Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 852
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 176(4): 790-804.e13, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661759

RESUMO

The pancreatic islets of Langerhans regulate glucose homeostasis. The loss of insulin-producing ß cells within islets results in diabetes, and islet transplantation from cadaveric donors can cure the disease. In vitro production of whole islets, not just ß cells, will benefit from a better understanding of endocrine differentiation and islet morphogenesis. We used single-cell mRNA sequencing to obtain a detailed description of pancreatic islet development. Contrary to the prevailing dogma, we find islet morphology and endocrine differentiation to be directly related. As endocrine progenitors differentiate, they migrate in cohesion and form bud-like islet precursors, or "peninsulas" (literally "almost islands"). α cells, the first to develop, constitute the peninsular outer layer, and ß cells form later, beneath them. This spatiotemporal collinearity leads to the typical core-mantle architecture of the mature, spherical islet. Finally, we induce peninsula-like structures in differentiating human embryonic stem cells, laying the ground for the generation of entire islets in vitro.


Assuntos
Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/embriologia , Animais , Diferenciação Celular , Células Cultivadas , Células-Tronco Embrionárias Humanas/citologia , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Morfogênese , Pâncreas/citologia
2.
Genes Dev ; 35(21-22): 1527-1547, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34711655

RESUMO

Understanding the genetic control of human embryonic stem cell function is foundational for developmental biology and regenerative medicine. Here we describe an integrated genome-scale loss- and gain-of-function screening approach to identify genetic networks governing embryonic stem cell proliferation and differentiation into the three germ layers. We identified a deep link between pluripotency maintenance and survival by showing that genetic alterations that cause pluripotency dissolution simultaneously increase apoptosis resistance. We discovered that the chromatin-modifying complex SAGA and in particular its subunit TADA2B are central regulators of pluripotency, survival, growth, and lineage specification. Joint analysis of all screens revealed that genetic alterations that broadly inhibit differentiation across multiple germ layers drive proliferation and survival under pluripotency-maintaining conditions and coincide with known cancer drivers. Our results show the power of integrated multilayer genetic screening for the robust mapping of complex genetic networks.


Assuntos
Células-Tronco Embrionárias Humanas , Diferenciação Celular/genética , Células-Tronco Embrionárias , Mutação com Ganho de Função , Camadas Germinativas , Humanos
3.
Mol Cell ; 75(3): 562-575.e5, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31253573

RESUMO

Although the in vitro structural and in vivo spatial characteristics of transcription factor (TF) binding are well defined, TF interactions with chromatin and other companion TFs during development are poorly understood. To analyze such interactions in vivo, we profiled several TFs across a time course of human embryonic stem cell differentiation and studied their interactions with nucleosomes and co-occurring TFs by enhanced chromatin occupancy (EChO), a computational strategy for classifying TF interactions with chromatin. EChO shows that multiple individual TFs can employ either direct DNA binding or "pioneer" nucleosome binding at different enhancer targets. Nucleosome binding is not exclusively confined to inaccessible chromatin but rather correlated with local binding of other TFs and degeneracy at key bases in the pioneer factor target motif responsible for direct DNA binding. Our strategy reveals a dynamic exchange of TFs at enhancers across developmental time that is aided by pioneer nucleosome binding.


Assuntos
Diferenciação Celular/genética , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Fatores de Transcrição/genética , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Humanos , Nucleossomos/genética
4.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38739758

RESUMO

The complicated process of neuronal development is initiated early in life, with the genetic mechanisms governing this process yet to be fully elucidated. Single-cell RNA sequencing (scRNA-seq) is a potent instrument for pinpointing biomarkers that exhibit differential expression across various cell types and developmental stages. By employing scRNA-seq on human embryonic stem cells, we aim to identify differentially expressed genes (DEGs) crucial for early-stage neuronal development. Our focus extends beyond simply identifying DEGs. We strive to investigate the functional roles of these genes through enrichment analysis and construct gene regulatory networks to understand their interactions. Ultimately, this comprehensive approach aspires to illuminate the molecular mechanisms and transcriptional dynamics governing early human brain development. By uncovering potential links between these DEGs and intelligence, mental disorders, and neurodevelopmental disorders, we hope to shed light on human neurological health and disease. In this study, we have used scRNA-seq to identify DEGs involved in early-stage neuronal development in hESCs. The scRNA-seq data, collected on days 26 (D26) and 54 (D54), of the in vitro differentiation of hESCs to neurons were analyzed. Our analysis identified 539 DEGs between D26 and D54. Functional enrichment of those DEG biomarkers indicated that the up-regulated DEGs participated in neurogenesis, while the down-regulated DEGs were linked to synapse regulation. The Reactome pathway analysis revealed that down-regulated DEGs were involved in the interactions between proteins located in synapse pathways. We also discovered interactions between DEGs and miRNA, transcriptional factors (TFs) and DEGs, and between TF and miRNA. Our study identified 20 significant transcription factors, shedding light on early brain development genetics. The identified DEGs and gene regulatory networks are valuable resources for future research into human brain development and neurodevelopmental disorders.


Assuntos
Biomarcadores , Encéfalo , Redes Reguladoras de Genes , Células-Tronco Embrionárias Humanas , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Encéfalo/metabolismo , Encéfalo/embriologia , Encéfalo/citologia , Biomarcadores/metabolismo , Neurônios/metabolismo , Neurônios/citologia , Diferenciação Celular/genética , RNA-Seq , Neurogênese/genética , Regulação da Expressão Gênica no Desenvolvimento , Perfilação da Expressão Gênica , Análise de Sequência de RNA/métodos , Análise da Expressão Gênica de Célula Única
5.
Proc Natl Acad Sci U S A ; 120(5): e2210038120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36696440

RESUMO

To determine the error rate of transcription in human cells, we analyzed the transcriptome of H1 human embryonic stem cells with a circle-sequencing approach that allows for high-fidelity sequencing of the transcriptome. These experiments identified approximately 100,000 errors distributed over every major RNA species in human cells. Our results indicate that different RNA species display different error rates, suggesting that human cells prioritize the fidelity of some RNAs over others. Cross-referencing the errors that we detected with various genetic and epigenetic features of the human genome revealed that the in vivo error rate in human cells changes along the length of a transcript and is further modified by genetic context, repetitive elements, epigenetic markers, and the speed of transcription. Our experiments further suggest that BRCA1, a DNA repair protein implicated in breast cancer, has a previously unknown role in the suppression of transcription errors. Finally, we analyzed the distribution of transcription errors in multiple tissues of a new mouse model and found that they occur preferentially in neurons, compared to other cell types. These observations lend additional weight to the idea that transcription errors play a key role in the progression of various neurological disorders, including Alzheimer's disease.


Assuntos
RNA , Transcrição Gênica , Animais , Camundongos , Humanos , RNA/genética , Transcriptoma , Proteínas/genética , Sequências Repetitivas de Ácido Nucleico
6.
Development ; 149(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35815787

RESUMO

Embryogenesis is guided by a limited set of signaling pathways dynamically expressed in different places. How a context-dependent signaling response is generated has been a central question of developmental biology, which can now be addressed with in vitro models of human embryos that are derived from embryonic stem cells (hESCs). Our previous work demonstrated that during early stages of hESC differentiation, cells chronicle signaling hierarchy. Only cells that have been exposed (primed) by WNT signaling can respond to subsequent activin exposure and differentiate to mesendodermal (ME) fates. Here, we show that WNT priming does not alter SMAD2 binding nor its chromatin opening but, instead, acts by inducing the expression of the SMAD2 co-factor EOMES. Expression of EOMES is sufficient to replace WNT upstream of activin-mediated ME differentiation, thus unveiling the mechanistic basis for priming and cellular memory in early development.


Assuntos
Células-Tronco Embrionárias Humanas , Ativinas/metabolismo , Ativinas/farmacologia , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias , Humanos , Via de Sinalização Wnt
7.
Differentiation ; 135: 100738, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38008592

RESUMO

Growing evidence has shown that besides the protein coding genes, the non-coding elements of the genome are indispensable for maintaining the property of self-renewal in human embryonic stem cells and in cell fate determination. However, the regulatory mechanisms and the landscape of interactions between the coding and non-coding elements is poorly understood. In this work, we used weighted gene co-expression network analysis (WGCNA) on transcriptomic data retrieved from RNA-seq and small RNA-seq experiments and reconstructed the core human pluripotency network (called PluriMLMiNet) consisting of 375 mRNA, 57 lncRNA and 207 miRNAs. Furthermore, we derived networks specific to the naïve and primed states of human pluripotency (called NaiveMLMiNet and PrimedMLMiNet respectively) that revealed a set of molecular markers (RPS6KA1, ZYG11A, ZNF695, ZNF273, and NLRP2 for naive state, and RAB34, TMEM178B, PTPRZ1, USP44, KIF1A and LRRN1 for primed state) which can be used to distinguish the pluripotent state from the non-pluripotent state and also to identify the intra-pluripotency states (i.e., naïve and primed state). The lncRNA DANT1 was found to be a crucial as it formed a bridge between the naive and primed state-specific networks. Analysis of the genes neighbouring DANT1 suggested its possible role as a competing endogenous RNA (ceRNA) for the induction and maintenance of human pluripotency. This was computationally validated by predicting the missing DANT1-miRNA interactions to complete the ceRNA circuit. Here we first report that DANT1 might harbour binding sites for miRNAs hsa-miR-30c-2-3p, hsa-miR-210-3p and hsa-let-7b-5p which may influence pluripotency.


Assuntos
Células-Tronco Embrionárias Humanas , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , Células-Tronco Embrionárias Humanas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Proteínas de Ciclo Celular/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
8.
Development ; 148(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34608934

RESUMO

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG repeats in the huntingtin gene (HTT). Although HD has been shown to have a developmental component, how early during human embryogenesis the HTT-CAG expansion can cause embryonic defects remains unknown. Here, we demonstrate a specific and highly reproducible CAG length-dependent phenotypic signature in a synthetic model for human gastrulation derived from human embryonic stem cells (hESCs). Specifically, we observed a reduction in the extension of the ectodermal compartment that is associated with enhanced activin signaling. Surprisingly, rather than a cell-autonomous effect, tracking the dynamics of TGFß signaling demonstrated that HTT-CAG expansion perturbs the spatial restriction of activin response. This is due to defects in the apicobasal polarization in the context of the polarized epithelium of the 2D gastruloid, leading to ectopic subcellular localization of TGFß receptors. This work refines the earliest developmental window for the prodromal phase of HD to the first 2 weeks of human development, as modeled by our 2D gastruloids.


Assuntos
Linhagem da Célula , Polaridade Celular , Camadas Germinativas/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Proteína Huntingtina/metabolismo , Ativinas/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Células-Tronco Embrionárias Humanas/citologia , Humanos , Proteína Huntingtina/genética , Camundongos , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Expansão das Repetições de Trinucleotídeos
9.
Development ; 148(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34661235

RESUMO

Current knowledge of the transcriptional regulation of human pluripotency is incomplete, with lack of interspecies conservation observed. Single-cell transcriptomics analysis of human embryos previously enabled us to identify transcription factors, including the zinc-finger protein KLF17, that are enriched in the human epiblast and naïve human embryonic stem cells (hESCs). Here, we show that KLF17 is expressed coincident with the known pluripotency-associated factors NANOG and SOX2 across human blastocyst development. We investigate the function of KLF17 using primed and naïve hESCs for gain- and loss-of-function analyses. We find that ectopic expression of KLF17 in primed hESCs is sufficient to induce a naïve-like transcriptome and that KLF17 can drive transgene-mediated resetting to naïve pluripotency. This implies a role for KLF17 in establishing naïve pluripotency. However, CRISPR-Cas9-mediated knockout studies reveal that KLF17 is not required for naïve pluripotency acquisition in vitro. Transcriptome analysis of naïve hESCs identifies subtle effects on metabolism and signalling pathways following KLF17 loss of function, and possible redundancy with other KLF paralogues. Overall, we show that KLF17 is sufficient, but not necessary, for naïve pluripotency under the given in vitro conditions.


Assuntos
Blastocisto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/genética
10.
Stem Cells ; 41(6): 578-591, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36648303

RESUMO

The interplay among mitogenic signaling pathways is crucial for proper embryogenesis. These pathways collaboratively act through intracellular master regulators to determine specific cell fates. Identifying the master regulators is critical to understanding embryogenesis and to developing new applications of pluripotent stem cells. In this report, we demonstrate protein kinase C (PKC) as an intrinsic master switch between embryonic and extraembryonic cell fates in the differentiation of human pluripotent stem cells (hPSCs). PKCs are essential to induce the extraembryonic lineage downstream of BMP4 and other mitogenic modulators. PKC-alpha (PKCα) suppresses BMP4-induced mesoderm differentiation, and PKC-delta (PKCδ) is required for trophoblast cell fate. PKC activation overrides mesoderm induction conditions and leads to extraembryonic fate. In contrast, PKC inhibition leads to ß-catenin (CTNNB1) activation, switching cell fate from trophoblast to mesoderm lineages. This study establishes PKC as a signaling boundary directing the segregation of extraembryonic and embryonic lineages. The manipulation of intrinsic PKC activity could greatly enhance cell differentiation under mitogenic regulation in stem cell applications.


Assuntos
Células-Tronco Pluripotentes , Proteína Quinase C , Humanos , Proteína Quinase C/metabolismo , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular , Células-Tronco Pluripotentes/metabolismo , Mesoderma/metabolismo , Proteína Morfogenética Óssea 4/farmacologia , Proteína Morfogenética Óssea 4/metabolismo
11.
Cytotherapy ; 26(8): 930-938, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38520411

RESUMO

BACKGROUND AIMS: Rheumatoid arthritis (RA) is characterized by an overactive immune system, with limited treatment options beyond immunosuppressive drugs or biological response modifiers. Human embryonic stem cell-derived mesenchymal stromal cells (hESC-MSCs) represent a novel alternative, possessing diverse immunomodulatory effects. In this study, we aimed to elucidate the therapeutic effects and underlying mechanisms of hESC-MSCs in treating RA. METHODS: MSC-like cells were differentiated from hESC (hESC-MSCs) and cultured in vitro. Cell proliferation was assessed using Cell Counting Kit-8 assay and Ki-67 staining. Flow cytometry was used to analyze cell surface markers, T-cell proliferation and immune cell infiltration. The collagen-induced arthritis (CIA) mouse model and bleomycin-induced model of lung fibrosis (BLE) were established and treated with hESC-MSCs intravenously for in vivo assessment. Pathological analyses, reverse transcription-quantitative polymerase chain reaction and Western blotting were conducted to evaluate the efficacy of hESC-MSCs treatment. RESULTS: Intravenous transplantation of hESC-MSCs effectively reduced inflammation in CIA mice in this study. Furthermore, hESC-MSC administration enhanced regulatory T cell infiltration and activation. Additional findings suggest that hESC-MSCs may reduce lung fibrosis in BLE mouse models, indicating their potential to mitigate complications associated with RA progression. In vitro experiments revealed a significant inhibition of T-cell activation and proliferation during co-culture with hESC-MSCs. In addition, hESC-MSCs demonstrated enhanced proliferative capacity compared with traditional primary MSCs. CONCLUSIONS: Transplantation of hESC-MSCs represents a promising therapeutic strategy for RA, potentially regulating T-cell proliferation and differentiation.


Assuntos
Artrite Reumatoide , Diferenciação Celular , Modelos Animais de Doenças , Células-Tronco Embrionárias Humanas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Fibrose Pulmonar , Animais , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Artrite Reumatoide/terapia , Artrite Reumatoide/imunologia , Transplante de Células-Tronco Mesenquimais/métodos , Fibrose Pulmonar/terapia , Fibrose Pulmonar/patologia , Células-Tronco Embrionárias Humanas/citologia , Proliferação de Células , Inflamação/terapia , Inflamação/patologia , Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Artrite Experimental/terapia , Artrite Experimental/patologia , Artrite Experimental/imunologia
12.
Cytotherapy ; 26(6): 606-615, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38483364

RESUMO

BACKGROUND AIMS: Mesenchymal stromal cells (MSCs) hold great promise in the treatment of diabetic retinopathy (DR), as evidenced by increasing preclinical and clinical studies. However, the absence of standardized and industrialized clinical-grade donor cells hampers the continued development and large-scale clinical application of MSCs-based therapies for DR. Previously, we have identified a unique population of MSCs generated from a clinical-grade human embryonic stem cell (hESC) line under Good Manufacturing Practice conditions that could be a potential source to address the issues. Here, we investigated the therapeutic potential of the clinical-grade hESC line-derived MSCs (hESC-MSCs) on db/db mice with DR. METHODS: hESC-MSCs were initially characterized by morphological assessment, flow cytometry analysis and trilineage differentiation assays. These cells (5 × 106 cells) were then transplanted intravenously into 12-week-old db/db mice via tail vein, with phosphate-buffered saline transplantation and untreated groups used as controls. The retinal alterations in neural functions and microvascular perfusions, and inflammatory responses in peripheral blood and retina were evaluated at 4 and 6 weeks after transplantation using electroretinography, optical coherence tomography angiography and flow cytometry, respectively. Body weight and fasting blood glucose (FBG) levels were also measured to investigate their systemic implications. RESULTS: Compared with controls, intravenous transplantation of hESC-MSCs could significantly: (i) enhance impaired retinal electroretinography functions (including amplitudes of a-, b-wave and oscillatory potentials) at 4 weeks after transplantation; (ii) alleviate microvascular dysfunctions, especially in the inner retina with significance (including reducing non-perfusion area and increasing vascular area density) at 4 weeks after transplantation; (iii) decrease FBG levels at 4 weeks after transplantation and induce weight loss up to 6 weeks after transplantation and (iv) increase both peripheral blood and retinal interleukin-10 levels at 4 weeks after transplantation and modulate peripheral blood inflammatory cytokines and chemokines levels, such as monocyte chemotactic protein-1, up to 6 weeks after transplantation. CONCLUSIONS: The findings of our study indicated that intravenous transplantation of hESC-MSCs ameliorated retinal neural and microvascular dysfunctions, regulated body weight and FBG and modulated peripheral blood and retinal inflammation responses in a mouse model of DR. These results suggest that hESC-MSCs could be a potentially effective clinical-grade cell source for the treatment of DR.


Assuntos
Retinopatia Diabética , Células-Tronco Embrionárias Humanas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Humanos , Retinopatia Diabética/terapia , Camundongos , Células-Tronco Embrionárias Humanas/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Retina , Modelos Animais de Doenças , Diabetes Mellitus Experimental/terapia
13.
Exp Dermatol ; 33(1): e15004, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284190

RESUMO

The study investigated the effectiveness of EDN1 and EDN3 cytokines in the differentiation of melanocytes from hESCs. The findings showed that 100 nM EDN1 was more effective in promoting hESC to CD117+/TYR+ melanoblasts compared to 100 nM EDN3. Additionally, maintaining melanoblasts is beneficial for preserving the ability to proliferate. The study found that 10 nM EDN1 helped maintain the proliferation of melanoblasts without over maturing them into melanocytes in the late stage of differentiation. Thus, using 100 nM EDN1 in the initial stage and 10 nM EDN1 in the late stage proved to be an efficient and cost-effective method for obtaining hESC-derived melanocytes. The preliminary results suggest that EDN1 promotes melanoblast formation during the initial differentiation stage through its binding to both the EDNRB receptor and EDNRA receptor. This study provides a valuable tool for studying the development of human melanocytes and modelling the biology of disease.


Assuntos
Endotelina-1 , Células-Tronco Embrionárias Humanas , Humanos , Endotelina-1/metabolismo , Melanócitos/metabolismo , Diferenciação Celular
14.
Exp Eye Res ; 239: 109778, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171475

RESUMO

Human embryonic stem cell (hESC)- and human induced pluripotent stem cell (hiPSC)-derived retinal pigment epithelium (RPE) therapies are promising alternatives for the treatment of retinal degenerative diseases caused by RPE degeneration. The generation of autologous RPE cells from human adult donors, which has the advantage of avoiding immune rejection and teratoma formation, is an alternative cell resource to gain mechanistic insight into and test potential therapies for RPE degenerative diseases. Here, we found that limbal stem cells (LSCs) from hESCs and adult primary human limbus have the potential to produce RPE cells and corneal stromal stem cells (CSSCs). We showed that hESC-LSC-derived RPE cells (LSC-RPE) expressed RPE markers, had a phagocytic function, and synthesized tropical factors. Furthermore, during differentiation from LSCs to RPE cells, cells became pigmented, accompanied by a decrease in the level of LSC marker KRT15 and an increase in the level of RPE marker MITF. The Wnt signaling pathway plays a role in LSC-RPE fate transition, promotes MITF expression in the nucleus, and encourages RPE fate transition. In addition, we also showed that primary LSCs (pLSCs) from adult human limbus similar to hESC-LSC could generate RPE cells, which was supported by the co-expression of LSC and RPE cell markers (KRT15/OTX2, KRT15/MITF), suggesting the transition from pLSC to RPE cells, and typical polygonal morphology, melanization, RPE cell marker genes expression (TYR, RPE65), tight junction formation by ZO-1 expression, and the most crucial phagocytotic function. On the other hand, both hESC-LSCs and pLSCs also differentiated into CSSCs (LSC-CSSCs) that expressed stem cell markers (PAX6, NESTIN), presented MSC features, including surface marker expression and trilineage differentiation capability, like those in human CSSCs. Furthermore, the capability of pLSC-CSSC to differentiate into cells expressing keratocyte marker genes (ALDH3A1, PTGDS, PDK4) indicated the potential to induce keratocytes. These results suggest that the adult pLSC is an alternative cell resource, and its application provides a novel potential therapeutic avenue for preventing RPE dysfunction-related retinal degenerative diseases and corneal scarring.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco do Limbo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Diferenciação Celular , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo
15.
Exp Eye Res ; 242: 109883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38561106

RESUMO

Corneal transplantation represents the primary therapeutic approach for managing corneal endothelial dysfunction, but corneal donors remain scarce. Anterior chamber cell injection emerges as a highly promising alternative strategy for corneal transplantation, with pluripotent stem cells (PSC) demonstrating considerable potential as an optimal cell source. Nevertheless, only a few studies have explored the differentiation of functional corneal endothelial-like cells originating from PSC. In this investigation, a chemical-defined protocol was successfully developed for the differentiation of functional corneal endothelial-like cells derived from human embryonic stem cells (hESC). The application of nicotinamide (NAM) exhibited a remarkable capability in suppressing the fibrotic phenotype, leading to the generation of more homogeneous and well-distinctive differentiated cells. Furthermore, NAM effectively suppressed the expression of genes implicated in endothelial cell migration and extracellular matrix synthesis. Notably, NAM also facilitated the upregulation of surface marker genes specific to functional corneal endothelial cells (CEC), including CD26 (-) CD44 (-∼+-) CD105 (-) CD133 (-) CD166 (+) CD200 (-). Moreover, in vitro functional assays were performed, revealing intact barrier properties and Na+/K+-ATP pump functionality in the differentiated cells treated with NAM. Consequently, our findings provide robust evidence supporting the capacity of NAM to enhance the differentiation of functional CEC originating from hESC, offering potential seed cells for therapeutic interventions of corneal endothelial dysfunction.


Assuntos
Diferenciação Celular , Endotélio Corneano , Células-Tronco Embrionárias Humanas , Niacinamida , Humanos , Diferenciação Celular/efeitos dos fármacos , Niacinamida/farmacologia , Endotélio Corneano/metabolismo , Endotélio Corneano/citologia , Endotélio Corneano/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células Cultivadas , Complexo Vitamínico B/farmacologia , Citometria de Fluxo , Movimento Celular/efeitos dos fármacos , Antígenos CD/metabolismo , Antígenos CD/genética
16.
Circ Res ; 130(1): 112-129, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34816743

RESUMO

BACKGROUND: Mutations in genes encoding sarcomeric proteins lead to failures in sarcomere assembly, the building blocks of contracting muscles, resulting in cardiomyopathies that are a leading cause of morbidity and mortality worldwide. Splicing variants of sarcomeric proteins are crucial at different stages of myofibrillogenesis, accounting for sarcomeric structural integrity. RBM24 (RNA-binding motif protein 24) is known as a tissue-specific splicing regulator that plays an essential role in cardiogenesis. However, it had been unclear if the developmental stage-specific alternative splicing facilitated by RBM24 contributes to sarcomere assembly and cardiogenesis. Our aim is to study the molecular mechanism by which RBM24 regulates cardiogenesis and sarcomere assembly in a temporal-dependent manner. METHODS: We ablated RBM24 from human embryonic stem cells (hESCs) using CRISPR/Cas9 techniques. RESULTS: Although RBM24-/- hESCs still differentiated into sarcomere-hosting cardiomyocytes, they exhibited disrupted sarcomeric structures with punctate Z-lines due to impaired myosin replacement during early myofibrillogenesis. Transcriptomics revealed >4000 genes regulated by RBM24. Among them, core myofibrillogenesis proteins (eg, ACTN2 [α-actinin 2], TTN [titin], and MYH10 [non-muscle myosin IIB]) were misspliced. Consequently, MYH6 (muscle myosin II) cannot replace nonmuscle myosin MYH10, leading to myofibrillogenesis arrest at the early premyofibril stage and causing disrupted sarcomeres. Intriguingly, we found that the ABD (actin-binding domain; encoded by exon 6) of the Z-line anchor protein ACTN2 is predominantly excluded from early cardiac differentiation, whereas it is consistently included in human adult heart. CRISPR/Cas9-mediated deletion of exon 6 from ACTN2 in hESCs, as well as forced expression of full-length ACTN2 in RBM24-/- hESCs, further corroborated that inclusion of exon 6 is critical for sarcomere assembly. Overall, we have demonstrated that RBM24-facilitated inclusion of exon 6 in ACTN2 at distinct stages of cardiac differentiation is evolutionarily conserved and crucial to sarcomere assembly and integrity. CONCLUSIONS: RBM24 acts as a master regulator to modulate the temporal dynamics of core myofibrillogenesis genes and thereby orchestrates sarcomere organization.


Assuntos
Processamento Alternativo , Células-Tronco Embrionárias Humanas/metabolismo , Desenvolvimento Muscular , Miócitos Cardíacos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Actinina/genética , Actinina/metabolismo , Diferenciação Celular , Linhagem Celular , Conectina/genética , Conectina/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos , Miócitos Cardíacos/citologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIB/genética , Miosina não Muscular Tipo IIB/metabolismo , Proteínas de Ligação a RNA/genética
17.
Cell Biol Int ; 48(6): 835-847, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38419492

RESUMO

Pluripotent stem cells (PSCs) hold enormous potential for treating multiple diseases owing to their ability to self-renew and differentiate into any cell type. Albeit possessing such promising potential, controlling their differentiation into a desired cell type continues to be a challenge. Recent studies suggest that PSCs respond to different substrate stiffness and, therefore, can differentiate towards some lineages via Hippo pathway. Human PSCs can also differentiate and self-organize into functional cells, such as organoids. Traditionally, human PSCs are differentiated on stiff plastic or glass plates towards definitive endoderm and then into functional pancreatic progenitor cells in the presence of soluble growth factors. Thus, whether stiffness plays any role in differentiation towards definitive endoderm from human pluripotent stem cells (hPSCs) remains unclear. Our study found that the directed differentiation of human embryonic stem cells towards endodermal lineage on the varying stiffness did not differ from the differentiation on stiff plastic dishes. We also observed no statistical difference between the expression of yes-associated protein (YAP) and phosphorylated YAP. Furthermore, we demonstrate that lysophosphatidic acid, a YAP activator, enhanced definitive endoderm formation, whereas verteporfin, a YAP inhibitor, did not have the significant effect on the differentiation. In summary, our results suggest that human embryonic stem cells may not differentiate in response to changes in stiffness, and that such cues may not have as significant impact on the level of YAP. Our findings indicate that more research is needed to understand the direct relationship between biophysical forces and hPSCs differentiation.


Assuntos
Diferenciação Celular , Linhagem da Célula , Endoderma , Células-Tronco Embrionárias Humanas , Humanos , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Endoderma/citologia , Endoderma/metabolismo , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição/metabolismo
18.
Environ Sci Technol ; 58(19): 8215-8227, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38687897

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are extensively utilized in varieties of products and tend to accumulate in the human body including umbilical cord blood and embryos/fetuses. In this study, we conducted an assessment and comparison of the potential early developmental toxicity of perfluorooctanoic acid (PFOA), undecafluorohexanoic acid (PFHxA), heptafluorobutyric acid, perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate, and perfluorobutyric acid at noncytotoxic concentrations relevant to human exposure using models based on human embryonic stem cells in both three-dimensional embryoid body (EB) and monolayer differentiation configurations. All six compounds influenced the determination of cell fate by disrupting the expression of associated markers in both models and, in some instances, even led to alterations in the formation of cystic EBs. The expression of cilia-related gene IFT122 was significantly inhibited. Additionally, PFOS and PFOA inhibited ciliogenesis, while PFOA specifically reduced the cilia length. Transcriptome analysis revealed that PFOS altered 1054 genes and disrupted crucial signaling pathways such as WNT and TGF-ß, which play integral roles in cilia transduction and are critical for early embryonic development. These results provide precise and comprehensive insights into the potential adverse health effects of these six PFAS compounds directly concerning early human embryonic development.


Assuntos
Fluorocarbonos , Células-Tronco Embrionárias Humanas , Humanos , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Fluorocarbonos/toxicidade , Diferenciação Celular/efeitos dos fármacos
19.
J Nanobiotechnology ; 22(1): 132, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532378

RESUMO

BACKGROUND: Cardiovascular diseases (CVDs) have the highest mortality worldwide. Human pluripotent stem cells (hPSCs) and their cardiomyocyte derivatives (hPSC-CMs) offer a valuable resource for disease modeling, pharmacological screening, and regenerative therapy. While most CVDs are linked to significant over-production of reactive oxygen species (ROS), the effects of current antioxidants targeting excessive ROS are limited. Nanotechnology is a powerful tool to develop antioxidants with improved selectivity, solubility, and bioavailability to prevent or treat various diseases related to oxidative stress. Cerium oxide nanozymes (CeONZs) can effectively scavenge excessive ROS by mimicking the activity of endogenous antioxidant enzymes. This study aimed to assess the nanotoxicity of CeONZs and their potential antioxidant benefits in stressed human embryonic stem cells (hESCs) and their derived cardiomyocytes (hESC-CMs). RESULTS: CeONZs demonstrated reliable nanosafety and biocompatibility in hESCs and hESC-CMs within a broad range of concentrations. CeONZs exhibited protective effects on the cell viability of hESCs and hESC-CMs by alleviating excessive ROS-induced oxidative stress. Moreover, CeONZs protected hESC-CMs from doxorubicin (DOX)-induced cardiotoxicity and partially ameliorated the insults from DOX in neonatal rat cardiomyocytes (NRCMs). Furthermore, during hESCs culture, CeONZs were found to reduce ROS, decrease apoptosis, and enhance cell survival without affecting their self-renewal and differentiation potential. CONCLUSIONS: CeONZs displayed good safety and biocompatibility, as well as enhanced the cell viability of hESCs and hESC-CMs by shielding them from oxidative damage. These promising results suggest that CeONZs may be crucial, as a safe nanoantioxidant, to potentially improve the therapeutic efficacy of CVDs and be incorporated into regenerative medicine.


Assuntos
Cério , Miócitos Cardíacos , Células-Tronco Pluripotentes , Humanos , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Diferenciação Celular , Antioxidantes/farmacologia , Doxorrubicina/farmacologia
20.
Genes Dev ; 30(17): 1991-2004, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27664238

RESUMO

Multiple transcriptional and epigenetic changes drive differentiation of embryonic stem cells (ESCs). This study unveils an additional level of gene expression regulation involving noncanonical, cap-independent translation of a select group of mRNAs. This is driven by death-associated protein 5 (DAP5/eIF4G2/NAT1), a translation initiation factor mediating IRES-dependent translation. We found that the DAP5 knockdown from human ESCs (hESCs) resulted in persistence of pluripotent gene expression, delayed induction of differentiation-associated genes in different cell lineages, and defective embryoid body formation. The latter involved improper cellular organization, lack of cavitation, and enhanced mislocalized apoptosis. RNA sequencing of polysome-associated mRNAs identified candidates with reduced translation efficiency in DAP5-depleted hESCs. These were enriched in mitochondrial proteins involved in oxidative respiration, a pathway essential for differentiation, the significance of which was confirmed by the aberrant mitochondrial morphology and decreased oxidative respiratory activity in DAP5 knockdown cells. Further analysis identified the chromatin modifier HMGN3 as a cap-independent DAP5 translation target whose knockdown resulted in defective differentiation. Thus, DAP5-mediated translation of a specific set of proteins is critical for the transition from pluripotency to differentiation, highlighting the importance of cap-independent translation in stem cell fate decisions.


Assuntos
Diferenciação Celular/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Embrionárias Humanas/citologia , Apoptose/genética , Corpos Embrioides/patologia , Fator de Iniciação Eucariótico 4G/genética , Técnicas de Silenciamento de Genes , Proteínas HMGN/genética , Proteínas HMGN/metabolismo , Humanos , Células-Tronco Pluripotentes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA