Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biol Cell ; 116(2): e2300077, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38031929

RESUMO

BACKGROUND INFORMATION: Cancer cells acquire malignant characteristics and therapy resistance by employing the hypoxia-inducible factor 1 (HIF-1)-dependent adaptive response to hypoxic microenvironment in solid tumors. Since the underlying molecular mechanisms remain unclear, difficulties are associated with establishing effective therapeutic strategies. RESULTS: We herein identified DEAD-box helicase 5 (DDX5) as a novel activator of HIF-1 and found that it enhanced the heterodimer formation of HIF-1α and HIF-1ß and facilitated the recruitment of the resulting HIF-1 to its recognition sequence, hypoxia-response element (HRE), leading to the expression of a subset of cancer-related genes under hypoxia. CONCLUSIONS: This study reveals that the regulation of HIF-1 recruitment to HRE is an important regulatory step in the control of HIF-1 activity. SIGNIFICANCE: The present study provides novel insights for the development of strategies to inhibit the HIF-1-dependent expression of cancer-related genes.


Assuntos
Fator 1 Induzível por Hipóxia , Neoplasias , Humanos , Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia Celular/fisiologia , Hipóxia/metabolismo , Elementos de Resposta , Neoplasias/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Microambiente Tumoral
2.
Eur J Immunol ; 53(12): e2250182, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37615189

RESUMO

Hypoxia-inducible factor 1 alpha (HIF1α), under hypoxic conditions, is known to play an oxygen sensor stabilizing role by exerting context- and cell-dependent stimulatory and inhibitory functions in immune cells. Nevertheless, how HIF1α regulates T cell differentiation and functions in tumor settings has not been elucidated. Herein, we demonstrated that T-cell-specific deletion of HIF1α improves the inflammatory potential and memory phenotype of CD8+ T cells. We validated that T cell-specific HIF1α ablation reduced the B16 melanomas development with the indication of ameliorated antitumor immune response with enhanced IFN-γ+ CD8+ T cells despite the increase in the Foxp3+ regulatory T-cell population. This was further verified by treating tumor-bearing mice with a HIF1α inhibitor. Results indicated that HIF1α inhibitor also recapitulates HIF1α ablation effects by declining tumor growth and enhancing the memory and inflammatory potential of CD8+ T cells. Furthermore, a combination of Treg inhibitor with HIF1α inhibitor can substantially reduce tumor size. Collectively, these findings highlight the notable roles of HIF1α in distinct CD8+ T-cell subsets. This study suggests the significant implications for enhancing the potential of T cell-based antitumor immunity by combining HIF1α and Tregs inhibitors.


Assuntos
Melanoma Experimental , Linfócitos T Reguladores , Camundongos , Animais , Linfócitos T CD8-Positivos , Subpopulações de Linfócitos T , Melanoma Experimental/terapia , Imunidade
3.
Biol Reprod ; 111(3): 708-722, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-38924703

RESUMO

During pregnancy, apoptosis is a physiological event critical in the remodeling and aging of the placenta. Increasing evidence has pointed toward the relevance of hypoxia as modulator of trophoblast cell death. Previous reports have shown that leptin, a placental cytokine, promotes cell survival in both cell culture and placental explant models. The aim of this work is to establish the role of leptin in apoptosis under hypoxic condition in trophoblast cells. In this study, we evaluated the effect of cobalt chloride, a hypoxia mimicking agent that stabilizes the expression of hypoxia-inducible factor-1 alpha, on Swan-71 and human placental explants. Hypoxia chamber was also used to generate 2% oxygen. Apoptosis was determined by the presence of apoptotic nucleus, fragmentation of DNA and Caspase-3 and PARP-1 cleavage. The pro-apoptotic proteins BAX, BID, BAD, and BAK and the anti-apoptotic effectors BCL-2, B-cell lymphoma-extra-large, and myeloid cell leukemia-1 were also analyzed. We found that hypoxia-inducible factor-1 alpha stabilization increased the appearance of apoptotic nucleus, fragmentation of DNA, and Caspase-3 and PARP-1 cleavage. Hypoxia mimicking conditions enhanced the expression of pro-apoptotic effectors BAX, BID, BAD, and BAK. Hypoxia-inducible factor-1 alpha stabilization also downregulated the level of BCL-2, B-cell lymphoma-extra-large, and myeloid cell leukemia-1. All these apoptotic parameters changes were reversed with leptin treatment. Moreover, we showed that leptin action on apoptosis modulation involves PI3K and MAPK signaling pathways. Obtained data demonstrate that hypoxia-inducible factor-1 alpha stabilization induces apoptosis in human placenta and leptin counteracts this effect, reinforcing its role as a survival cytokine.


Assuntos
Apoptose , Leptina , Placenta , Humanos , Feminino , Placenta/metabolismo , Placenta/efeitos dos fármacos , Gravidez , Leptina/metabolismo , Leptina/farmacologia , Apoptose/efeitos dos fármacos , Trofoblastos/metabolismo , Trofoblastos/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Cobalto/farmacologia , Hipóxia Celular/fisiologia
4.
Pharmacol Res ; 201: 107092, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311014

RESUMO

AP endonuclease-1/Redox factor-1 (APE1/Ref-1 or Ref-1) is a multifunctional protein that is overexpressed in most aggressive cancers and impacts various cancer cell signaling pathways. Ref-1's redox activity plays a significant role in activating transcription factors (TFs) such as NFκB, HIF1α, STAT3 and AP-1, which are crucial contributors to the development of tumors and metastatic growth. Therefore, development of potent, selective inhibitors to target Ref-1 redox function is an appealing approach for therapeutic intervention. A first-generation compound, APX3330 successfully completed phase I clinical trial in adults with progressing solid tumors with favorable response rate, pharmacokinetics (PK), and minimal toxicity. These positive results prompted us to develop more potent analogs of APX3330 to effectively target Ref-1 in solid tumors. In this study, we present structure-activity relationship (SAR) identification and validation of lead compounds that exhibit a greater potency and a similar or better safety profile to APX3330. In order to triage and characterize the most potent and on-target second-generation Ref-1 redox inhibitors, we assayed for PK, mouse and human S9 fraction metabolic stability, in silico ADMET properties, ligand-based WaterLOGSY NMR measurements, pharmacodynamic markers, cell viability in multiple cancer cell types, and two distinct 3-dimensional (3D) cell killing assays (Tumor-Microenvironment on a Chip and 3D spheroid). To characterize the effects of Ref-1 inhibition in vivo, global proteomics was used following treatment with the top four analogs. This study identified and characterized more potent inhibitors of Ref-1 redox function (that outperformed APX3330 by 5-10-fold) with PK studies demonstrating efficacious doses for translation to clinic.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Neoplasias , Adulto , Humanos , Animais , Camundongos , Inibidores da Angiogênese , Apoptose , Bioensaio , Neoplasias/tratamento farmacológico , Microambiente Tumoral
5.
Medicina (Kaunas) ; 60(7)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39064577

RESUMO

Background and Objectives: In this study, we aimed to investigate the effects of bosentan, an endothelin receptor antagonist, on endothelin-1 (ET-1), hypoxia-inducible factor-1 (HIF-1), nuclear factor-kappa B (NF-κB), and tumor necrosis factor (TNF)-α as inflammation markers, pro-oxidant antioxidant balance (PAB), and total antioxidant capacity (TAC) levels as oxidative stress parameters in lung tissues of rats in an experimental model of pulmonary contusion (PC) induced by blunt thoracic trauma. Materials and Methods: Thirty-seven male Sprague-Dawley rats were divided into five groups. C: The control group (n = 6) consisted of unprocessed and untreated rats. PC3 (n = 8) underwent 3 days of PC. PC-B3 (n = 8) received 100 mg/kg bosentan and was given orally once a day for 3 days. The PC7 group (n = 7) underwent 7 days of PC, and PC-B7 (n = 8) received 100 mg/kg bosentan and was given orally once a day for 7 days. Results: ET-1, NF-κB, TNF-α, HIF-1α, and PAB levels were higher, while TAC activity was lower in all groups compared with the control (p < 0.05). There was no significant difference in ET-1 and TNF-α levels between the PC-B3 and PC-B7 groups and the control group (p < 0.05), while NF-κB, HIF-1α, and PAB levels were still higher in both the PC-B3 and PC-B7 groups than in the control group. Bosentan decreased ET-1, NF-κB, TNF-α, HIF-1α, and PAB and increased TAC levels in comparison to the nontreated groups (p < 0.05). Conclusions: Bosentan decreased the severity of oxidative stress in the lungs and reduced the inflammatory reaction in rats with PC induced by blunt thoracic trauma. This suggests that bosentan may have protective effects on lung injury mechanisms by reducing hypoxia, inflammation, and oxidative stress. If supported by similar studies, bosentan can be used in both pulmonary and emergency clinics to reduce ischemic complications, inflammation, and oxidative stress in some diseases that may be accompanied by ischemia.


Assuntos
Bosentana , Modelos Animais de Doenças , Inflamação , Estresse Oxidativo , Ratos Sprague-Dawley , Sulfonamidas , Traumatismos Torácicos , Ferimentos não Penetrantes , Animais , Bosentana/uso terapêutico , Bosentana/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Masculino , Ratos , Traumatismos Torácicos/complicações , Traumatismos Torácicos/tratamento farmacológico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Inflamação/tratamento farmacológico , Ferimentos não Penetrantes/complicações , Ferimentos não Penetrantes/tratamento farmacológico , Fator de Necrose Tumoral alfa/análise , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , NF-kappa B/metabolismo , Endotelina-1/análise , Antagonistas dos Receptores de Endotelina/uso terapêutico , Antagonistas dos Receptores de Endotelina/farmacologia
6.
Int J Mol Sci ; 24(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069355

RESUMO

This review summarizes the currently known biochemical neuroadaptive mechanisms of remote ischemic conditioning. In particular, it focuses on the significance of the pro-adaptive effects of remote ischemic conditioning which allow for the prevention of the neurological and cognitive impairments associated with hippocampal dysregulation after brain damage. The neuroimmunohumoral pathway transmitting a conditioning stimulus, as well as the molecular basis of the early and delayed phases of neuroprotection, including anti-apoptotic, anti-oxidant, and anti-inflammatory components, are also outlined. Based on the close interplay between the effects of ischemia, especially those mediated by interaction of hypoxia-inducible factors (HIFs) and steroid hormones, the involvement of the hypothalamic-pituitary-adrenocortical system in remote ischemic conditioning is also discussed.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Pós-Condicionamento Isquêmico , Humanos , Isquemia Encefálica/metabolismo , Isquemia , Hipocampo/metabolismo , Antioxidantes
7.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108039

RESUMO

Obstructive sleep apnea (OSA) is an emerging risk factor for cancer occurrence and progression, mainly mediated by intermittent hypoxia (IH). Systemic IH, a main landmark of OSA, and local sustained hypoxia (SH), a classical feature at the core of tumors, may act separately or synergistically on tumor cells. Our aim was to compare the respective consequences of intermittent and sustained hypoxia on HIF-1, endothelin-1 and VEGF expression and on cell proliferation and migration in HepG2 liver tumor cells. Wound healing, spheroid expansion, proliferation and migration were evaluated in HepG2 cells following IH or SH exposure. The HIF-1α, endothelin-1 and VEGF protein levels and/or mRNA expression were assessed, as were the effects of HIF-1 (acriflavine), endothelin-1 (macitentan) and VEGF (pazopanib) inhibition. Both SH and IH stimulated wound healing, spheroid expansion and proliferation of HepG2 cells. HIF-1 and VEGF, but not endothelin-1, expression increased with IH exposure but not with SH exposure. Acriflavine prevented the effects of both IH and SH, and pazopanib blocked those of IH but not those of SH. Macitentan had no impact. Thus, IH and SH stimulate hepatic cancer cell proliferation via distinct signaling pathways that may act synergistically in OSA patients with cancer, leading to enhanced tumor progression.


Assuntos
Apneia Obstrutiva do Sono , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Hep G2 , Acriflavina , Hipóxia/metabolismo , Apneia Obstrutiva do Sono/metabolismo , Fator 1 Induzível por Hipóxia , Proliferação de Células , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
8.
Bioorg Chem ; 109: 104740, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33626453

RESUMO

Six new non-classical cardenolides (1-6), and seventeen known ones (7-23) were isolated from Calotropis gigantea. All cardenolides showed inhibitory effect on hypoxia inducible factor-1 (HIF-1) transcriptional activity with IC50 of 8.85 nM-16.69 µM except 5 and 7. The novel 19-dihydrocalotoxin (1) exhibited a comparable HIF-1 inhibitory activity (IC50 of 139.57 nM) to digoxin (IC50 of 145.77 nM), a well-studied HIF-1 inhibitor, and 11, 12, 14, 16 and 19 presented 1.4-15.4 folds stronger HIF-1 inhibition than digoxin. 1 and 11 showed a dose-dependent inhibition on HIF-1α protein, which led to their HIF-1 suppressing effects. Compared with LO2 and H9c2 normal cell lines, both 1 and 11 showed selective cytotoxicity against various cancer cell lines including HCT116, HeLa, HepG2, A549, MCF-7, A2780 and MDA-MB-231. Moreover, a comprehensive structure-activity relationship was concluded for these non-classical cardenolides as HIF-1 inhibitors, which may shed some light on the rational design and development of cardenolide-based anticancer drugs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Calotropis/química , Cardenolídeos/farmacologia , Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Cardenolídeos/química , Cardenolídeos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Conformação Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34948094

RESUMO

Hyperglycemia/diabetes appears to be accompanied by the state of hypoxia, which especially affects kidneys. The aim of the study was to elucidate the mechanism of high glucose action on HIF-1α expression in renal proximal tubule epithelial cells. The research hypotheses included: (1) the participation of transcription factor ChREBP; and (2) the involvement of the effects resulting from pseudohypoxia, i.e., lowered intracellular NAD+/NADH ratio. The experiments were performed on HK-2 cells and primary cells: D-RPTEC (Diseased Human Renal Proximal Tubule Epithelial Cells-Diabetes Type II) and RPTEC (Renal Proximal Tubule Epithelial Cells). Protein and mRNA contents were determined by Western blot and RT-qPCR, respectively. ChREBP binding to DNA was detected applying chromatin immunoprecipitation, followed by RT-qPCR. Gene knockdown was performed using siRNA. Sirtuin activity and NAD+/NADH ratio were measured with commercially available kits. It was found that high glucose in HK-2 cells incubated under normoxic conditions: (1) activated transcription of HIF-1 target genes, elevated HIF-1α and ChREBP content, and increased the efficacy of ChREBP binding to promoter region of HIF1A gene; and (2), although it lowered NAD+/NADH ratio, it affected neither sirtuin activity nor HIF-1α acetylation level. The stimulatory effect of high glucose on HIF-1α expression was not observed upon the knockdown of ChREBP encoding gene. Experiments on RPTEC and D-RPTEC cells demonstrated that HIF-1α content in diabetic proximal tubular cells was lower than that in normal ones but remained high glucose-sensitive, and the latter phenomenon was mediated by ChREBP. Thus, it is concluded that the mechanism of high glucose-evoked increase in HIF-1α content in renal proximal tubule endothelial cells involves activation of ChREBP, indirectly capable of HIF1A gene up-regulation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Células Epiteliais/metabolismo , Glucose/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Túbulos Renais Proximais/metabolismo , Regulação para Cima/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
10.
Molecules ; 26(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34946740

RESUMO

Oxidative stress is the leading player in the onset and development of various diseases. The Keap1-Nrf2 pathway is a pivotal antioxidant system that preserves the cells' redox balance. It decreases inflammation in which the nuclear trans-localization of Nrf2 as a transcription factor promotes various antioxidant responses in cells. Through some other directions and regulatory proteins, this pathway plays a fundamental role in preventing several diseases and reducing their complications. Regulation of the Nrf2 pathway occurs on transcriptional and post-transcriptional levels, and these regulations play a significant role in its activity. There is a subtle correlation between the Nrf2 pathway and the pivotal signaling pathways, including PI3 kinase/AKT/mTOR, NF-κB and HIF-1 factors. This demonstrates its role in the development of various diseases. Curcumin is a yellow polyphenolic compound from Curcuma longa with multiple bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Since hyperglycemia and increased reactive oxygen species (ROS) are the leading causes of common diabetic complications, reducing the generation of ROS can be a fundamental approach to dealing with these complications. Curcumin can be considered a potential treatment option by creating an efficient therapeutic to counteract ROS and reduce its detrimental effects. This review discusses Nrf2 pathway regulation at different levels and its correlation with other important pathways and proteins in the cell involved in the progression of diabetic complications and targeting these pathways by curcumin.


Assuntos
Antioxidantes/uso terapêutico , Curcumina/uso terapêutico , Complicações do Diabetes , Hipóxia , Transdução de Sinais/efeitos dos fármacos , Animais , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/metabolismo , Humanos , Hipóxia/tratamento farmacológico , Hipóxia/etiologia , Hipóxia/metabolismo
11.
J Reprod Dev ; 66(4): 307-310, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32249240

RESUMO

There has been increasing interest in the role of hypoxia in the microenvironment of organs, because of the discovery of hypoxia-inducible factor-1 (HIF1), which acts as a transcription factor for many genes activated specifically under hypoxic conditions. The ovary changes day by day during the estrous cycle as it goes through phases of follicular growth, ovulation, and formation and regression of the corpus luteum (CL). These phenomena are regulated by hypothalamic and pituitary hormones, sex steroids, peptides and cytokines, as well as oxygen conditions. Hypoxia strongly induces angiogenesis via transcription of a potent angiogenic factor, vascular endothelial growth factor (VEGF), that is regulated by HIF1. A CL forms with a rapid increase of angiogenesis that is mainly induced by HIF1-VEGF signaling. Hypoxia also contributes to luteolysis by down-regulating progesterone synthesis and by up-regulating apoptosis of luteal cells. This review focuses on recent studies on the roles of hypoxia- and HIF1-regulated genes in the regulation of bovine CL function.


Assuntos
Corpo Lúteo/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Ovário/metabolismo , Animais , Bovinos , Feminino , Transportador de Glucose Tipo 1/metabolismo , Luteólise/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
J Cell Physiol ; 234(5): 6286-6297, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30367454

RESUMO

Ten-eleven translocation 1 (TET1), a widely reported DNA demethylation protein, has been associated with tumorigenesis and metastasis. However, whether TET1 is an oncogene or tumor suppressor gene has been controversial; the mechanism of how TET1 affects cancer progression remains unclear. The current study aims to investigate how TET1 is changed in the tumor microenvironment and to explore the mechanisms of how TET1 affects colon cancer progression. Because hypoxia prevails on solid tumors, we established an important connection between hypoxia and DNA demethylation in tumorigenesis. By qPCR and RNA interference (RNAi) technology, we found that hypoxia increased TET1 expression with a hypoxia-inducible factor-1-alpha (HIF-1α)-dependent manner. By CHIP-qPCR and pyrosequencing technology, we demonstrated that TET1 regulated the target gene expression of HIF-1α through HIF-1α binding to hypoxia-responsive elements (HREs), and HIF-1α binding to HREs depended on CpG methylation levels. By Cell Counting Kit-8 (CCK-8) and transwell assay, we showed that loss of TET1 did not affect cell proliferation but inhibited migration. We also identified two novel gene mutants of TET1 in 120 paired tumor/normal tissue specimens by DNA sequencing and found that TET1 E2082K mutant blocked the TET1-enhanced cell migration. Our results showed that the downregulation of TET1 rescued the abnormally high levels of gene expression resulting from hypoxia in tumors and reduced the migration activity of tumor cells, suggesting a therapeutic role by interference with TET1 in colon cancer treatment. By demonstrating that hypoxia upregulated TET1 and that TET1 drove HIF-1α-responsive genes, we showed that an epigenetic mechanism and tumor microenvironment-driven models coexisted and mutually affected colon cancer.


Assuntos
Hipóxia Celular/fisiologia , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Movimento Celular/fisiologia , Neoplasias do Colo/enzimologia , Humanos , Microambiente Tumoral/fisiologia
13.
Cancer Sci ; 109(3): 560-571, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29285833

RESUMO

Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator of various genes related to cellular adaptive responses to hypoxia. Dysfunctions in the regulatory systems of HIF-1 activity have been implicated in the pathogenesis of various diseases including malignant tumors and, thus, elucidating the molecular mechanisms underlying the activation of HIF-1 is eagerly desired for the development of novel anti-cancer strategies. The importance of oxygen-dependent and ubiquitin-mediated proteolysis of the regulatory subunit of HIF-1 (HIF-1α) was first reported in 1997. Since then, accumulating evidence has shown that HIF-1α may become stable and active even under normoxic conditions; for example, when disease-associated genetic and functional alterations in some genes trigger the aberrant activation of HIF-1 regardless of oxygen conditions. We herein review the last two decades of knowledge, since 1997, on the regulatory mechanisms of HIF-1 activity from conventional oxygen- and proteolysis-dependent mechanisms to up-to-the-minute information on cancer-associated genetic and functional alteration-mediated mechanisms.


Assuntos
Fator 1 Induzível por Hipóxia/genética , Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/genética , Hipóxia Celular , Dioxigenases/metabolismo , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Neoplasias/metabolismo , Ubiquitinação
14.
Biol Pharm Bull ; 41(11): 1659-1666, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30381665

RESUMO

Lymphangiogenesis, the formation of lymphatic vessels from preexisting ones, promotes cancer growth and metastasis. Finding natural compounds with anti-lymphangiogenic activity will be useful for preventive treatment of lymphatic metastasis. Shikonin, an ingredient of a traditional Japanese and Chinese medicinal herb Lithospermum erythrorhizon, has been widely used in several pharmaceutical and cosmetic preparations, as well as in food colorants. Shikonin has been reported to inhibit lymphangiogenesis in vitro, but the mechanism of inhibition has not been determined. The aim of this study is to investigate the mechanism of anti-lymphangiogenesis of shikonin in primary human lymphatic endothelial cells (HMVEC-dLy). Shikonin, at non-toxic concentrations, significantly inhibited cord formation ability of lymphatic endothelial cells in a dose- and time-dependent manner. Western blotting analysis showed that shikonin decreased nuclear factor-kappaB (NF-κB) activation, as indicated by phosphorylation and nuclear translocation of NF-κB p65, and also reduced both mRNA and protein levels of hypoxia-inducible factor-1 (HIF-1)α. Use of an NF-κB inhibitor (BAY 11-7085) and HIF-1α small interfering RNA (siRNA) transfection revealed that NF-κB activation was upstream of HIF-1α expression, which controls cord formation by HMVEC-dLy. In addition, the reduction of vascular endothelial growth factor C (VEGF-C) and vascular endothelial growth factor receptor-3 (VEGFR-3) mRNA levels were also found in HMVEC-dLy that treated with shikonin. In conclusion, shikonin inhibits lymphangiogenesis in vitro by interfering the NF-κB/HIF-1α pathway and involves in suppression of VEGF-C and VEGFR-3 mRNA expression.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lithospermum/química , Linfangiogênese/efeitos dos fármacos , NF-kappa B/metabolismo , Naftoquinonas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Células Endoteliais/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Metástase Linfática/prevenção & controle , Naftoquinonas/uso terapêutico , Fitoterapia , RNA Mensageiro/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
Hepatol Res ; 47(1): 23-30, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26990590

RESUMO

Radiofrequency ablation (RFA) is effective for the local control of hepatocellular carcinoma (HCC), particularly when a patient's liver functional reserve does not allow radical resection. There is controversy regarding the superiority of surgical resection compared with RFA for such patients, particularly those with three or fewer tumors with diameters ≤3 cm. Moreover, HCC often recurs after RFA, and the tumor cells show distinct phenotypic changes. Incomplete ablation accounts for tumor recurrence, and recent studies provide new insights into the biological mechanisms responsible for the pathological changes of HCC after RFA. This review focuses on the roles of epithelial-mesenchymal transition and cancer stemness that are driven by a mechanism that involves microRNA-mediated upregulation of hypoxia-inducible factor-1. The studies reviewed here provide compelling evidence that complete ablation of HCC is required to prevent recurrence and indicate that further research is urgently required to develop a new systematic strategy to prevent tumor recurrence by targeting hypoxia-inducible factor-1.

16.
Diabetes Metab Res Rev ; 32 Suppl 1: 179-85, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26453314

RESUMO

Diabetic foot ulceration (DFU) is a chronic complication of diabetes that is characterized by impaired wound healing in the lower extremities. DFU remains a major clinical challenge because of poor understanding of its pathogenic mechanisms. Impaired wound healing in diabetes is characterized by decreased angiogenesis, reduced bone marrow-derived endothelial progenitor cell (EPC) recruitment, and decreased fibroblast and keratinocyte proliferation and migration. Recently, increasing evidence has suggested that increased hypoxic conditions and impaired cellular responses to hypoxia are essential pathogenic factors of delayed wound healing in DFU. Hypoxia-inducible factor-1 (HIF-1, a heterodimer of HIF-1α and HIF-1ß) is a master regulator of oxygen homeostasis that mediates the adaptive cellular responses to hypoxia by regulating the expression of genes involved in angiogenesis, metabolic changes, proliferation, migration, and cell survival. However, HIF-1 signalling is inhibited in diabetes as a result of hyperglycaemia-induced HIF-1α destabilization and functional repression. Increasing HIF-1α expression and activity using various approaches promotes angiogenesis, EPC recruitment, and granulation, thereby improving wound healing in experimental diabetes. The mechanisms underlying HIF-1α regulation in diabetes and the therapeutic strategies targeting HIF-1 signalling for the treatment of diabetic wounds are discussed in this review. Further investigations of the pathways involved in HIF-1α regulation in diabetes are required to advance our understanding of the mechanisms underlying impaired wound healing in diabetes and to provide a foundation for developing novel therapeutic approaches to treat DFU.


Assuntos
Angiopatias Diabéticas/fisiopatologia , Pé Diabético/etiologia , Modelos Biológicos , Animais , Hipóxia Celular , Congressos como Assunto , Angiopatias Diabéticas/complicações , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/metabolismo , Pé Diabético/complicações , Pé Diabético/metabolismo , Pé Diabético/fisiopatologia , Progressão da Doença , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Pé/irrigação sanguínea , Humanos , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Hiperglicemia/fisiopatologia , Fator 1 Induzível por Hipóxia/metabolismo , Transdução de Sinais , Cicatrização
17.
Neoplasma ; 63(6): 836-845, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27565321

RESUMO

Cancer cells often rely on glycolytic metabolism in order to fulfill high demands of ATP and macromolecules for the sustained growth and proliferation. However, glycolysis is not necessarily the main source of energy for all cancer cells. Some of them rather depend on glutamine or lactate that favor the utilization of oxidative metabolic pathway. Different employment rate of metabolism creates variable products that participate in the formation of environmental milieu, which in turn triggers broad spectrum of cellular signaling pathways leading to migration, invasion, or proliferation. In this review we discuss different metabolic pathways promoted in tumor cells and describe the possibilities of their targeting as therapeutic strategies.


Assuntos
Metabolismo Energético , Glicólise , Neoplasias/metabolismo , Movimento Celular , Humanos , Invasividade Neoplásica , Transdução de Sinais
18.
Am J Physiol Renal Physiol ; 308(12): F1452-62, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25925251

RESUMO

Ischemia-reperfusion injury (IRI) due to hypotension is a common cause of human acute kidney injury (AKI). Hypoxia-inducible transcription factors (HIFs) orchestrate a protective response in renal endothelial and epithelial cells in AKI models. As human mucin 1 (MUC1) is induced by hypoxia and enhances HIF-1 activity in cultured epithelial cells, we asked whether mouse mucin 1 (Muc1) regulates HIF-1 activity in kidney tissue during IRI. Whereas Muc1 was localized on the apical surface of the thick ascending limb, distal convoluted tubule, and collecting duct in the kidneys of sham-treated mice, Muc1 appeared in the cytoplasm and nucleus of all tubular epithelia during IRI. Muc1 was induced during IRI, and Muc1 transcripts and protein were also present in recovering proximal tubule cells. Kidney damage was worse and recovery was blocked during IRI in Muc1 knockout mice compared with congenic control mice. Muc1 knockout mice had reduced levels of HIF-1α, reduced or aberrant induction of HIF-1 target genes involved in the shift of glucose metabolism to glycolysis, and prolonged activation of AMP-activated protein kinase, indicating metabolic stress. Muc1 clearly plays a significant role in enhancing the HIF protective pathway during ischemic insult and recovery in kidney epithelia, providing a new target for developing therapies to treat AKI. Moreover, our data support a role specifically for HIF-1 in epithelial protection of the kidney during IRI as Muc1 is present only in tubule epithelial cells.


Assuntos
Mucina-1/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão/fisiopatologia
19.
Asian Pac J Cancer Prev ; 25(4): 1121-1134, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38679971

RESUMO

Metabolic reprogramming occurs to meet cancer cells' high energy demand. Its function is essential to the survival of malignancies. Comparing cancer cells to non-malignant cells has revealed that cancer cells have altered metabolism. Several pathways, particularly mTOR, Akt, PI3K, and HIF-1 (hypoxia-inducible factor-1) modulate the metabolism of cancer. Among other aspects of cancer biology, gene expression in metabolism, survival, invasion, proliferation, and angiogenesis of cells are controlled by HIF-1, a vital controller of cellular responsiveness to hypoxia. This article examines various cancer cell metabolisms, metabolic alterations that can take place in cancer cells, metabolic pathways, and molecular aspects of metabolic alteration in cancer cells placing special attention on the consequences of hypoxia-inducible factor and summarising some of their novel targets in the treatment of cancer including leukemia. A brief description of HIF-1α's role and target in a few common types of hematological malignancies (leukemia) is also elucidated in the present article.


Assuntos
Leucemia , Humanos , Leucemia/metabolismo , Leucemia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Animais , Transdução de Sinais
20.
Biochem Biophys Res Commun ; 438(3): 507-12, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23916614

RESUMO

Mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways are pivotal and intensively studied signaling pathways in hypoxic conditions. However, the roles of MAPK and PI3K in the regulation of hypoxia-induced atrial natriuretic peptide (ANP) secretion are not well understood. The purpose of the present study was to investigate the mechanism by which the MAPK/ERK (extracellular signal-regulated kinase) and PI3K signaling pathways regulate the acute hypoxia-induced ANP secretion in isolated beating rabbit atria. An acute hypoxic perfused beating rabbit atrial model was used. The ANP levels in the atrial perfusates were measured by radioimmunoassay, and the hypoxia-inducible factor-1α (HIF-1α) mRNA and protein levels in the atrial tissue were determined by RT-PCR and Western blot. Acute hypoxia significantly increased ANP secretion and HIF-1α mRNA and protein levels. Hypoxia-induced ANP secretion was markedly attenuated by the HIF-1α inhibitors, rotenone (0.5µmol/L) and CAY10585 (10µmol/L), concomitantly with downregulation of the hypoxia-induced HIF-1α mRNA and protein levels. PD098059 (30µmol/L) and LY294002 (30µmol/L), inhibitors of MAPK and PI3K, markedly abolished the hypoxia-induced ANP secretion and atrial HIF-1α mRNA and protein levels. The hypoxia-suppressed atrial dynamics were significantly attenuated by PD098059 and LY294002. Acute hypoxia in isolated perfused beating rabbit atria, markedly increased ANP secretion through HIF-1α upregulation, which was regulated by the MAPK/ERK and PI3K pathways. ANP appears to be part of the protective program regulated by HIF-1α in the response to acute hypoxic conditions.


Assuntos
Fator Natriurético Atrial/metabolismo , Átrios do Coração/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Hipóxia/fisiopatologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Fosfatidilinositol 3-Quinase/fisiologia , Animais , Cromonas/farmacologia , Feminino , Flavonoides/farmacologia , Técnicas In Vitro , Masculino , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Coelhos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA