Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068902

RESUMO

Food-based carbon dots (CDs) hold significant importance across various fields, ranging from biomedical applications to environmental and food industries. These CDs offer unique advantages over traditional carbon nanomaterials, including affordability, biodegradability, ease of operation, and multiple bioactivities. This work aims to provide a comprehensive overview of recent developments in food-based CDs, focusing on their characteristics, properties, therapeutic applications in biomedicine, and safety assessment methods. The review highlights the potential of food-based CDs in biomedical applications, including antibacterial, antifungal, antivirus, anticancer, and anti-immune hyperactivity. Furthermore, current strategies employed for evaluating the safety of food-based CDs have also been reported. In conclusion, this review offers valuable insights into their potential across diverse sectors and underscores the significance of safety assessment measures to facilitate their continued advancement and application.


Assuntos
Nanoestruturas , Pontos Quânticos , Pontos Quânticos/uso terapêutico , Carbono , Nanoestruturas/uso terapêutico , Antifúngicos , Antibacterianos
2.
Appl Microbiol Biotechnol ; 100(14): 6131-6139, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27225470

RESUMO

Glucosylglycerols (GGs) are known as compatible solutes accumulated by some bacteria including cyanobacteria as well as higher plants for their adaptations to salt or desiccation stresses. Since being identified in Japanese sake, their physiological effects and potential applications on human health cares have been explored in the following 15 years. Several different synthesis methods have been successively developed for the production of GGs. However, the efficiency of GG synthesis, especially biological synthesis, is still low. With the recent advances in genome sequencing and synthetic biology tools, systematical screening of enzyme candidates and metabolic engineering approaches is necessary for improving GG synthesis efficiency. In this review, we will summarize GG structure information, protective effects on human skin and digestive system as well as industrial enzymes, together with their synthesis by chemical, enzymatic, and biological in vivo approaches in detail, and provide some prospects on improving GG production.


Assuntos
Glucosídeos/biossíntese , Glucosídeos/farmacologia , Microbiologia Industrial , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Membrana Celular , Glucosídeos/química , Engenharia Metabólica , Engenharia de Proteínas , Pseudomonas mendocina/metabolismo , Stenotrophomonas maltophilia/metabolismo , Estresse Fisiológico , Synechococcus/genética , Synechococcus/metabolismo , Xanthomonadaceae/genética , Xanthomonadaceae/metabolismo
3.
Materials (Basel) ; 17(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38793529

RESUMO

In recent years, flexible pressure sensors have received considerable attention for their potential applications in health monitoring and human-machine interfaces. However, the development of flexible pressure sensors with excellent sensitivity performance and a variety of advantageous characteristics remains a significant challenge. In this paper, a high-performance flexible piezoresistive pressure sensor, BC/ZnO, is developed with a sensitive element consisting of bacterial cellulose (BC) nanofibrous aerogel modified by ZnO nanorods. The BC/ZnO pressure sensor exhibits excellent mechanical and hydrophobic properties, as well as a high sensitivity of -15.93 kPa-1 and a wide range of detection pressure (0.3-20 kPa), fast response (300 ms), and good cyclic durability (>1000). Furthermore, the sensor exhibits excellent sensing performance in real-time monitoring of a wide range of human behaviors, including mass movements and subtle physiological signals.

4.
J Colloid Interface Sci ; 629(Pt B): 535-545, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36182754

RESUMO

Flexible pressure sensors have received tremendous attention for various wearable applications. However, it remains a critical challenge to develop a flexible pressure sensor with excellent sensitivity performances and multiple advantageous properties. Herein, a high-performance flexible piezoresistive pressure sensor PMIA@PDA@Ag was developed, which sensitive component is consisted of Ag nanoparticles decorated polydopamine (PDA)-modified meta-aramid (poly(m-phenylene isophthalamide), PMIA) nanofibrous membrane. The PMIA@PDA@Ag pressure sensor shows excellent mechanical, thermal insulation, antibacterial and breathable properties, as well as remarkable sensing performances including high sensitivity, wide detectable pressure range, rapid response speed and good cyclic durability. In addition, it also shows great sensing performances in monitoring various human behaviors in real-time, including large-scale motions and subtle physiological signals.

5.
Biosensors (Basel) ; 12(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36551100

RESUMO

To enhance the treatment of motor function impairment, patients' brain signals for self-control as an external tool may be an extraordinarily hopeful option. For the past 10 years, researchers and clinicians in the brain-computer interface (BCI) field have been using movement-related cortical potential (MRCP) as a control signal in neurorehabilitation applications to induce plasticity by monitoring the intention of action and feedback. Here, we reviewed the research on robot therapy (RT) and virtual reality (VR)-MRCP-based BCI rehabilitation technologies as recent advancements in human healthcare. A list of 18 full-text studies suitable for qualitative review out of 322 articles published between 2000 and 2022 was identified based on inclusion and exclusion criteria. We used PRISMA guidelines for the systematic review, while the PEDro scale was used for quality evaluation. Bibliometric analysis was conducted using the VOSviewer software to identify the relationship and trends of key items. In this review, 4 studies used VR-MRCP, while 14 used RT-MRCP-based BCI neurorehabilitation approaches. The total number of subjects in all identified studies was 107, whereby 4.375 ± 6.3627 were patient subjects and 6.5455 ± 3.0855 were healthy subjects. The type of electrodes, the epoch, classifiers, and the performance information that are being used in the RT- and VR-MRCP-based BCI rehabilitation application are provided in this review. Furthermore, this review also describes the challenges facing this field, solutions, and future directions of these smart human health rehabilitation technologies. By key items relationship and trends analysis, we found that motor control, rehabilitation, and upper limb are important key items in the MRCP-based BCI field. Despite the potential of these rehabilitation technologies, there is a great scarcity of literature related to RT and VR-MRCP-based BCI. However, the information on these rehabilitation methods can be beneficial in developing RT and VR-MRCP-based BCI rehabilitation devices to induce brain plasticity and restore motor impairment. Therefore, this review will provide the basis and references of the MRCP-based BCI used in rehabilitation applications for further clinical and research development.


Assuntos
Interfaces Cérebro-Computador , Robótica , Realidade Virtual , Humanos , Eletroencefalografia/métodos , Encéfalo
6.
J Ethnobiol Ethnomed ; 17(1): 55, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496911

RESUMO

BACKGROUND: The utilization of plants and plant resources for various ethnobotanical purposes is a common practice in local towns and villages of developing countries, especially in regard to human and veterinary healthcare. For this reason, it is important to unveil and document ethnomedicinal plants and their traditional/folk usage for human and livestock healthcare from unexplored areas. Here we advance our findings on ethnomedicinal plants from Haripur District, Pakistan, not only for conservation purposes, but also for further pharmacological screenings and applied research. METHODOLOGY: Information of ethnomedicinal plants was obtained using a carefully planned questionnaire and interviews from 80 local people and traditional healers (Hakims) in Haripur District, Pakistan, from 2015 to 2017. Informed consent was obtained from each participant before conducting the interview process. Quantitative ethnobotanical indices, such as relative frequency of citation (RFC), use value (UV) and Jaccard index (JI), were calculated for each recorded species. Correlation analysis between the RFC and UV was tested by Pearson's correlation, SPSS (ver. 16). RESULTS: A total of 80 plant species (33 herbs, 24 trees, 21 shrubs and 2 climbers) belonging to 50 families were being used in the study area to treat livestock and human diseases. Lamiaceae was the most dominant family with 7 species (8.7%), followed by Fabaceae with 6 species (7.5%), and Moraceae with 5 species (6.2%). Local people used different methods of preparation for different plant parts; among them, decoction/tea (22 species) was the popular method, followed by powder/grained (20 species) and paste/poultice (14 species). It was observed that most of the species (~ 12 to 16 species) were utilized to treat human and livestock digestive system-related problems, respectively. The Jaccard index found that plant usage in two studies (District Abbottabad and Sulaiman Range) was more comparable. Local people mainly relied on folk medicines due to their rich accessibility, low cost and higher efficacy against diseases. Unfortunately, this important traditional knowledge is vanishing fast, and many medicinal plants are under severe threat. The most threats associated to species observed in the study area include Dehri, Garmthun, Baghpur, Najafpur and Pharala. CONCLUSION: The study has indicated that local people have higher confidence in the usage of ethnomedicinal plants and are still using them for the treatment of various ailments. Comparative analysis with other studies may strongly reflected the novel use of these plants, which may be due to the deep-rooted and unique socio-cultural setup of the study area. However, awareness campaigns, conservation efforts and pharmacological and applied research are required for further exploration and may be a step in the right direction to unveil prospective pharmaceuticals.


Assuntos
Etnobotânica , Fitoterapia , Plantas Medicinais , Adulto , Animais , Feminino , Humanos , Gado , Masculino , Pessoa de Meia-Idade , Paquistão , Estudos Prospectivos , Adulto Jovem
7.
Adv Mater ; 31(45): e1805033, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30345586

RESUMO

The rapid development of microfluidics technology has promoted new innovations in materials science, particularly by interacting with biological systems, based on precise manipulation of fluids and cells within microscale confinements. This article reviews the latest advances in microfluidics-based biomaterials and biodevices, highlighting some burgeoning areas such as functional biomaterials, cell manipulations, and flexible biodevices. These areas are interconnected not only in their basic principles, in that they all employ microfluidics to control the makeup and morphology of materials, but also unify at the ultimate goals in human healthcare. The challenges and future development trends in biological application are also presented.


Assuntos
Materiais Biocompatíveis , Dispositivos Lab-On-A-Chip , Sistemas de Liberação de Medicamentos/instrumentação , Humanos , Fenômenos Mecânicos , Análise Serial de Tecidos/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA