fields. In this report, we present a thiazole-linked COF (TZ-COF-6) sensor with a large surface area, ultrahigh stability, and excellent crystallinity. The sensor was synthesized through a simple three-component reaction involving amine, aldehyde, and sulfur. The thiazole and methoxy groups confer strong basicity to TZ-COF-6 at the nitrogen sites, making them easily protonated reversibly by water. Therefore, TZ-COF-6 displayed color change visible to the naked eye from yellow to red when protonated, along with a red shift in absorption in the ultraviolet-visible diffuse reflectance spectra (UV-vis DRS) when exposed to water. Importantly, the water-sensing process was not affected by polar organic solvents, demonstrating greater selectivity and sensitivity compared to other COF sensors. Therefore, TZ-COF-6 was used to detect trace amounts of water in organic solvents. In strong polar solvents, such as N,N-dimethyl formamide (DMF) and ethanol (EtOH), the limit of detection (LOD) for water was as low as 0.06% and 0.53%, respectively. Even after 8 months of storage and 15 cycles, TZ-COF-6 retained its original crystallinity and detection efficiency, displaying high stability and excellent cycle performance.

5.
Small ; 19(16): e2206868, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710247

RESUMO

Wearable glucose sensors are of great significance and highly required in mobile health monitoring and management but suffering from limited long-term stability and wearable adaptability. Here a simultaneous component and structure engineering strategy is presented, which involves Pt with abundant Ni to achieve three-dimensional, dual-structural Pt-Ni hydrogels with interconnected networks of PtNi nanowires and Ni(OH)2 nanosheets, showing prominent electrocatalytic activity and stability in glucose oxidation under neutral condition. Specifically, the PtNi(1:3) dual hydrogels shows 2.0 and 270.6 times' activity in the glucose electro-oxidation as much as the pure Pt and Ni hydrogels. Thanks to the high activity, structural stability, good flexibility, and self-healing property, the PtNi(1:3) dual gel-based non-enzymatic glucose sensing chip is endowed with high performance. It features a high sensitivity, an excellent selectivity and flexibility, and particularly an outstanding long-term stability over 2 months. Together with a pH sensor and a wireless circuit, an accurate, real-time, and remote monitoring of sweat glucose is achieved. This facile design of novel dual-structural metallic hydrogels sheds light to rationally develop new functional materials for high-performance wearable biosensors.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Glucose/química , Níquel/química , Platina/química , Hidrogéis , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos
6.
Small ; 19(43): e2300673, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37376842

RESUMO

Urea oxidation reaction (UOR) is one of the promising alternative anodic reactions to water oxidation that has attracted extensive attention in green hydrogen production. The application of specifically designed electrocatalysts capable of declining energy consumption and environmental consequences is one of the major challenges in this field. Therefore, the goal is to achieve a resistant, low-cost, and environmentally friendly electrocatalyst. Herein, a water-stable fluorinated Cu(II) metalorganic framework (MOF) {[Cu2 (L)(H2 O)2 ]·(5DMF)(4H2 O)}n (Cu-FMOF-NH2 ; H4 L = 3,5-bis(2,4-dicarboxylic acid)-4-(trifluoromethyl)aniline) is developed utilizing an angular tetracarboxylic acid ligand that incorporates both trifluoromethyl (-CF3 ) and amine (-NH2 ) groups. The tailored structure of Cu-FMOF-NH2 where linkers are connected by fluoride bridges and surrounded by dicopper nodes reveals a 4,24T1 topology. When employed as electrocatalyst, Cu-FMOF-NH2 requires only 1.31 V versus reversible hydrogen electrode (RHE) to deliver 10 mA cm-2 current density in 1.0 m KOH with 0.33 m urea electrolyte and delivered an even higher current density (50 mA cm-2 ) at 1.47 V versus RHE. This performance is superior to several reported catalysts including commercial RuO2 catalyst with overpotential of 1.52 V versus RHE. This investigation opens new opportunities to develop and utilize pristine MOFs as a potential electrocatalyst for various catalytic reactions.

7.
Small ; 19(33): e2301247, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37086132

RESUMO

Producing hydrogen via electrochemical water splitting with minimum environmental harm can help resolve the energy crisis in a sustainable way. Here, this work fabricates the pure nickel nanopyramid arrays (NNAs) with dense high-index crystalline steps as the cata electrode via a screw dislocation-dominated growth kinetic for long-term durable and large current density hydrogen evolution reaction. Such a monolithic NNAs electrode offers an ultralow overpotential of 469 mV at a current density of 5000 mA cm-2 in 1.0 m KOH electrolyte and shows a high stability up to 7000 h at a current density of 1000 mA cm-2 , which outperforms the reported catas and even the commercial platinum cata for long-term services under high current densities. Its unique structure can substantially stabilize the high-density surface crystalline steps on the catalytic electrode, which significantly elevates the catalytic activity and durability of nickel in an alkaline medium. In a typical commercial hydrogen gas generator, the total energy conversion rate of NNAs reaches 84.5% of that of a commercial Pt/Ti cata during a 60-day test of hydrogen production. This work approach can provide insights into the development of industry-compatible long-term durable, and high-performance non-noble metal catas for various applications.

8.
Small ; 19(50): e2304201, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658508

RESUMO

2D Ruddlesden-Popper (RP) perovskites have been intensively investigated due to their superior stability and outstanding optoelectrical properties. However, investigations on 2D RP perovskites are mainly focused on A-site substituted perovskites and few reports are on X-site substituted perovskites especially in X-ray detection field. Here, X-site substituted 2D RP perovskite Cs2 Pb(SCN)2 Br2 polycrystalline wafers are prepared and systematically studied for X-ray detection. The obtained wafers show a large resistivity of 2.0 × 1010 Ω cm, a high ion activation energy of 0.75 eV, a small current drift of 2.39 × 10-6 nA cm-1 s-1 V-1 , and charge carrier mobility-lifetime product under X-ray as high as 1.29 × 10-4 cm2 V-1 . These merits enable Cs2 Pb(SCN)2 Br2 wafer detectors with a sensitivity of 216.3 µC Gyair -1 cm-2 , a limit of detection of 42.4 nGyair s-1 , and good imaging ability with high spatial resolution of 1.08 lp mm-1 . In addition, Cs2 Pb(SCN)2 Br2 wafer detectors demonstrate excellent operational stability under high working field up to 2100 V cm-1 after continuous X-ray irradiation with a total dose of 45.2 Gyair . The promising features such as short octahedral spacing and weak ion migration will open up a new perspective and opportunity for SCN-based 2D perovskites in X-ray detection.

9.
Chemistry ; 29(71): e202302703, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857570

RESUMO

Defects present on the top surface of perovskite films have a pronounced detrimental impact on the photovoltaic performance and stability of perovskite solar cells (PSCs). Consequently, the development of effective defect passivation strategies has become key in enhancing both the power conversion efficiency (PCE) and stability of PSCs. In this study, a small molecule material, 4-Aminophthalonitrile (4-APN), was introduced as a means to mitigate surface defects within perovskite films. Obviously, 4-APN effectively passivates the defects at grain boundaries by combining cyano groups (-C≡N) with Pb2+ , significantly reducing the density of defect states, inhibiting non-radiative recombination at the interface, and promoting the charge transfer efficiency from the perovskite layer to the hole transport layer. The 4-APN modification led to a significant upswing in the PCE, while concurrently bolstering the overall device stability. Importantly, the devices on 4-APN as passivation additive exhibited negligible performance degradation aging for 1200 h.

10.
Environ Res ; 236(Pt 2): 116853, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567378

RESUMO

The shocking increase of resistant dye pollutants in the environment and their harmful effects has become a potential threat to the ecosystem. In the current work, the novel and highly efficient potato-on-rod-like Z-scheme plasmon Ag2CrO4-Ag2Mo2O7 heterojunction nano-photocatalyst was synthesized by precipitation method to photodegrade different organic dyes under artificial sunlight. The required analysises were carried out to characterize nanophotocatalysts. FESEM and TEM results showed the placement way of potato-like Ag2CrO4 between/on rod-like Ag2Mo2O7 which was leading to suitable structure and surface morphology. Besides, the morphology observations released the meso-/macroporous potato-on-rod like architecture self-assembled by nanoparticles. DRS analysis also confirmed two band gap energies of 2.55 and 1.72 eV in Ag2CrO4-Ag2Mo2O7 (3:1) resulting from forming a heterojunction structure and the plasmon Ag. Ag2CrO4-Ag2Mo2O7 (3:1) nanophotocatalyst exhibited the most remarkable activity in the photodegradation of 10 mg/L 2-naphthol orange (97.8%), 10 mg/L rhodamine B (99.7%), 10 mg/L crystal violet (98.9%), and 10 mg/L methyl orange (56.1%) with a catalyst dosage of 0.1 gr for about 90 min. The appropriate energy band gap, the formation of the heterostructure, the presence of meso (0.0038 cm3/g) and macro (0.0044 cm3/g) holes, and pore diameter at about 17.2 nm based on BET-BJH analysis that facilitated the penetration of pollutant molecules, increased pollutant adsorption and demonstrated stunning capability of efficient light harvesting, the reason was electron-hole pairs recombination rate reduction. Moreover, the fabricated samples showed tremendous catalyst constancy and reusability even after the fourth run. Results have shown the remarkable photocatalytic activity under visible light and provide an environment-friendly and green strategy to overcome the challenges of organic pollutants present in aqueous solutions.

11.
Sensors (Basel) ; 23(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37687954

RESUMO

This paper presents an innovative approach for predicting timing errors tailored to near-/sub-threshold operations, addressing the energy-efficient requirements of digital circuits in applications, such as IoT devices and wearables. The method involves assessing deep path activity within an adjustable window prior to the root clock's rising edge. By dynamically adapting the prediction window and supply voltage based on error detection outcomes, the approach effectively mitigates false predictions-an essential concern in low-voltage prediction techniques. The efficacy of this strategy is demonstrated through its implementation in a near-/sub-threshold 32-bit microprocessor system. The approach incurs only a modest 6.84% area overhead attributed to well-engineered lightweight design methodologies. Furthermore, with the integration of clock gating, the system functions seamlessly across a voltage range of 0.4 V-1.2 V (5-100 MHz), effectively catering to adaptive energy efficiency. Empirical results highlight the potential of the proposed strategy, achieving a significant 46.95% energy reduction at the Minimum Energy Point (MEP, 15 MHz) compared to signoff margins. Additionally, a 19.75% energy decrease is observed compared to the zero-margin operation, demonstrating successful realization of negative margins.

12.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838878

RESUMO

With the switchability between transparent and light-scattering states, polymer-dispersed liquid crystals (PDLC) are widely used as smart windows, flexible display devices, projectors, and other devices. In outdoor applications, in addition to excellent electro-optical properties, there is also a high demand for film stability. In this work, a PDLC film with high mechanical strength and structural stability is prepared that can maintain stability at 80 °C for 2000 h. By choosing liquid crystals with a wide temperature range, adopting acrylate polymer monomers containing hydroxyl groups, and adjusting the polymer content, the PDLC film can work well from -20 °C to 80 °C. On this basis, the effects of the introduction of rigid monomers on the mechanical properties and electro-optical properties of PDLC films are investigated.


Assuntos
Cristais Líquidos , Polímeros
13.
Angew Chem Int Ed Engl ; 62(41): e202311075, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37602487

RESUMO

The limited active sites and poor acid-alkaline solution stability of metal-organic frameworks (MOFs), significantly limit their wider application. In this study, the acid property of tannic acid (TA) was used as an etchant to etch the surface-active sites. Subsequently, the further chelation of the protonated TA with the exposed metal active site can effectively protect the metal ions. Meanwhile, the TA provided a large amount of phenolic hydroxyl groups, which can greatly improve the stability of imidazolate-coordinated MOFs. The electrochemical test results indicated that the MOFs composite materials synthesized using this scheme had high specific capacitance and stability. And the mechanism of its electrochemical reaction process was explored through in situ X-ray diffraction (XRD) and theoretical calculations. In addition, the same treatment was carried out through a series of carboxyl-coordinated MOFs, which further confirmed the principle of this scheme to obtain a higher active site and stability. This paper explains the mechanism of functionalization of nano-MOFs by polyphenolic compounds, providing new ideas for the research of nano-MOFs.

14.
Small ; 18(13): e2107548, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35146921

RESUMO

All-inorganic lead halide perovskite (CsPbX3 , X = Cl, Br, I, or their mixture) nanocrystals (NCs) have achieved inspiring advancements in optoelectronic fields but still suffer from poor durability when exposed to environmental stimuli such as water, irradiation and heat. Herein, a strategy of employing pyrophosphate as the inert shell for CsPbX3 NCs is reported. The strong binding between pyrophosphate and CsPbBr3 surface can stabilize the perovskite structure well. The as-obtained core@shell CsPbBr3 @NH4 AlP2 O7 NCs exhibit impressive stability against water and maintain the initial optical properties with negligible change in 400 days. Furthermore, significant improvement of irradiation/thermal resistance is realized due to the protecting role of pyrophosphate. The NCs can retain 100% and ≈90% of the original PL after hundreds of heating/cooling cycles and several hundred hours of UV light irradiation, respectively. As a result, the core@shell products can be directly used for high-resolution inkjet printing, enabling the printed fluorescent information to be resistant under harsh environmental conditions. This work provides a promising way for the synthesis of highly stable encapsulated perovskite NCs and demonstrates a great potential in practical applications.


Assuntos
Nanopartículas , Água , Difosfatos , Nanopartículas/química
15.
Small ; 18(47): e2204888, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36228091

RESUMO

Aqueous ammonium-ion storage has been considered a promising energy storage competitor to meet the requirements of safety, affordability, and sustainability. However, ammonium-ion storage is still in its infancy in the absence of reliable electrode materials. Here, defective VO2 (d-VO) is employed as an anode material for ammonium-ion batteries with a moderate transport pathway and high reversible capacity of ≈200 mAh g-1 . Notably, an anisotropic or anisotropic behavior of structural change of d-VO between c-axis and ab planes depends on the state of charge (SOC). Compared with potassium-ion storage, ammonium-ion storage delivers a higher diffusion coefficient and better electrochemical performance. A full cell is further fabricated by d-VO anode and MnO2 cathode, which delivers a high energy density of 96 Wh kg-1 (based on the mass of VO2 ), and a peak energy density of 3254 W kg-1 . In addition, capacity retention of 70% can be obtained after 10 000 cycles at a current density of 1 A g-1 . What's more, the resultant quasi-solid-state MnO2 //d-VO full cell based on hydrogel electrolyte also delivers high safety and decent electrochemical performance. This work will broaden the potential applications of the ammonium-ion battery for sustainable energy storage.

16.
Nanotechnology ; 33(20)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35108694

RESUMO

Research on high-performance gas sensors for detecting toxic and harmful methanol gas is still a very important issue. For gas sensors, it is very important to be able to achieve low concentration detection at room temperature. In this work, we used the electrospinning method to prepare Mg-doped InSnO nanofiber field-effect transistors (FETs) methanol gas sensor. When the Mg element doping concentration is 2.3 mol.%, InSnO nanofiber FET exhibits excellent electrical properties, including higher mobility of 3.17 cm2V-1s-1, threshold voltage of 1.51 V, subthreshold swing of 0.42 V/decade, the excellent on/off current ratio is about 108and the positive bias stress stability of the InSnO nanofiber FET through Mg doping has been greatly improved. In addition, the InSnMgO nanofiber FET gas sensor exhibits acceptable gas selectivity and sensitivity to methanol gas at room temperature. In the methanol gas sensor test at room temperature, when the methanol gas concentration is 60 ppm at room temperature, the response value of the InSnMgO nanofiber FET gas sensor is 81.92; and when the methanol concentration is 5 ppm, the response value is still 1.21. This work provides an effective and novel way to build a gas sensor at room temperature and use it to detect methanol gas at room temperature.

17.
Nanotechnology ; 34(10)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36562516

RESUMO

Transparent conductive films with high stability were prepared by embedding silver nanowires in colorless polyimide and adding a protective layer of exfoliated graphene. The films exhibit great light transmission and conductivity with a sheet resistance of 22 Ω sq-1at transmittance of 83%. Due to its special embedded structure, the conductive layer can withstand several peeling experiments without falling off. In addition, the most outstanding advantage is the ultra-high stability of the films, including high mechanical robustness, strong chemical corrosion resistance and high operating voltage capacity. The organic light-emitting diode devices prepared based on this transparent conductive electrode exhibit comparable efficiency to indium tin oxide (ITO) based devices, withC.E.max= 2.78 cd A-1,P-1.E.max= 1.89 lm W-1,EQEmax= 0.89%. Moreover, the efficiencies were even higher than that of ITO devices when the operating voltage of the device exceeds 5 V. The above performances show that the transparent conductive electrode based on this structure has high potential for application in organic electronic devices.

18.
Ecotoxicol Environ Saf ; 242: 113892, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35863217

RESUMO

Rhamnolipid biosurfactants are multifunctional compounds that can play an indispensable role in biotechnological, biomedical, and environmental bioremediation-related fields, and have attracted significant attention in recent years. Herein, a novel strain Pseudomonas sp. S1WB was isolated from an oil-contaminated water sample. The biosurfactants produced by this strain have capabilities to reduce surface tension (SFT) at 32.75 ± 1.63 mN/m and emulsified 50.2 ± 1.13 % in liquid media containing 1 % used engine oil (UEO) as the sole carbon source. However, the lowest SFT reduction (28.25 ± 0.21), highest emulsification index (60.15 ± 0.07), and the maximum yields (900 mg/L) were achieved under optimized conditions; where, the glucose/urea and glycerol/urea combinations were found efficient carbon and nitrogen substrates for improved biosurfactants production. Biosurfactants product was characterized using ultra-high performance liquid chromatography-mass spectrometry (UHPLC- MS) and detected various di- rhamnolipids congeners. In addition, the di-rhamnolipids produced by S1WB strain was found highly stable in terms of surface activity and EI indices at different environmental factors i.e. temperature, pH and various NaCl concentrations, where, emulsifying property was found high stable till 30 days of incubation. Moreover, the stain was capable to degrade hydrocarbon at 42.2 ± 0.04 %, and the Gas chromatography- mass spectrometry (GC-MS) profile showed the majority of peak intensities of hydrocarbons have been completely degraded compared to control.


Assuntos
Petróleo , Biodegradação Ambiental , Carbono , Glicolipídeos/química , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Pseudomonas/metabolismo , Tensoativos/química , Ureia
19.
Bioprocess Biosyst Eng ; 45(6): 999-1009, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35305152

RESUMO

Isomaltulose is a potential substitute for sucrose, with a high stability and prebiotic potential, for wide use in candies and soft drinks. This sugar is obtained from sucrose through enzymatic conversion using microbial glucosyltransferases. This work aimed to optimize a matrix to immobilize glucosyltransferase producing Erwinia sp. D12 cells using a sequential experimental strategy. The cell mass of Erwinia sp. D12 obtained in a bioreactor was immobilized in beads formed by ionic gelation. The conversion of sucrose into isomaltulose using the beads was performed in batch and continuous processes, and the isomaltulose was recovered through crystallization. The stability of isomaltulose was assessed in beverages of different pH values, and its prebiotic potential was verified with the growth of probiotic microorganisms. The optimized matrix composed of alginate (2.0% w/v), CaCl2 (2.0% w/v), gelatin (2.0% w/v), and transglutaminase (0.2% w/v) showed the highest mean of produced isomaltulose (199.82 g/L) after four batches. In addition, high stability during the continuous process resulted in an isomaltulose production above of 230 g/L for up to 72 h. The produced isomaltulose was more stable than sucrose in lemon soft drink and orange and grape energy drinks after 30 days of storage; and promoted the growth of Bifidobacterium animalis and Lactobacillus lactis. In conclusion, the production of isomaltulose by Erwinia sp. D12 cells immobilized using optimized conditions is recommended, due to its high conversion capacity, high stability, and prebiotic potential of crystals obtained.


Assuntos
Erwinia , Glucosiltransferases/química , Isomaltose/análogos & derivados , Prebióticos , Sacarose
20.
Nano Lett ; 21(4): 1709-1715, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33586984

RESUMO

Solar vapor generation represents a promising approach to alleviate water shortage for producing fresh water from undrinkable water resources. Although Cu-based plasmonics have attracted tremendous interest due to efficient light-to-heat conversion, their application faces great challenges in the oxidation resistance of Cu and low evaporation rate. Herein, a hybrid of three-dimensional carbonized loofah sponges and graphene layers encapsulated Cu nanoparticles is successfully synthesized via a facile pyrolysis method. In addition to effective light harvesting, the localized heating effect of stabilized Cu nanoparticles remarkably elevated the surface temperature of Cu@C/CLS to 72 °C, and a vapor generation rate as high as 1.54 kg m-2 h-1 with solar thermal efficiency reaching 90.2% under 1 Sun illumination was achieved. A study in the purification of sewage and muddy water with Cu@C/CLS demonstrates a promising perspective in a practical application. These results may offer a new inspiration for the design of efficient nonprecious Cu-based photothermal materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA