Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Dement ; 20(5): 3687-3695, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38574400

RESUMO

INTRODUCTION: Cerebral small vessel disease (SVD) and amyloid beta (Aß) pathology frequently co-exist. The impact of concurrent pathology on the pattern of hippocampal atrophy, a key substrate of memory impacted early and extensively in dementia, remains poorly understood. METHODS: In a unique cohort of mixed Alzheimer's disease and moderate-severe SVD, we examined whether total and regional neuroimaging measures of SVD, white matter hyperintensities (WMH), and Aß, as assessed by 18F-AV45 positron emission tomography, exert additive or synergistic effects on hippocampal volume and shape. RESULTS: Frontal WMH, occipital WMH, and Aß were independently associated with smaller hippocampal volume. Frontal WMH had a spatially distinct impact on hippocampal shape relative to Aß. In contrast, hippocampal shape alterations associated with occipital WMH spatially overlapped with Aß-vulnerable subregions. DISCUSSION: Hippocampal degeneration is differentially sensitive to SVD and Aß pathology. The pattern of hippocampal atrophy could serve as a disease-specific biomarker, and thus guide clinical diagnosis and individualized treatment strategies for mixed dementia.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doenças de Pequenos Vasos Cerebrais , Hipocampo , Tomografia por Emissão de Pósitrons , Humanos , Hipocampo/patologia , Hipocampo/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/patologia , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Masculino , Idoso , Feminino , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Substância Branca/patologia , Substância Branca/diagnóstico por imagem , Atrofia/patologia , Imageamento por Ressonância Magnética , Idoso de 80 Anos ou mais , Neuroimagem , Estudos de Coortes
2.
Hum Brain Mapp ; 42(8): 2583-2592, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33764653

RESUMO

Prior epidemiological studies have found that in utero exposure to gestational diabetes mellitus (GDM) is associated with increased risk for neurodevelopmental disorders. However, brain alterations associated with GDM are not known. The hippocampus is pivotal for cognition and emotional regulation. Therefore, we assessed relationships between in utero exposure to GDM and hippocampal morphology and subfield structure during childhood. One hundred seventeen children aged 7-11 years (57% girls, 57% exposed to GDM), born at Kaiser Permanente Southern California, participated in the BrainChild Study. Maternal GDM status was determined from electronic medical records. Children underwent brain magnetic resonance imaging. Freesurfer 6.0 was used to measure hippocampal and individual hippocampal subfield gray matter volume (mm3 ). Morphological analyses on the hippocampal surface were carried out using shape analysis. GDM-exposed children exhibited reduced radial thickness in a small, spatially-restricted portion of the left inferior body of the hippocampus that corresponds to the CA1 subfield. There was a significant interaction between GDM-exposure and sex on the right hippocampal CA1 subfield. GDM-exposed boys had reduced right CA1 volume compared to unexposed boys, but this association was no longer significant after controlling for age. No significant group differences were observed in girls. Our results suggest that GDM-exposure impacts shape of the left hippocampal CA1 subfield in both boys and girls and may reduce volume of right hippocampal CA1 only in boys. These in-depth findings illuminate the unique properties of the hippocampus impacted by prenatal GDM-exposure and could have important implications for hippocampal-related functions.


Assuntos
Diabetes Gestacional , Hipocampo/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Região CA1 Hipocampal/diagnóstico por imagem , Região CA1 Hipocampal/patologia , Criança , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/diagnóstico por imagem , Fatores Sexuais
3.
Eur J Neurosci ; 45(10): 1241-1251, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27646656

RESUMO

Aß deposition is a driving force of Alzheimer's disease pathology and can be detected early by amyloid positron emission tomography. Identifying presymptomatic structural brain changes associated with Aß deposition might lead to a better understanding of its consequences and provide early diagnostic information. In this respect we analyzed measures of cortical thickness and subcortical volumes along with hippocampal, thalamic and striatal shape and surface area by applying novel analysis strategies for structural magnetic resonance imaging. We included 69 cognitively normal elderly subjects after careful clinical and neuropsychological workup. Standardized uptake value ratios (cerebellar reference) for uptake of 11-C-Pittsburgh Compound B (PiB) were calculated from positron emission tomographic data for a cortical measurement and for bilateral hippocampus, thalamus and striatum. Associations to shape, surface area, volume and cortical thickness were tested using regression models that included significant predictors as covariates. Left anterior hippocampal shape was associated with regional PiB uptake (P < 0.05, FDR corrected), whereas volumes of the hippocampi and their subregions were not associated with cortical or regional PiB uptake (all P > 0.05, FDR corrected). Within the entorhinal cortical region of both hemispheres, thickness was negatively associated with cortical PiB uptake (P < 0.05, FDR corrected). Hence, localized shape measures and cortical thickness may be potential biomarkers of presymptomatic Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Hipocampo/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Compostos de Anilina , Benzotiazóis , Feminino , Hipocampo/crescimento & desenvolvimento , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Tiazóis
4.
Depress Anxiety ; 34(5): 401-409, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28129464

RESUMO

BACKGROUND: We aimed to investigate the relationship between the hippocampal shape deformations and the serum cortisol levels in first-episode and drug-naïve major depression disorder (MDD) patients. METHODS: Thirty first-episode and drug-naïve MDD patients and 40 healthy subjects were recruited. High-resolution T1-weighted imaging and morning blood samples for cortisol measurement were obtained from all MDD patients and healthy subjects. In the hippocampal shape analysis, we compared the hippocampal shape between MDD patients and healthy subjects and evaluated the linear correlation between hippocampal shape deformations and the serum cortisol levels in MDD patients and healthy subjects. RESULTS: MDD patients showed significant inward deformations predominantly in the cornu ammonis (CA) 1 and subiculum in bilateral hippocampi compared to healthy subjects (false discovery rate (FDR) corrected, P < .05). Furthermore, in MDD patients, a significant linear correlation between inward deformations and high cortisol levels were found predominantly in the CA1 and subiculum, extending into the CA2-3 (FDR-corrected, P < .05), whereas no significant linear correlation was observed in healthy subjects. CONCLUSIONS: The serum cortisol levels are therefore considered to be associated with hippocampal shape abnormalities in MDD.


Assuntos
Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/patologia , Hipocampo/patologia , Hidrocortisona/sangue , Adulto , Idoso , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Hum Brain Mapp ; 37(5): 1920-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26915458

RESUMO

Several anatomical MRI markers for Alzheimer's disease (AD) have been identified. Hippocampal volume, cortical thickness, and grey matter density have been used successfully to discriminate AD patients from controls. These anatomical MRI measures have so far mainly been used separately. The full potential of anatomical MRI scans for AD diagnosis might thus not yet have been used optimally. In this study, we therefore combined multiple anatomical MRI measures to improve diagnostic classification of AD. For 21 clinically diagnosed AD patients and 21 cognitively normal controls, we calculated (i) cortical thickness, (ii) cortical area, (iii) cortical curvature, (iv) grey matter density, (v) subcortical volumes, and (vi) hippocampal shape. These six measures were used separately and combined as predictors in an elastic net logistic regression. We made receiver operating curve plots and calculated the area under the curve (AUC) to determine classification performance. AUC values for the single measures ranged from 0.67 (cortical thickness) to 0.94 (grey matter density). The combination of all six measures resulted in an AUC of 0.98. Our results demonstrate that the different anatomical MRI measures contain complementary information. A combination of these measures may therefore improve accuracy of AD diagnosis in clinical practice. Hum Brain Mapp 37:1920-1929, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Doença de Alzheimer/classificação , Doença de Alzheimer/diagnóstico por imagem , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Idoso , Idoso de 80 Anos ou mais , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Curva ROC
6.
Eur J Neurol ; 21(5): 744-51, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24495089

RESUMO

BACKGROUND AND PURPOSE: The progression pattern of brain structural changes in patients with isolated cerebrovascular disease (CVD) remains unclear. To investigate the role of isolated CVD in cognitive impairment patients, patterns of cortical thinning and hippocampal atrophy in pure subcortical vascular mild cognitive impairment (svMCI) and pure subcortical vascular dementia (SVaD) patients were characterized. METHODS: Forty-five patients with svMCI and 46 patients with SVaD who were negative on Pittsburgh compound B (PiB) positron emission tomography imaging and 75 individuals with normal cognition (NC) were recruited. RESULTS: Compared with NC, patients with PiB(-) svMCI exhibited frontal, language and retrieval type memory dysfunctions, which in patients with PiB(-) SVaD were further impaired and accompanied by visuospatial and recognition memory dysfunctions. Compared with NC, patients with PiB(-) svMCI exhibited cortical thinning in the frontal, perisylvian, basal temporal and posterior cingulate regions. This atrophy was more prominent and extended further toward the lateral parietal and medial temporal regions in patients with PiB(-) SVaD. Compared with NC subjects, patients with PiB(-) svMCI exhibited hippocampal shape deformities in the lateral body, whilst patients with PiB(-) SVaD exhibited additional deformities within the lateral head and inferior body. CONCLUSIONS: Our findings suggest that patients with CVD in the absence of Alzheimer's disease pathology can be demented, showing cognitive impairment in multiple domains, which is consistent with the topography of cortical thinning and hippocampal shape deformity.


Assuntos
Córtex Cerebral/patologia , Disfunção Cognitiva/patologia , Demência Vascular/patologia , Demência/patologia , Hipocampo/patologia , Idoso , Compostos de Anilina , Córtex Cerebral/diagnóstico por imagem , Demência Vascular/diagnóstico por imagem , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons , Tiazóis
7.
Front Aging Neurosci ; 16: 1347721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524113

RESUMO

Purpose: The objective of this study was to assess changes in hippocampal volume and shape in older long-term breast cancer survivors who were exposed to chemotherapy 5-15 years prior. Methods: This study recruited female long-term breast cancer survivors aged 65 years or older with a history of chemotherapy (C+), age-matched breast cancer survivors who did not receive chemotherapy (C-), and healthy controls (HC). The participants were recruited 5-15 years after chemotherapy at time point 1 (TP1) and were followed up for 2 years at time point 2 (TP2). Assessments included hippocampal volume and shape from brain MRI scans and neuropsychological (NP) tests. Results: At TP1, each of the three groups was comprised of 20 participants. The C+ group exhibited a hippocampal volume loss estimated in proportion with total intracranial volume (ICV) in both the left and right hemispheres from TP1 to TP2. Regarding the hippocampal shape at TP1, the C+ group displayed inward changes compared to the control groups. Within the C+ group, changes in right hippocampal volume adjusted with ICV were positively correlated with crystalized composite scores (R = 0.450, p = 0.044). Additionally, in C+ groups, chronological age was negatively correlated with right hippocampal volume adjusted with ICV (R = -0.585, p = 0.007). Conclusion: The observed hippocampal volume reduction and inward shape deformation within the C+ group may serve as neural basis for cognitive changes in older long-term breast cancer survivors with history of chemotherapy treatment.

8.
Hum Brain Mapp ; 34(11): 3075-85, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22815197

RESUMO

Aberrant hippocampal morphology plays an important role in the pathophysiology of aging. Volumetric analysis of the hippocampus has been performed in aging studies; however, the shape morphometry--which is potentially more informative in terms of related cognition--has yet to be examined. In this paper, we employed an advanced brain mapping technique, large deformation diffeomorphic metric mapping (LDDMM), and a dimensionality reduction approach, locally linear diffeomorphic metric embedding (LLDME), to explore age-related changes in hippocampal shape as delineated from magnetic resonance (MR) images of 302 healthy adults aged from 18 to 94 years. Compared with the hippocampal volumes, the hippocampal shapes clearly showed the nonlinear trajectory of biological aging across the human lifespan, where the variation of hippocampal shapes by age was characterized by a cubic polynomial. By integrating of LDDMM and LLDME, we were also able to illustrate the average hippocampal shapes in each individual decade. In addition, LDDMM and LLDME facilitated the identification of 63 years as a threshold beyond which hippocampal morphological changes were accelerated. Adults over 63 years of age showed the inward-deformation bilaterally in the head of the hippocampi and the left subiculum regardless of hippocampal volume reduction when compared to adults younger than 63. Hence, we demonstrated that the shape of anatomical structures added another dimension of structural morphological quantification beyond the volume in understanding aging.


Assuntos
Hipocampo/anatomia & histologia , Hipocampo/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Algoritmos , Mapeamento Encefálico/métodos , Feminino , Lateralidade Funcional/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Dinâmica não Linear , Adulto Jovem
9.
J Psychiatr Res ; 152: 343-351, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35785577

RESUMO

Cannabis is one of the most commonly used illicit drugs globally. Mounting evidence indicates that cannabis use, particularly consumption during young adulthood, is related to adverse mental and behavioral outcomes and an increased risk of the onset and relapse of psychosis. However, the neuromechanism underpinnings of heavy cannabis use (HCU) in young adults remain largely unknown, and no study has yet investigated the development of hippocampal shape in young adults with HCU. Twenty young adults with HCU and 22 matched non-cannabis-use healthy controls (HCs) were enrolled. Neuroimaging scanning and clinical assessments for all participants were performed at baseline (BL) and 3-year follow-up (FU). The vertex-wise shape analysis was conducted to investigate aberrant hippocampal shape development in young adults with HCU. Aberrant shape development pattern of the hippocampus was observed in young adults with HCU. There was no significant difference in hippocampal shape between the groups at BL, but young adults with HCU at FU exhibited significant shape atrophy of the right dorsal anterior hippocampus related to HCs. In addition, there was a significantly lower growth rate of the right hippocampal shape. Furthermore, there were significant associations of heavy cannabis use, as indicated by the age at onset first and frequent cannabis use, with the growth rate of hippocampal shape in young adults with HCU. The aberrant hippocampal shape development may reflect the effect of heavy cannabis use on young adults and it may be a potential target for heavy cannabis use treatment for young adults.


Assuntos
Cannabis , Adulto , Hipocampo/diagnóstico por imagem , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Neuroimagem , Adulto Jovem
10.
Neuroimage Clin ; 28: 102515, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33396002

RESUMO

Hippocampal damage and associated cognitive deficits are frequently observed in neuroimmunological disorders, but comparative analyses to identify shared hippocampal damage patterns are missing. Here, we adopted a transdiagnostic analytical approach and investigated hippocampal shape deformations and associated cognitive deficits in four neuroimmunological diseases. We studied 120 patients (n = 30 in each group), including patients with multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), anti-NMDAR and anti-LGI1 encephalitis. A control group was matched to each patient sample from a pool of 79 healthy participants. We performed an MRI-based vertex-wise hippocampal shape analysis, extracted hippocampal volume estimates and scalar projection values as a measure of surface displacement. Cognitive testing included assessment of verbal memory and semantic fluency performance. Our cross-sectional analyses revealed characteristic patterns of bilateral inward deformations covering up to 32% of the hippocampal surface in MS, anti-NMDAR encephalitis, and anti-LGI1 encephalitis, whereas NMOSD patients showed no deformations compared to controls. Significant inversions were noted mainly on the hippocampal head, were accompanied by volume loss, and correlated with semantic fluency scores and verbal episodic memory in autoimmune encephalitis and MS. A deformation overlap analysis across disorders revealed a convergence zone on the left anterior hippocampus that corresponds to the CA1 subfield. This convergence zone indicates a shared downstream substrate of immune-mediated damage that appears to be particularly vulnerable to neuroinflammatory processes. Our transdiagnostic morphological view sheds light on mutual pathophysiologic pathways of cognitive deficits in neuroimmunological diseases and stimulates further research into the mechanisms of increased susceptibility of the hippocampus to autoimmunity.


Assuntos
Encefalite , Neuromielite Óptica , Estudos Transversais , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
11.
Neurobiol Aging ; 81: 58-66, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31247459

RESUMO

Hippocampal volume and shape are known magnetic resonance imaging biomarkers of neurodegeneration. Recently, hippocampal texture has been shown to improve prediction of dementia in patients with mild cognitive impairment, but it is unknown whether texture adds prognostic information beyond volume and shape and whether the predictive value extends to cognitively healthy individuals. Using 510 subjects from the Rotterdam Study, a prospective, population-based cohort study, we investigated if hippocampal volume, shape, texture, and their combination were predictive of dementia and determined how predictive performance varied with time to diagnosis and presence of early clinical symptoms of dementia. All features showed significant predictive performance with the area under the receiver operating characteristic curve ranging from 0.700 for texture alone to 0.788 for the combination of volume and texture. Although predictive performance extended to those without objective cognitive complaints or mild cognitive impairment, performance decreased with increasing follow-up time. We conclude that a combination of multiple hippocampal features on magnetic resonance imaging performs better in predicting dementia in the general population than any feature by itself.


Assuntos
Disfunção Cognitiva/patologia , Demência/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Idoso , Idoso de 80 Anos ou mais , Disfunção Cognitiva/diagnóstico por imagem , Estudos de Coortes , Demência/diagnóstico por imagem , Feminino , Previsões , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Prognóstico , Curva ROC , Fatores de Tempo
12.
Artigo em Inglês | MEDLINE | ID: mdl-28825050

RESUMO

BACKGROUND: The hippocampus and amygdala have been repeatedly implicated in the psychopathology of posttraumatic stress disorder (PTSD). While numerous structural neuroimaging studies examined these two structures in PTSD, these analyses have largely been limited to volumetric measures. Recent advances in vertex-based neuroimaging methods have made it possible to identify specific locations of subtle morphometric changes within a structure of interest. METHODS: In this cross-sectional study, we used high-resolution magnetic resonance imaging to examine the relationship between PTSD symptomatology, as measured using the Clinician Administered PTSD Scale for the DSM-IV (CAPS), and structural shape of the hippocampus and amygdala using vertex-wise shape analyses in a group of combat-exposed US Veterans (N = 69). RESULTS: Following correction for multiple comparisons and controlling for age and cranial volume, we found that participants with more severe PTSD symptoms showed an indentation in the anterior half of the right hippocampus and an indentation in the dorsal region of the right amygdala (corresponding to the centromedial amygdala). Post hoc analysis using stepwise regression suggest that among PTSD symptom clusters, arousal symptoms explain most of the variance in the hippocampal abnormality, whereas re-experiencing symptoms explain most of the variance in the amygdala abnormality. CONCLUSION: The results provide evidence of localized abnormalities in the anterior hippocampus and centromedial amygdala in combat-exposed US Veterans suffering from PTSD symptoms. This novel finding provides a more fine-grained analysis of structural abnormalities in PTSD and may be informative for understanding the neurobiology of the disorder.

13.
Front Cell Neurosci ; 8: 95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24744700

RESUMO

The hippocampus is one of the earliest affected brain regions in Alzheimer's disease (AD) and its dysfunction is believed to underlie the core feature of the disease-memory impairment. Given that hippocampal volume is one of the best AD biomarkers, our review focuses on distinct subfields within the hippocampus, pinpointing regions that might enhance the predictive value of current diagnostic methods. Our review presents how changes in hippocampal volume, shape, symmetry and activation are reflected by cognitive impairment and how they are linked with neurogenesis alterations. Moreover, we revisit the functional differentiation along the anteroposterior longitudinal axis of the hippocampus and discuss its relevance for AD diagnosis. Finally, we indicate that apart from hippocampal subfield volumetry, the characteristic pattern of hippocampal hyperactivation associated with seizures and neurogenesis changes is another promising candidate for an early AD biomarker that could become also a target for early interventions.

14.
Comput Vis Image Underst ; 117(9): 1128-1137, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25132791

RESUMO

Alzheimer's Disease (AD) is characterized by a stereotypical spatial pattern of hippocampus (HP) atrophy over time, but reliable and precise measurement of localized longitudinal change to individual HP in AD have been elusive. We present a method for quantifying subject-specific spatial patterns of longitudinal HP change that aligns serial HP surface pairs together, cuts slices off the ends of the HP that were not shared in the two delineations being aligned, estimates weighted correspondences between baseline and follow-up HP, and finds a concise set of localized spatial change patterns that explains HP changes while down-weighting HP surface points whose estimated changes are biologically implausible. We tested our method on a synthetic HP change dataset as well as a set of 320 real elderly HP measured at 1-year intervals. Our results suggests that the proposed steps reduce the amount of implausible HP changes indicated among individual HP, increase the strength of association between HP change and cognitive function related to AD, and enhance the estimation of reliable spatially-localized HP change patterns.

15.
Int J Dev Neurosci ; 31(7): 473-81, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23773912

RESUMO

It is known that the largest developmental changes in the hippocampus take place during the prenatal period and during the first two years of postnatal life. Few studies have been conducted to address the normal developmental trajectory of the hippocampus during childhood. In this study shape analysis was applied to study the normal developing hippocampus in a group of 103 typically developing 6- to 10-year-old preadolescent children. The individual brain was normalized to a template, and then the hippocampus was manually segmented and further divided into the head, body, and tail sub-regions. Three different methods were applied for hippocampal shape analysis: radial distance mapping, surface-based template registration using the robust point matching (RPM) algorithm, and volume-based template registration using the Demons algorithm. All three methods show that the older children have bilateral expanded head segments compared to the younger children. The results analyzed based on radial distance to the centerline were consistent with those analyzed using template-based registration methods. In analyses stratified by sex, it was found that the age-associated anatomical changes were similar in boys and girls, but the age-association was strongest in girls. Total hippocampal volume and sub-regional volumes analyzed using manual segmentation did not show a significant age-association. Our results suggest that shape analysis is sensitive to detect sub-regional differences that are not revealed in volumetric analysis. The three methods presented in this study may be applied in future studies to investigate the normal developmental trajectory of the hippocampus in children. They may be further applied to detect early deviations from the normal developmental trajectory in young children for evaluating susceptibility for psychopathological disorders involving hippocampus.


Assuntos
Mapeamento Encefálico , Desenvolvimento Infantil/fisiologia , Hipocampo/anatomia & histologia , Hipocampo/crescimento & desenvolvimento , Algoritmos , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA