Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(13): 3394-3409.e20, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34077752

RESUMO

The human fetal immune system begins to develop early during gestation; however, factors responsible for fetal immune-priming remain elusive. We explored potential exposure to microbial agents in utero and their contribution toward activation of memory T cells in fetal tissues. We profiled microbes across fetal organs using 16S rRNA gene sequencing and detected low but consistent microbial signal in fetal gut, skin, placenta, and lungs in the 2nd trimester of gestation. We identified several live bacterial strains including Staphylococcus and Lactobacillus in fetal tissues, which induced in vitro activation of memory T cells in fetal mesenteric lymph node, supporting the role of microbial exposure in fetal immune-priming. Finally, using SEM and RNA-ISH, we visualized discrete localization of bacteria-like structures and eubacterial-RNA within 14th weeks fetal gut lumen. These findings indicate selective presence of live microbes in fetal organs during the 2nd trimester of gestation and have broader implications toward the establishment of immune competency and priming before birth.


Assuntos
Bactérias/metabolismo , Desenvolvimento Embrionário , Feto/citologia , Feto/microbiologia , Leucócitos/citologia , Adulto , Bactérias/genética , Bactérias/ultraestrutura , Proliferação de Células , Células Dendríticas/metabolismo , Feminino , Feto/ultraestrutura , Trato Gastrointestinal/embriologia , Trato Gastrointestinal/ultraestrutura , Humanos , Memória Imunológica , Ativação Linfocitária/imunologia , Viabilidade Microbiana , Gravidez , Segundo Trimestre da Gravidez , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes , Linfócitos T/citologia
2.
Proc Natl Acad Sci U S A ; 121(11): e2315540121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38437561

RESUMO

Insects lack acquired immunity and were thought to have no immune memory, but recent studies reported a phenomenon called immune priming, wherein sublethal dose of pathogens or nonpathogenic microbes stimulates immunity and prevents subsequential pathogen infection. Although the evidence for insect immune priming is accumulating, the underlying mechanisms are still unclear. The bean bug Riptortus pedestris acquires its gut microbiota from ambient soil and spatially structures them into a multispecies and variable community in the anterior midgut and a specific, monospecies Caballeronia symbiont population in the posterior region. We demonstrate that a particular Burkholderia strain colonizing the anterior midgut stimulates systemic immunity by penetrating gut epithelia and migrating into the hemolymph. The activated immunity, consisting of a humoral and a cellular response, had no negative effect on the host fitness, but on the contrary protected the insect from subsequent infection by pathogenic bacteria. Interruption of contact between the Burkholderia strain and epithelia of the gut weakened the host immunity back to preinfection levels and made the insects more vulnerable to microbial infection, demonstrating that persistent acquisition of environmental bacteria is important to maintain an efficient immunity.


Assuntos
Burkholderia , Burkholderiaceae , Animais , Endoderma , Insetos , Solo
3.
Semin Cell Dev Biol ; 161-162: 22-30, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564842

RESUMO

Modern precision sequencing techniques have established humans as a holobiont that live in symbiosis with the microbiome. Microbes play an active role throughout the life of a human ranging from metabolism and immunity to disease tolerance. Hence, it is of utmost significance to study the eukaryotic host in conjunction with the microbial antigens to obtain a complete picture of the host-microbiome crosstalk. Previous attempts at profiling host-microbiome interactions have been either superficial or been attempted to catalogue eukaryotic transcriptomic profile and microbial communities in isolation. Additionally, the nature of such immune-microbial interactions is not random but spatially organised. Hence, for a holistic clinical understanding of the interplay between hosts and microbiota, it's imperative to concurrently analyze both microbial and host genetic information, ensuring the preservation of their spatial integrity. Capturing these interactions as a snapshot in time at their site of action has the potential to transform our understanding of how microbes impact human health. In examining early-life microbial impacts, the limited presence of communities compels analysis within reduced biomass frameworks. However, with the advent of spatial transcriptomics we can address this challenge and expand our horizons of understanding these interactions in detail. In the long run, simultaneous spatial profiling of host-microbiome dialogues can have enormous clinical implications especially in gaining mechanistic insights into the disease prognosis of localised infections and inflammation. This review addresses the lacunae in host-microbiome research and highlights the importance of profiling them together to map their interactions while preserving their spatial context.


Assuntos
Microbiota , Simbiose , Humanos , Bactérias/genética , Microbiota/genética , Interações Microbianas
4.
Eur J Immunol ; 54(5): e2350872, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38388988

RESUMO

Lymph node (LN) fine needle aspiration (LN FNA) represents a powerful technique for minimally invasive sampling of human LNs in vivo and has been used effectively to directly study aspects of the human germinal center response. However, systematic deep phenotyping of the cellular populations and cell-free proteins recovered by LN FNA has not been performed. Thus, we studied human cervical LN FNAs as a proof-of-concept and used single-cell RNA-sequencing and proteomic analysis to benchmark this compartment, define the purity of LN FNA material, and facilitate future studies in this immunologically pivotal environment. Our data provide evidence that LN FNAs contain bone-fide LN-resident innate immune populations, with minimal contamination of blood material. Examination of these populations reveals unique biology not predictable from equivalent blood-derived populations. LN FNA supernatants represent a specific source of lymph- and lymph node-derived proteins, and can, aided by transcriptomics, identify likely receptor-ligand interactions. This represents the first description of the types and abundance of immune cell populations and cell-free proteins that can be efficiently studied by LN FNA. These findings are of broad utility for understanding LN physiology in health and disease, including infectious or autoimmune perturbations, and in the case of cervical nodes, neuroscience.


Assuntos
Linfonodos , Humanos , Linfonodos/imunologia , Biópsia por Agulha Fina/métodos , Proteômica/métodos , Imunidade Inata , Feminino , Análise de Célula Única/métodos , Centro Germinativo/imunologia , Masculino
5.
Methods ; 230: 68-79, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39097177

RESUMO

Beta glucans are found in many natural sources, however, only Baker's Yeast Beta Glucan (BYBG) has been well documented to have structure-function effects that are associated with improved innate immune response to stressors (e.g., exercise, infection, etc.). The purpose was to identify a BYBG-associated mRNA expression pattern following exercise. Participants gave IRB-approved consent and were randomized to BYBG (Wellmune®; N=9) or Placebo (maltodextrin; N=10) for 6-weeks prior to performing 90 min of whole-body exercise. Paxgene blood samples were collected prior to exercise (PRE), after exercise (POST), two hours after exercise (2H), and four hours after exercise (4H). Total RNA was isolated and analyzed for the expression of 770 innate immune response mRNA (730 mRNA targets; 40 housekeepers/controls; Nanostring nCounter). The raw data were normalized against housekeeping controls and expressed as Log2 fold change from PRE for a given condition. Significance was set at p < 0.05 with adjustments for multiple comparisons and false discovery rate. We identified 47 mRNA whose expression was changed after exercise with BYBG and classified them to four functional pathways: 1) Immune Cell Maturation (8 mRNA), 2) Immune Response and Function (5 mRNA), 3) Pattern Recognition Receptors and DAMP or PAMP Detection (25 mRNA), and 4) Detection and Resolution of Tissue Damage (9 mRNA). The identified mRNA whose expression was altered after exercise with BYBG may represent an innate immune response pattern and supports previous conclusions that BYBG improves immune response to a future sterile inflammation or infection.

6.
FASEB J ; 37(11): e23242, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37801065

RESUMO

TIAM Rac1-associated GEF 2 short form (TIAM2S) as an oncoprotein alters the immunity of peripheral immune cells to construct an inflammatory tumor microenvironment. However, its role in the activation of microglia, the primary innate immune cells of the brain, and neuroinflammation remains unknown. This study investigated the mechanism underlying TIAM2S shapes immune properties of microglia to facilitate neuron damage. Human microglial clone 3 cell line (HMC3) and human brain samples were applied to determine the presence of TIAM2S in microglia by western blots and double immunostaining. Furthermore, TIAM2S transgenic mice combined with multiple reconstituted primary neuron-glial culture systems and a cytokine array were performed to explore how TIAM2S shaped immune priming of microglia and participated in lipopolysaccharide (LPS)-induced neuron damage. TIAM2S protein was detectable in HMC3 cells and presented in a small portion (~11.1%) of microglia in human brains referred to as TIAM2S-positive microglia. With the property of secreted soluble factor-mediated immune priming, TIAM2S-positive microglia enhanced LPS-induced neuroinflammation and neural damage in vivo and in vitro. The gain- and loss-of-function experiments showed soluble intercellular adhesion molecule-1 (sICAM-1) participated in neurotoxic immune priming of TIAM2S+ microglia. Together, this study demonstrated a novel TIAM2S-positive microglia subpopulation enhances inflammation and neurotoxicity through sICAM-1-mediated immune priming.


Assuntos
Inflamação , Molécula 1 de Adesão Intercelular , Microglia , Microambiente Tumoral , Animais , Humanos , Camundongos , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Transgênicos , Microglia/metabolismo , Doenças Neuroinflamatórias/imunologia , Microambiente Tumoral/imunologia
7.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256110

RESUMO

Increasing evidence confirms that histone modification plays a critical role in preserving long-term immunological memory. Immune priming is a novel form of immunological memory recently verified in invertebrates. Toll-like receptor (TLR) signaling and cytokines have been reported to be involved in the immune priming of the Pacific oyster Crassostrea gigas. In the present study, the expression of Toll-like receptor 3 (CgTLR3), myeloid differentiation factor 88-2 (CgMyd88-2) and interleukin 17-1 (CgIL17-1) was found to be elevated in the hemocytes of C. gigas at 6 h after the secondary stimulation with Vibrio splendidus, which was significantly higher than that at 6 h after the primary stimulation (p < 0.05). A significant increase in histone H3 lysine 4 trimethylation (H3K4me3) enrichment was detected in the promoter region of the CgTLR3 gene at 7 d after the primary stimulation with inactivated V. splendidus (p < 0.05). After the treatment with a histone methyltransferase inhibitor (5'-methylthioadenosine, MTA), the level of H3K4me3 at the promoter of the CgTLR3 gene decreased significantly at 7 d after the primary stimulation with inactivated V. splendidus (p < 0.05), and the expression of CgTLR3, CgMyD88-2 and CgIL17-1 was significantly repressed at 6 h after the secondary stimulation with V. splendidus (p < 0.05). Conversely, the treatment with monomethyl fumarate (MEF, an inhibitor of histone demethylases) resulted in a significant increase in H3K4me3 enrichment levels at the CgTLR3 promoter at 7 d after the primary stimulation (p < 0.05), and the expression of CgTLR3, CgMyD88-2 and CgIL17-1 was observed to increase significantly at 6 h after the secondary stimulation (p < 0.05). These results suggested that H3K4me3 regulated MyD88-dependent TLR signaling in the hemocytes of C. gigas, which defined the role of histone modifications in invertebrate immune priming.


Assuntos
Crassostrea , Desoxiadenosinas , Histonas , Tionucleosídeos , Animais , Hemócitos , Crassostrea/genética , Interleucina-1
8.
Cancer Immunol Immunother ; 72(9): 3003-3012, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37289257

RESUMO

Radiotherapy (XRT), a well-known activator of the inflammasome and immune priming, is in part capable of reversing resistance to anti-PD1 treatment. The NLRP3 inflammasome is a pattern recognition receptor which is activated by both exogenous and endogenous stimuli, leading to a downstream inflammatory response. Although NLRP3 is typically recognized for its role in exacerbating XRT-induced tissue damage, the NLRP3 inflammasome can also yield an effective antitumor response when used in proper dosing and sequencing with XRT. However, whether NLRP3 agonist boosts radiation-induced immune priming and promote abscopal responses in anti-PD1 resistant model is still unknown. Therefore, in this study, we paired intratumoral injection of an NLRP3 agonist with XRT to stimulate the immune system in both wild type (344SQ-P) and anti-PD1 resistant (344SQ-R) murine-implanted lung adenocarcinoma models. We found that the combination of XRT + NLPR3 agonist enhanced the control of implanted lung adenocarcinoma primary as well as secondary tumors in a radiological dose-dependent manner, in which 12Gyx3 fractions of stereotactic XRT was better than 5Gyx3, while 1Gyx2 did not improve the NLRP3 effect. Survival and tumor growth data also showed significant abscopal response with the triple therapy (12Gyx3 + NLRP3 agonist + α-PD1) in both 344SQ-P and 344SQ-R aggressively growing models. Multiple pro-inflammatory cytokines (IL-1b, IL-4, IL-12, IL-17, IFN-γ and GM-CSF) were elevated in the serum of mice treated with XRT + NLRP3 or triple therapy. The Nanostring results showed that NLRP3 agonist is capable of increasing antigen presentation, innate function, and T-cell priming. This study can be of particular importance to treat patients with immunologically-cold solid tumors whom are also refractory to prior checkpoint treatments.


Assuntos
Adenocarcinoma de Pulmão , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Inflamassomos , Apresentação de Antígeno , Citocinas
9.
J Evol Biol ; 36(12): 1745-1752, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658647

RESUMO

Host-associated microbiota play a fundamental role in the training and induction of different forms of immunity, including inducible as well as constitutive components. However, direct experiments analysing the relative importance of microbiota on diverse forms of evolved immune functions are missing. We addressed this gap by using experimentally evolved lines of Tribolium castaneum that either produced inducible immune memory-like responses (immune priming) or constitutively expressed basal resistance (without priming), as divergent counterstrategies against Bacillus thuringiensis infection. We altered the microbial communities present in the diet (i.e. wheat flour) of these evolved lines using UV irradiation and estimated the impact on the beetle's ability to mount a priming response versus basal resistance. Populations that had evolved immune priming lost the ability to mount a priming response upon alteration of diet microbiota. Microbiota manipulation also caused a drastic reduction in their reproductive output and post-infection longevity. In contrast, in pathogen-resistant beetles, microbiota manipulation did not affect post-infection survival or reproduction. The divergent evolution of immune responses across beetle lines was thus associated with divergent reliance on the microbiome. Whether the latter is a direct outcome of differential pathogen exposure during selection or reflects evolved immune functions remains unclear. We hope that our results will motivate further experiments to understand the mechanistic basis of these complex evolutionary associations between microbiota, host immune strategies and fitness outcomes.


Assuntos
Bacillus thuringiensis , Besouros , Microbiota , Tribolium , Animais , Farinha , Bacillus thuringiensis/fisiologia , Triticum , Tribolium/fisiologia , Dieta
10.
Biol Lett ; 19(11): 20230322, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37909056

RESUMO

Most organisms are host to symbionts and pathogens, which led to the evolution of immune strategies to prevent harm. Whilst the immune defences of vertebrates are classically divided into innate and adaptive, insects lack specialized cells involved in adaptive immunity, but have been shown to exhibit immune priming: the enhanced survival upon infection after a first exposure to the same pathogen or pathogen-derived components. An important piece of the puzzle are the pathogen-associated molecules that induce these immune priming responses. Here, we make use of the model system consisting of the red flour beetle (Tribolium castaneum) and its bacterial pathogen Bacillus thuringiensis, to compare the proteomes of culture supernatants of two closely related B. thuringiensis strains that either induce priming via the oral route, or not. Among the proteins that might be immunostimulatory to T. castaneum, we identify the Cry3Aa toxin, an important plasmid-encoded virulence factor of B. thuringiensis. In further priming-infection assays we test the relevance of Cry-carrying plasmids for immune priming. Our findings provide valuable insights for future studies to perform experiments on the mechanisms and evolution of immune priming.


Assuntos
Bacillus thuringiensis , Besouros , Tribolium , Animais , Proteoma , Larva/microbiologia , Bactérias , Bacillus thuringiensis/fisiologia
11.
Fish Shellfish Immunol ; 141: 109091, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37722444

RESUMO

The increasing experimental evidence suggests that there are some forms of specific acquired immunity in invertebrates, in which Toll-like receptors (TLRs) play vital roles in activating innate and adaptive immunity and have been comprehensively investigated in mammalian species. Yet, the immune mechanisms underlying TLR mediation in mollusks remain obscure. In this study, we identified a TLR13 gene in the pearl oyster Pinctada fucata for the first time and named it PfTLR13 which consists of a 5'-untranslated terminal region (5'-UTR) of 543 bp, an open reading frame (ORF) of 2667 bp, and a 3'-UTR of 729 bp. We found that PfTLR13 mRNA was expressed in all tissues examined, with the highest level in the gills. The expression of PfTLR13 in the gills of oysters exposed to Vibrio alginolyticus or pathogen-associated molecular patterns (PAMPs) (including LPS, PGN, and poly(I:C)) was significantly higher than in the control group. Interestingly, the immune response to the first stimulation was weaker than the response to the second stimulation, suggesting that the primary stimulation may lead to immune priming of TLR in pearl oysters, similar to acquired immunity in vertebrates. Furthermore, we found that PfTLR13 expression was differentially associated with allograft and xenograft in the pearl oyster P. fucata, with the highest expression levels observed at 12 h post-allograft and 24 h post-xenograft. Overall, our findings provide new insights into the immune mechanisms underlying TLR mediation in mollusks and suggest that PfTLR13 may play a crucial role in the specific acquired immunity of pearl oysters.


Assuntos
Pinctada , Humanos , Animais , Pinctada/genética , Sequência de Aminoácidos , Clonagem Molecular , Imunidade Inata/genética , Imunidade Adaptativa , Receptores Toll-Like/genética , Mamíferos
12.
Microbiol Immunol ; 67(8): 355-364, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37311618

RESUMO

In the past decade, the concept of immunological memory, which has long been considered a phenomenon observed in the adaptive immunity of vertebrates, has been extended to the innate immune system of various organisms. This de novo immunological memory is mainly called "innate immune memory", "immune priming", or "trained immunity" and has received increased attention because of its potential for clinical and agricultural applications. However, research on different species, especially invertebrates and vertebrates, has caused controversy regarding this concept. Here we discuss the current studies focusing on this immunological memory and summarize several mechanisms underlying it. We propose "innate immune memory" as a multidimensional concept as an integration between the seemingly different immunological phenomena.


Assuntos
Imunidade Inata , Memória Imunológica , Animais , Invertebrados , Imunidade Adaptativa , Imunidade Treinada
13.
Microbiology (Reading) ; 168(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442184

RESUMO

Protective symbionts can defend hosts from parasites through several mechanisms, from direct interference to modulating host immunity, with subsequent effects on host and parasite fitness. While research on symbiont-mediated immune priming (SMIP) has focused on ecological impacts and agriculturally important organisms, the evolutionary implications of SMIP are less clear. Here, we review recent advances made in elucidating the ecological and molecular mechanisms by which SMIP occurs. We draw on current works to discuss the potential for this phenomenon to drive host, parasite, and symbiont evolution. We also suggest approaches that can be used to address questions regarding the impact of immune priming on host-microbe dynamics and population structures. Finally, due to the transient nature of some symbionts involved in SMIP, we discuss what it means to be a protective symbiont from ecological and evolutionary perspectives and how such interactions can affect long-term persistence of the symbiosis.


Assuntos
Sistema Imunitário , Simbiose , Animais , Ecologia , Sistema Imunitário/fisiologia , Parasitos
14.
Microb Pathog ; 168: 105597, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35605739

RESUMO

Many insects are capable of developing enhanced resistance in response to repeated infection with the same pathogen, which is defined "immune priming". However, little is known in housefly, an ideal insect model for studying immunity. Here, Candida albicans (C. albicans) was used as the pathogen to explore whether housefly larvae are capable of eliciting immune priming. Firstly, we found that 2nd-instar larvae pre-exposure to heat-killed C. albicans could confer protection upon re-infection with C. albicans, as evidenced by the survival rate was higher in C. albicans primed larvae. Moreover, the hemocyte density was increased by priming, but phenoloxidase (PO) activity was not affected. For this reason, RNA sequencing (RNA-seq) was performed and found that 145 genes were differentially expressed after priming, in which 22 genes were related to immune response. Then, KEGG enrichment showed that Toll signaling pathway and Phagosome signaling pathway, as well as many other signaling pathways were enriched. Finally, qPCR was performed and found that the expression of 2 pattern recognition receptor (PRR) genes (PGRP-SD-like precursor and lectin subunit alpha-like) and 6 immune effector genes (phormicin, cecropin-A2-like, defensin-1, attacin-A-like, sarcotoxin-1C and lysozyme 1-like) in C. albicans primed larvae was significantly up-regulated after challenge. Taken together, our findings suggested that housefly larvae are capable of eliciting immune priming against C. albicans, and cellular immunity as well as the gene expression, especially genes involved in Toll signaling pathway were induced by immune priming with C. albicans.


Assuntos
Moscas Domésticas , Animais , Candida albicans/genética , Expressão Gênica , Moscas Domésticas/genética , Imunidade Celular , Larva/genética
15.
Proc Natl Acad Sci U S A ; 116(29): 14682-14687, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31262812

RESUMO

Not all encounters with pathogens are stochastic and insects can adjust their immune management in relation to cues associated with the likelihood of infection within a life cycle as well as across generations. In this study we show that female insects (bed bugs) up-regulate immune function in their copulatory organ in anticipation of mating by using feeding cues. Male bed bugs only mate with recently fed females and do so by traumatic insemination (TI). Consequently, there is a tight temporal correlation between female feeding and the likelihood of her being infected via TI. Females that received predictable access to food (and therefore predictable insemination and infection cycles) up-regulated induced immunity (generic antibacterial activity) in anticipation of feeding and mating. Females that received unpredictable (but the same mean periodicity) access to food did not. Females that anticipated mating-associated immune insult received measurable fitness benefits (survival and lifetime reproductive success) despite laying eggs at the same rate as females that were not able to predict these cycles. Given that mating is a time of increased likelihood of infection in many organisms, and is often associated with temporal cues such as courtship and/or feeding, we propose that anticipation of mating-associated infection in females may be more widespread than is currently evidenced.


Assuntos
Percevejos-de-Cama/fisiologia , Comportamento Alimentar/fisiologia , Imunidade/fisiologia , Inseminação/imunologia , Preferência de Acasalamento Animal/fisiologia , Animais , Percevejos-de-Cama/microbiologia , Sinais (Psicologia) , Feminino , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Masculino , Fatores Sexuais
16.
Proc Natl Acad Sci U S A ; 116(41): 20598-20604, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548373

RESUMO

Memory and specificity are hallmarks of the adaptive immune system. Contrary to prior belief, innate immune systems can also provide forms of immune memory, such as immune priming in invertebrates and trained immunity in vertebrates. Immune priming can even be specific but differs remarkably in cellular and molecular functionality from the well-studied adaptive immune system of vertebrates. To date, it is unknown whether and how the level of specificity in immune priming can adapt during evolution in response to natural selection. We tested the evolution of priming specificity in an invertebrate model, the beetle Tribolium castaneum Using controlled evolution experiments, we selected beetles for either specific or unspecific immune priming toward the bacteria Pseudomonas fluorescens, Lactococcus lactis, and 4 strains of the entomopathogen Bacillus thuringiensis After 14 generations of host selection, specificity of priming was not universally higher in the lines selected for specificity, but rather depended on the bacterium used for priming and challenge. The insect pathogen B. thuringiensis induced the strongest priming effect. Differences between the evolved populations were mirrored in the transcriptomic response, revealing involvement of immune, metabolic, and transcription-modifying genes. Finally, we demonstrate that the induction strength of a set of differentially expressed immune genes predicts the survival probability of the evolved lines upon infection. We conclude that high specificity of immune priming can evolve rapidly for certain bacteria, most likely due to changes in the regulation of immune genes.


Assuntos
Bactérias/patogenicidade , Evolução Molecular , Imunidade Inata/imunologia , Larva/imunologia , Tribolium/imunologia , Animais , Bacillus thuringiensis/patogenicidade , Lactococcus lactis/patogenicidade , Larva/microbiologia , Seleção Genética , Transcriptoma , Tribolium/microbiologia
17.
J Allergy Clin Immunol ; 148(3): 843-857.e6, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33684437

RESUMO

BACKGROUND: Prenatal exposure to infections can modify immune development. These environmental disturbances during early life potentially alter the incidence of inflammatory disorders as well as priming of immune responses. Infection with the helminth Schistosoma mansoni is widely studied for its ability to alter immune responsiveness and is associated with variations in coinfection, allergy, and vaccine efficacy in endemic populations. OBJECTIVE: Exposure to maternal schistosomiasis during early life, even without transmission of infection, can result in priming effects on offspring immune responses to bystander antigenic challenges as related to allergic responsiveness and vaccination, with this article seeking to further clarify the effects and underlying immunologic imprinting. METHODS: Here, we have combined a model of chronic maternal schistosomiasis infection with a thorough analysis of subsequent offspring immune responses to allergy and vaccination models, including viral challenge and steady-state changes to immune cell compartments. RESULTS: We have demonstrated that maternal schistosomiasis alters CD4+ responses during allergic sensitization and challenge in a skewed IL-4/B-cell-dominant response to antigenic challenge associated with limited inflammatory response. Beyond that, we have uncovered previously unidentified alterations to CD8+ T-cell responses during immunization that are dependent on vaccine formulation and have functional impact on the efficacy of vaccination against viral infection in a murine hepatitis B virus model. CONCLUSION: In addition to steady-state modifications to CD4+ T-cell polarization and B-cell priming, we have traced these modified CD8+ responses to an altered dendritic cell phenotype sustained into adulthood, providing evidence for complex priming effects imparted by infection via fetomaternal cross talk.


Assuntos
Efeitos Tardios da Exposição Pré-Natal/imunologia , Hipersensibilidade Respiratória/imunologia , Esquistossomose/imunologia , Alérgenos/imunologia , Animais , Linfócitos B/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Feminino , Feto/imunologia , Perfilação da Expressão Gênica , Imunização , Pulmão/imunologia , Linfonodos/imunologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Gravidez , Hipersensibilidade Respiratória/genética , Schistosoma mansoni , Baço/imunologia , Linfócitos T/imunologia
18.
J Infect Dis ; 224(3): 469-480, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-33090202

RESUMO

BACKGROUND: Preexisting antibodies to influenza, shaped by early infection and subsequent exposures, may impact responses to influenza vaccination. METHODS: We enrolled 72 children (aged 7-17 years) in 2015-2016; all received inactivated influenza vaccines. Forty-one were also vaccinated in 2014-2015, with 12 becoming infected with A(H3N2) in 2014-2015. Thirty-one children did not have documented influenza exposures in the prior 5 seasons. Sera were collected pre- and postvaccination in both seasons. We constructed antibody landscapes using hemagglutination inhibition antibody titers against 16 A(H3N2) viruses representative of major antigenic clusters that circulated between 1968 and 2015. RESULTS: The breadth of the antibody landscapes increased with age. Vaccine-induced antibody responses correlated with boosting of titers to previously encountered antigens. Postvaccination titers were the highest against vaccine antigens rather than the historic A(H3N2) viruses previously encountered. Prevaccination titers to the vaccine were the strongest predictors of postvaccination titers. Responses to vaccine antigens did not differ by likely priming virus. Influenza A(H3N2)-infected children in 2014-2015 had narrower antibody landscapes than those uninfected, but prior season infection status had little effect on antibody landscapes following 2015-2016 vaccination. CONCLUSIONS: A(H3N2) antibody landscapes in children were largely determined by age-related immune priming, rather than recent vaccination or infection.


Assuntos
Vacinas contra Influenza , Influenza Humana , Anticorpos Antivirais , Criança , Humanos , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/prevenção & controle , Vacinação , Vacinas de Produtos Inativados
19.
Clin Infect Dis ; 73(12): 2322-2325, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33639619

RESUMO

Rheumatic fever is a serious post-infectious sequela of group A Streptococcus (GAS). Prior GAS exposures were mapped in sera using a large panel of M-type specific peptides. Rheumatic fever patients had serological evidence of significantly more GAS exposures than matched controls suggesting immune priming by repeat infections contributes to pathogenesis.


Assuntos
Febre Reumática , Infecções Estreptocócicas , Antígenos de Bactérias , Humanos , Febre Reumática/complicações , Infecções Estreptocócicas/complicações , Streptococcus pyogenes
20.
J Neuroinflammation ; 18(1): 242, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34666799

RESUMO

BACKGROUND: Chorioamnionitis (CHORIO) is a principal risk factor for preterm birth and is the most common pathological abnormality found in the placentae of preterm infants. CHORIO has a multitude of effects on the maternal-placental-fetal axis including profound inflammation. Cumulatively, these changes trigger injury in the developing immune and central nervous systems, thereby increasing susceptibility to chronic sequelae later in life. Despite this and reports of neural-immune changes in children with cerebral palsy, the extent and chronicity of the peripheral immune and neuroinflammatory changes secondary to CHORIO has not been fully characterized. METHODS: We examined the persistence and time course of peripheral immune hyper-reactivity in an established and translational model of perinatal brain injury (PBI) secondary to CHORIO. Pregnant Sprague-Dawley rats underwent laparotomy on embryonic day 18 (E18, preterm equivalent). Uterine arteries were occluded for 60 min, followed by intra-amniotic injection of lipopolysaccharide (LPS). Serum and peripheral blood mononuclear cells (PBMCs) were collected at young adult (postnatal day P60) and middle-aged equivalents (P120). Serum and PBMCs secretome chemokines and cytokines were assayed using multiplex electrochemiluminescent immunoassay. Multiparameter flow cytometry was performed to interrogate immune cell populations. RESULTS: Serum levels of interleukin-1ß (IL-1ß), IL-5, IL-6, C-X-C Motif Chemokine Ligand 1 (CXCL1), tumor necrosis factor-α (TNF-α), and C-C motif chemokine ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1) were significantly higher in CHORIO animals compared to sham controls at P60. Notably, CHORIO PBMCs were primed. Specifically, they were hyper-reactive and secreted more inflammatory mediators both at baseline and when stimulated in vitro. While serum levels of cytokines normalized by P120, PBMCs remained primed, and hyper-reactive with a robust pro-inflammatory secretome concomitant with a persistent change in multiple T cell populations in CHORIO animals. CONCLUSIONS: The data indicate that an in utero inflammatory insult leads to neural-immune changes that persist through adulthood, thereby conferring vulnerability to brain and immune system injury throughout the lifespan. This unique molecular and cellular immune signature including sustained peripheral immune hyper-reactivity (SPIHR) and immune cell priming may be a viable biomarker of altered inflammatory responses following in utero insults and advances our understanding of the neuroinflammatory cascade that leads to perinatal brain injury and later neurodevelopmental disorders, including cerebral palsy.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Corioamnionite/metabolismo , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Encéfalo/imunologia , Lesões Encefálicas/imunologia , Corioamnionite/imunologia , Feminino , Mediadores da Inflamação/imunologia , Leucócitos Mononucleares/imunologia , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA