Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Trends Genet ; 40(4): 364-378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453542

RESUMO

Dominance is usually considered a constant value that describes the relative difference in fitness or phenotype between heterozygotes and the average of homozygotes at a focal polymorphic locus. However, the observed dominance can vary with the genetic background of the focal locus. Here, alleles at other loci modify the observed phenotype through position effects or dominance modifiers that are sometimes associated with pathogen resistance, lineage, sex, or mating type. Theoretical models have illustrated how variable dominance appears in the context of multi-locus interaction (epistasis). Here, we review empirical evidence for variable dominance and how the observed patterns may be captured by proposed epistatic models. We highlight how integrating epistasis and dominance is crucial for comprehensively understanding adaptation and speciation.


Assuntos
Epistasia Genética , Modelos Genéticos , Heterozigoto , Fenótipo , Homozigoto , Alelos
2.
Annu Rev Genet ; 53: 347-372, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31505133

RESUMO

The rule of Mendelian inheritance is remarkably robust, but deviations from the equal transmission of alternative alleles at a locus [a.k.a. transmission ratio distortion (TRD)] are also commonly observed in genetic mapping populations. Such TRD reveals locus-specific selection acting at some point between the diploid heterozygous parents and progeny genotyping and therefore can provide novel insight into otherwise-hidden genetic and evolutionary processes. Most of the classic selfish genetic elements were discovered through their biasing of transmission, but many unselfish evolutionary and developmental processes can also generate TRD. In this review, we describe methodologies for detecting TRD in mapping populations, detail the arenas and genetic interactions that shape TRD during plant and animal reproduction, and summarize patterns of TRD from across the genetic mapping literature. Finally, we point to new experimental approaches that can accelerate both detection of TRD and characterization of the underlying genetic mechanisms.


Assuntos
Genética Populacional/métodos , Padrões de Herança , Plantas/genética , Espermatozoides/fisiologia , Animais , Quimera , Mapeamento Cromossômico , Feminino , Células Germinativas/fisiologia , Heterozigoto , Depressão por Endogamia , Masculino , Meiose , Pólen/genética , Autoincompatibilidade em Angiospermas/genética , Razão de Masculinidade , Vertebrados/genética , Zigoto
3.
Proc Natl Acad Sci U S A ; 120(44): e2300959120, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37856563

RESUMO

Two robust rules have been discovered about animal hybrids: Heterogametic hybrids are more unfit (Haldane's rule), and sex chromosomes are disproportionately involved in hybrid incompatibility (the large-X/Z effect). The exact mechanisms causing these rules in female heterogametic taxa such as butterflies are unknown but are suggested by theory to involve dominance on the sex chromosome. We investigate hybrid incompatibilities adhering to both rules in Papilio and Heliconius butterflies and show that dominance theory cannot explain our data. Instead, many defects coincide with unbalanced multilocus introgression between the Z chromosome and all autosomes. Our polygenic explanation predicts both rules because the imbalance is likely greater in heterogametic females, and the proportion of introgressed ancestry is more variable on the Z chromosome. We also show that mapping traits polygenic on a single chromosome in backcrosses can generate spurious large-effect QTLs. This mirage is caused by statistical linkage among polygenes that inflates estimated effect sizes. By controlling for statistical linkage, most incompatibility QTLs in our hybrid crosses are consistent with a polygenic basis. Since the two genera are very distantly related, polygenic hybrid incompatibilities are likely common in butterflies.


Assuntos
Borboletas , Animais , Feminino , Borboletas/genética , Hibridização Genética , Modelos Genéticos , Cromossomos Sexuais
4.
Genes Dev ; 31(12): 1272-1287, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28743695

RESUMO

Hybrid seed lethality as a consequence of interspecies or interploidy hybridizations is a major mechanism of reproductive isolation in plants. This mechanism is manifested in the endosperm, a dosage-sensitive tissue supporting embryo growth. Deregulated expression of imprinted genes such as ADMETOS (ADM) underpin the interploidy hybridization barrier in Arabidopsis thaliana; however, the mechanisms of their action remained unknown. In this study, we show that ADM interacts with the AT hook domain protein AHL10 and the SET domain-containing SU(VAR)3-9 homolog SUVH9 and ectopically recruits the heterochromatic mark H3K9me2 to AT-rich transposable elements (TEs), causing deregulated expression of neighboring genes. Several hybrid incompatibility genes identified in Drosophila encode for dosage-sensitive heterochromatin-interacting proteins, which has led to the suggestion that hybrid incompatibilities evolve as a consequence of interspecies divergence of selfish DNA elements and their regulation. Our data show that imbalance of dosage-sensitive chromatin regulators underpins the barrier to interploidy hybridization in Arabidopsis, suggesting that reproductive isolation as a consequence of epigenetic regulation of TEs is a conserved feature in animals and plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Proteínas de Ciclo Celular/metabolismo , Epigênese Genética , Histona-Lisina N-Metiltransferase/farmacologia , Isolamento Reprodutivo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica de Plantas , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Hibridização Genética
5.
Plant J ; 115(1): 108-126, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36987839

RESUMO

Lactuca saligna L. is a wild relative of cultivated lettuce (Lactuca sativa L.), with which it is partially interfertile. Hybrid progeny suffer from hybrid incompatibility (HI), resulting in reduced fertility and distorted transmission ratios. Lactuca saligna displays broad-spectrum resistance against lettuce downy mildew caused by Bremia lactucae Regel and is considered a non-host species. This phenomenon of resistance in L. saligna is called non-host resistance (NHR). One possible mechanism behind this NHR is through the plant-pathogen interaction triggered by pathogen recognition receptors, including nucleotide-binding leucine-rich repeat (NLR) proteins and receptor-like kinases (RLKs). We report a chromosome-level genome assembly of L. saligna (accession CGN05327), leading to the identification of two large paracentric inversions (>50 Mb) between L. saligna and L. sativa. Genome-wide searches delineated the major resistance clusters as regions enriched in NLRs and RLKs. Three of the enriched regions co-locate with previously identified NHR intervals. RNA-seq analysis of Bremia-infected lettuce identified several differentially expressed RLKs in NHR regions. Three tandem wall-associated kinase-encoding genes (WAKs) in the NHR8 interval display particularly high expression changes at an early stage of infection. We propose RLKs as strong candidates for determinants of the NHR phenotype of L. saligna.


Assuntos
Lactuca , Oomicetos , Lactuca/genética , Genoma , Fenótipo , Doenças das Plantas/genética
6.
Plant Cell Physiol ; 65(3): 420-427, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38153761

RESUMO

Shoot growth directly impacts plant productivity. Plants adjust their shoot growth in response to varying environments to maximize resource capture and stress resilience. While several factors controlling shoot growth are known, the complexity of the regulation and the input of the environment are not fully understood. We have investigated shoot growth repression induced by low ambient temperatures in hybrids of Arabidopsis thaliana Kro-0 and BG-5 accessions. To continue our previous studies, we confirmed that the Kro-0 allele of DYNAMIN-RELATED PROTEIN 3B causes stunted shoot growth in the BG-5 background. We also found that shoot growth repression was most pronounced near the apex at a lower temperature and that the cells in the hybrid stem failed to elongate correctly. Furthermore, we observed that shoot growth repression in hybrids depended on light availability. Global gene expression analysis indicated the involvement of hormones, especially strigolactone, associated with the dwarf phenotype. Altogether, this study enhances our knowledge on the genetic, physiological and environmental factors associated with shoot growth regulation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Brotos de Planta/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fenótipo , Regulação da Expressão Gênica de Plantas
7.
Mol Ecol ; 33(4): e17261, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38174628

RESUMO

The evolution of postzygotic isolation is thought to be a key step in maintaining species boundaries upon secondary contact, yet the dynamics and persistence of hybrid incompatibilities in naturally hybridizing species are not well understood. Here, we explore these issues using genetic mapping in three independent populations of recombinant inbred lines between naturally hybridizing monkeyflowers, Mimulus guttatus and Mimulus nasutus, from the sympatric Catherine Creek population. We discover that the three M. guttatus founders differ dramatically in admixture history, with nearly a quarter of one founder's genome introgressed from M. nasutus. Comparative genetic mapping in the three RIL populations reveals three new putative inversions, each one segregating among the M. guttatus founders, two due to admixture. We find strong, genome-wide transmission ratio distortion in all RILs, but patterns are highly variable among the three populations. At least some of this distortion appears to be explained by epistatic selection favouring parental genotypes, but tests of inter-chromosomal linkage disequilibrium also reveal multiple candidate Dobzhansky-Muller incompatibilities. We also map several genetic loci for hybrid pollen viability, including two interacting pairs that coincide with peaks of distortion. Remarkably, even with this limited sample of three M. guttatus lines, we discover abundant segregating variation for hybrid incompatibilities with M. nasutus, suggesting this population harbours diverse contributors to postzygotic isolation. Moreover, even with substantial admixture, hybrid incompatibilities between Mimulus species persist, suggesting postzygotic isolation might be a potent force in maintaining species barriers in this system.


Assuntos
Mimulus , Mimulus/genética , Hibridização Genética , Mapeamento Cromossômico , Genótipo , Desequilíbrio de Ligação
8.
Mol Ecol ; 32(11): 2945-2963, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36855846

RESUMO

A compelling interest in marine biology is to elucidate how species boundaries between sympatric free-spawning marine invertebrates such as bivalve molluscs are maintained in the face of potential hybridization. Hybrid zones provide the natural resources for us to study the underlying genetic mechanisms of reproductive isolation between hybridizing species. Against this backdrop, we examined the occurrence of introgressive hybridization (introgression) between two bivalves distributed in the western Pacific margin, Atrina japonica and Atrina lischkeana, based on single-nucleotide polymorphisms (SNPs) derived from restriction site-associated DNA sequencing. Using 1066 ancestry-informative SNP sites, we also investigated the extent of introgression within the genome to search for SNP sites with reduced interspecies gene flow. A series of our individual-level clustering analyses including the principal component analysis, Bayesian model-based clustering, and triangle plotting based on ancestry-heterozygosity relationships for an admixed population sample from the Seto Inland Sea (Japan) consistently suggested the presence of specimens with varying degrees of genomic admixture, thereby implying that the two species are not completely isolated. The Bayesian genomic cline analysis identified 10 SNP sites with reduced introgression, each of which was located within a genic region or an intergenic region physically close to a functional gene. No, or very few, heterozygotes were observed at these sites in the hybrid zone, suggesting that selection acts against heterozygotes. Accordingly, we raised the possibility that the SNP sites are within genomic regions that are incompatible between the two species. Our finding of restricted interspecies gene flow at certain genomic regions gives new insight into the maintenance of species boundaries in hybridizing broadcast-spawning molluscs.


Assuntos
Bivalves , Introgressão Genética , Animais , Fluxo Gênico , Teorema de Bayes , Genoma/genética , Hibridização Genética , Bivalves/genética
9.
Mol Phylogenet Evol ; 180: 107686, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36586545

RESUMO

Genomic divergence with gene flow is very common in both plants and animals. However, divergence and gene flow are two counteracting factors during speciation. Identifying the types of genes that are likely to be introgressed and what genetic factors restrict further effective reproduction of interspecific hybrids is of great interest to biologists. We aimed to address these issues using three related tree species, Populus alba (Pa), P. tremula (Pt), and P. tremuloides (Ps), and the interspecific hybrid of the former two species, P. × canescens (Pc). We collected 105 genomes for these four poplar lineages, including 28 Pa, 38Pt, 21 Ps, and 18 Pc individuals, to reconstruct their evolutionary histories. Our coalescence-based simulations indicated that Pa diverged earliest from Ps and Pt, and asymmetrical gene flow existed between any two lineages, with especially large ancient gene flow occurring between Pa and Pt. The genomic landscape of divergence between pairs of the three species are highly heterogeneous, which may have arisen through both divergent sorting of ancient polymorphisms and ongoing gene flow. We found that extant regions of the genome with introgressed ancestry reduced genetic divergence but elevated recombination rates and accounted for 5.76 % of the total genome. Introgressed genes were functionally associated with stress resistance, including innate immune response, anti-adversity response, and programmed cell death. However, candidate genes underlying postmating barriers of Pc were homozygous and resistant to introgression due to the incompatibility of alleles between loci after hybridization and were associated with endosperm and gamete formation and disease resistance. Our study revealed genomic dynamics during speciation with gene flow and identified regions of the genome that were likely introgressed and adaptive as well as candidate loci responsible for hybrid incompatibility that resulted in the formation of postmating barriers after hybridization.


Assuntos
Populus , Populus/genética , Filogenia , Genômica , Polimorfismo Genético , Genoma de Planta , Fluxo Gênico , Hibridização Genética , Especiação Genética
10.
Proc Natl Acad Sci U S A ; 117(47): 29786-29794, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33168740

RESUMO

Mixing genomes of different species by hybridization can disrupt species-specific genetic interactions that were adapted and fixed within each species population. Such disruption can predispose the hybrids to abnormalities and disease that decrease the overall fitness of the hybrids and is therefore named as hybrid incompatibility. Interspecies hybridization between southern platyfish and green swordtails leads to lethal melanocyte tumorigenesis. This occurs in hybrids with tumor incidence following progeny ratio that is consistent with two-locus interaction, suggesting melanoma development is a result of negative epistasis. Such observations make Xiphophorus one of the only two vertebrate hybrid incompatibility examples in which interacting genes have been identified. One of the two interacting loci has been characterized as a mutant epidermal growth factor receptor. However, the other locus has not been identified despite over five decades of active research. Here we report the localization of the melanoma regulatory locus to a single gene, rab3d, which shows all expected features of the long-sought oncogene interacting locus. Our findings provide insights into the role of egfr regulation in regard to cancer etiology. Finally, they provide a molecular explainable example of hybrid incompatibility.


Assuntos
Ciprinodontiformes/genética , Doenças dos Peixes/genética , Hibridização Genética , Melanoma/veterinária , Modelos Genéticos , Animais , Animais Geneticamente Modificados , Carcinogênese/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Feminino , Proteínas de Peixes/genética , Loci Gênicos , Especiação Genética , Masculino , Melanoma/genética , Modelos Animais , Especificidade da Espécie , Proteínas rab3 de Ligação ao GTP/genética
11.
Mol Biol Evol ; 38(11): 4977-4986, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34302471

RESUMO

Although rapid evolution of pericentromeric satellite DNA repeats is theorized to promote hybrid incompatibility (HI) (Yunis and Yasmineh 1971; Henikoff et al. 2001; Ferree and Barbash 2009; Sawamura 2012; Jagannathan and Yamashita 2017), how divergent repeats affect hybrid cells remains poorly understood. Recently, we demonstrated that sequence-specific DNA-binding proteins cluster satellite DNA from multiple chromosomes into "chromocenters," thereby bundling chromosomes to maintain the entire genome in a single nucleus (Jagannathan et al. 2018, 2019). Here, we show that ineffective clustering of divergent satellite DNA in the cells of Drosophila hybrids results in chromocenter disruption, associated micronuclei formation, and tissue atrophy. We further demonstrate that previously identified HI factors trigger chromocenter disruption and micronuclei in hybrids, linking their function to a conserved cellular process. Together, we propose a unifying framework that explains how the widely observed satellite DNA divergence between closely related species can cause reproductive isolation.


Assuntos
DNA Satélite , Drosophila , Animais , Cromossomos , Análise por Conglomerados , DNA Satélite/genética , Drosophila/genética , Isolamento Reprodutivo
12.
Mol Biol Evol ; 38(2): 557-574, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966577

RESUMO

Hybrid necrosis in plants arises from conflict between divergent alleles of immunity genes contributed by different parents, resulting in autoimmunity. We investigate a severe hybrid necrosis case in Arabidopsis thaliana, where the hybrid does not develop past the cotyledon stage and dies 3 weeks after sowing. Massive transcriptional changes take place in the hybrid, including the upregulation of most NLR (nucleotide-binding site leucine-rich repeat) disease-resistance genes. This is due to an incompatible interaction between the singleton TIR-NLR gene DANGEROUS MIX 10 (DM10), which was recently relocated from a larger NLR cluster, and an unlinked locus, DANGEROUS MIX 11 (DM11). There are multiple DM10 allelic variants in the global A. thaliana population, several of which have premature stop codons. One of these, which has a truncated LRR-PL (leucine-rich repeat [LRR]-post-LRR) region, corresponds to the DM10 risk allele. The DM10 locus and the adjacent genomic region in the risk allele carriers are highly differentiated from those in the nonrisk carriers in the global A. thaliana population, suggesting that this allele became geographically widespread only relatively recently. The DM11 risk allele is much rarer and found only in two accessions from southwestern Spain-a region from which the DM10 risk haplotype is absent-indicating that the ranges of DM10 and DM11 risk alleles may be nonoverlapping.


Assuntos
Arabidopsis/genética , Hibridização Genética , Proteínas NLR/genética , Alelos , Estudo de Associação Genômica Ampla , Necrose , Locos de Características Quantitativas
13.
Plant Cell Physiol ; 63(7): 944-954, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35460255

RESUMO

Hybrids between Arabidopsis thaliana accessions are important in revealing the consequences of epistatic interactions in plants. F1 hybrids between the A. thaliana accessions displaying either defense or developmental phenotypes have been revealing the roles of the underlying epistatic genes. The interaction of two naturally occurring alleles of the OUTGROWTH-ASSOCIATED KINASE (OAK) gene in Sha and Lag2-2, previously shown to cause a similar phenotype in a different allelic combination in A. thaliana, was required for the hybrid phenotype. Outgrowth formation in the hybrids was associated with reduced levels of salicylic acid, jasmonic acid and abscisic acid in petioles and the application of these hormones mitigated the formation of the outgrowths. Moreover, different abiotic stresses were found to mitigate the outgrowth phenotype. The involvement of stress and hormone signaling in outgrowth formation was supported by a global transcriptome analysis, which additionally revealed that TCP1, a transcription factor known to regulate leaf growth and symmetry, was downregulated in the outgrowth tissue. These results demonstrate that a combination of natural alleles of OAK regulates growth and development through the integration of hormone and stress signals and highlight the importance of natural variation as a resource to discover the function of gene variants that are not present in the most studied accessions of A. thaliana.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Hormônios , Ácido Salicílico
14.
Proc Biol Sci ; 289(1974): 20220422, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35506223

RESUMO

In contrast to ecological speciation, where reproductive isolation evolves as a consequence of divergent natural selection, speciation by parallel natural selection has been less thoroughly studied. To test whether parallel evolution drives speciation, we leveraged the repeated evolution of benthic and limnetic ecotypes of threespine stickleback fish and estimated fitness for pure crosses and within-ecotype hybrids in semi-natural ponds and in laboratory aquaria. In ponds, we detected hybrid breakdown in both ecotypes but this was counterbalanced by heterosis and the strength of post-zygotic isolation was nil. In aquaria, we detected heterosis in limnetic crosses and breakdown in benthic crosses, which is suggestive of process- and ecotype-specific environment-dependence. In ponds, heterosis and breakdown were three times greater in limnetic crosses than in benthic crosses, contrasting the prediction that the fitness consequences of hybridization should be greater in crosses among more derived ecotypes. Consistent with a primary role for stochastic processes, patterns differed among crosses between populations from different lakes. Yet, the observation of qualitatively similar patterns of heterosis and hybrid breakdown for both ecotypes when averaging the lake pairs indicates that the outcome of hybridization is repeatable in a general sense.


Assuntos
Vigor Híbrido , Smegmamorpha , Animais , Especiação Genética , Hibridização Genética , Seleção Genética , Smegmamorpha/genética
15.
Genome ; 64(2): 63-73, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32730707

RESUMO

It has long been acknowledged that changes in the regulation of gene expression may account for major organismal differences. However, we still do not fully understand how changes in gene expression evolve and how do such changes influence organisms' differences. We are even less aware of the impact such changes might have in restricting gene flow between species. Here, we focus on studies of gene expression and speciation in the Drosophila model. We review studies that have identified gene interactions in post-mating reproductive isolation and speciation, particularly those that modulate male gene expression. We also address studies that have experimentally manipulated changes in gene expression to test their effect in post-mating reproductive isolation. We highlight the need for a more in-depth analysis of the role of selection causing disrupted gene expression of such candidate genes in sterile/inviable hybrids. Moreover, we discuss the relevance to incorporate more routinely assays that simultaneously evaluate the potential effects of environmental factors and genetic background in modulating plastic responses in male genes and their potential role in speciation.


Assuntos
Drosophila , Expressão Gênica , Especiação Genética , Animais , Drosophila/genética , Fluxo Gênico , Masculino , Isolamento Reprodutivo
16.
J Hered ; 112(1): 67-77, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33211850

RESUMO

Despite decades of research, the evolution of sex remains an enigma in evolutionary biology. Typically, research addresses the costs of sex and asexuality to characterize the circumstances favoring one reproductive mode. Surprisingly few studies address the influence of common traits that are, in many organisms, obligately correlated with asexuality, including hybridization and polyploidy. These characteristics have substantial impacts on traits under selection. In particular, the fitness consequences of hybridization (i.e., reduced fitness due to interspecific reproductive isolation) will influence the evolution of sex. This may comprise a cost of either sex or asexuality due to the link between hybridity and asexuality. We examined reproductive isolation in the formation of de novo hybrid lineages between 2 widespread species in the ecological model system Boechera. Seventeen percent of 664 crosses produced F1 fruits, and only 10% of these were viable, suggesting that postmating prezygotic and postzygotic barriers inhibit hybrid success in this system. The postmating prezygotic barrier was asymmetrical, with 110 of 115 total F1 fruits produced when Boechera stricta acted as maternal parent. This asymmetry was confirmed in wild-collected lineages, using a chloroplast phylogeny of wild-collected B. stricta, Boechera retrofracta, and hybrids. We next compared fitness of F2 hybrids and selfed parental B. stricta lines, finding that F2 fitness was reduced by substantial hybrid sterility. Multiple reproductively isolating barriers influence the formation and fitness of hybrid lineages in the wild, and the costs of hybridization likely have profound impacts on the evolution of sex in the natural environment.


Assuntos
Arabis/genética , Hibridização Genética , Isolamento Reprodutivo , Colorado , DNA de Cloroplastos/genética , Aptidão Genética , Genética Populacional , Idaho , Montana , Filogenia , Reprodução Assexuada , Sexo
17.
Plant J ; 100(4): 836-850, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31323151

RESUMO

The wild tomato relative Solanum sitiens is a xerophyte endemic to the Atacama Desert of Chile and a potential source of genes for tolerance to drought, salinity and low-temperature stresses. However, until recently, strong breeding barriers prevented its hybridization and introgression with cultivated tomato, Solanum lycopersicum L. We overcame these barriers using embryo rescue, bridging lines and allopolyploid hybrids, and synthesized a library of introgression lines (ILs) that captures the genome of S. sitiens in the background of cultivated tomato. The IL library consists of 56 overlapping introgressions that together represent about 93% of the S. sitiens genome: 65% in homozygous and 28% in heterozygous (segregating) ILs. The breakpoints of each segment and the gaps in genome coverage were mapped by single nucleotide polymorphism (SNP) genotyping using the SolCAP SNP array. Marker-assisted selection was used to backcross selected introgressions into tomato, to recover a uniform genetic background, to isolate recombinant sub-lines with shorter introgressions and to select homozygous genotypes. Each IL contains a single S. sitiens chromosome segment, defined by markers, in the genetic background of cv. NC 84173, a fresh market inbred line. Large differences were observed between the lines for both qualitative and quantitative morphological traits, suggesting that the ILs contain highly divergent allelic variation. Several loci contributing to unilateral incompatibility or hybrid necrosis were mapped with the lines. This IL population will facilitate studies of the S. sitiens genome and expands the range of genetic variation available for tomato breeding and research.


Assuntos
Introgressão Genética , Solanum lycopersicum/genética , Solanum/genética , Clima Desértico , Flores/fisiologia , Frutas/fisiologia , Biblioteca Gênica , Genoma de Planta , Solanum lycopersicum/fisiologia , Melhoramento Vegetal , Ploidias , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Autoincompatibilidade em Angiospermas/genética
18.
Plant J ; 97(1): 199-213, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30098060

RESUMO

One of the most essential questions of biology is to understand how different species have evolved. Hybrid incompatibility, a phenomenon in which hybrids show reduced fitness in comparison with their parents, can result in reproductive isolation and speciation. Therefore, studying hybrid incompatibility provides an entry point in understanding speciation. Hybrid incompatibilities are known throughout taxa, and the underlying mechanisms have mystified scientists since the theory of evolution by means of natural selection was introduced. In plants, it is only in recent years that the high-throughput genetic and molecular tools have become available for the Arabidopsis genus, thus helping to shed light on the different genes and molecular and evolutionary mechanisms that underlie hybrid incompatibilities. In this review, we highlight the current knowledge of diverse mechanisms that are known to contribute to hybrid incompatibility.


Assuntos
Arabidopsis/genética , Isolamento Reprodutivo , Seleção Genética , Adaptação Biológica , Arabidopsis/fisiologia
19.
BMC Evol Biol ; 20(1): 105, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811433

RESUMO

BACKGROUND: Pseudogamy is a reproductive system in which females rely on the sperm of males to activate their oocytes, generally parasitizing males of other species, but do not use the sperm DNA. The nematode Mesorhabditis belari uses a specific form of pseudogamy, where females produce their own males as a source of sperm. Males develop from rare eggs with true fertilization, while females arise by gynogenesis. Males thus do not contribute their genome to the female offspring. Here, we explored the diversity of reproductive mode within the Mesorhabditis genus and addressed species barriers in pseudogamous species. RESULTS: To this end, we established a collection of over 60 Mesorhabditis strains from soil and rotting vegetal matter. We found that males from pseudogamous species displayed a reduced size of their body, male tail and sperm cells compared to males of sexual Mesorhabditis species, as expected for males that face little competition. Using rDNA sequences and crosses, we could define 11 auto-pseudogamous biological species, with closely related species pairs and a possible single origin of pseudogamy in the Mesorhabditis genus. Most crosses between males and females of different species did not even produce female progeny. This surprising species barrier in pseudogamous egg activation was pre or postcopulatory depending on the species pair. In the latter case, when hybrid embryos were produced, most arrested before the first embryonic cell division. Hybrid incompatibility between auto-pseudogamous species was due to defective interaction between sperm and oocyte as well as defective reconstitution of zygotic centrosomes. CONCLUSIONS: We established a collection of sexual and pseudo-sexual species which offer an ideal framework to explore the origin and consequences of transition to asexuality. Our results demonstrate that speciation occurs in the pseudogamous state. Whereas genomic conflicts are responsible for hybrid incompatibility in sexual species, we here reveal that centrosomes constitute key organelles in the establishment of species barrier.


Assuntos
Fertilidade , Fertilização , Hibridização Genética , Rhabditoidea/genética , Rhabditoidea/fisiologia , Animais , DNA Ribossômico/genética , Feminino , Masculino , Reprodução , Especificidade da Espécie , Espermatozoides
20.
Proc Natl Acad Sci U S A ; 114(14): 3702-3707, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28270603

RESUMO

Hybrid incompatibility resulting from deleterious gene combinations is thought to be an important step toward reproductive isolation and speciation. Here, we demonstrate involvement of a silent epiallele in hybrid incompatibility. In Arabidopsis thaliana accession Cvi-0, one of the two copies of a duplicated histidine biosynthesis gene, HISN6A, is mutated, making HISN6B essential. In contrast, in accession Col-0, HISN6A is essential because HISN6B is not expressed. Owing to these differences, Cvi-0 × Col-0 hybrid progeny that are homozygous for both Cvi-0 HISN6A and Col-0 HISN6B do not survive. We show that HISN6B of Col-0 is not a defective pseudogene, but a stably silenced epiallele. Mutating HISTONE DEACETYLASE 6 (HDA6), or the cytosine methyltransferase genes MET1 or CMT3, erases HISN6B's silent locus identity, reanimating the gene to circumvent hisn6a lethality and hybrid incompatibility. These results show that HISN6-dependent hybrid lethality is a revertible epigenetic phenomenon and provide additional evidence that epigenetic variation has the potential to limit gene flow between diverging populations of a species.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Epigênese Genética , Transaminases/genética , Alelos , Arabidopsis/genética , Quimera , DNA (Citosina-5-)-Metiltransferases/genética , DNA-Citosina Metilases/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes Letais , Desacetilase 6 de Histona/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA