Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 252
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(7): e2315069121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315851

RESUMO

A key step in drug discovery, common to many disease areas, is preclinical demonstration of efficacy in a mouse model of disease. However, this demonstration and its translation to the clinic can be impeded by mouse-specific pathways of drug metabolism. Here, we show that a mouse line extensively humanized for the cytochrome P450 gene superfamily ("8HUM") can circumvent these problems. The pharmacokinetics, metabolite profiles, and magnitude of drug-drug interactions of a test set of approved medicines were in much closer alignment with clinical observations than in wild-type mice. Infection with Mycobacterium tuberculosis, Leishmania donovani, and Trypanosoma cruzi was well tolerated in 8HUM, permitting efficacy assessment. During such assessments, mouse-specific metabolic liabilities were bypassed while the impact of clinically relevant active metabolites and DDI on efficacy were well captured. Removal of species differences in metabolism by replacement of wild-type mice with 8HUM therefore reduces compound attrition while improving clinical translation, accelerating drug discovery.


Assuntos
Doenças Transmissíveis , Descoberta de Drogas , Camundongos , Animais , Interações Medicamentosas , Modelos Animais de Doenças , Sistema Enzimático do Citocromo P-450/metabolismo , Aceleração
2.
Annu Rev Pharmacol Toxicol ; 63: 43-64, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36151053

RESUMO

Pharmacology and toxicology are part of a much broader effort to understand the relationship between chemistry and biology. While biomedicine has necessarily focused on specific cases, typically of direct human relevance, there are real advantages in pursuing more systematic approaches to characterizing how health and disease are influenced by small molecules and other interventions. In this context, the zebrafish is now established as the representative screenable vertebrate and, through ongoing advances in the available scale of genome editing and automated phenotyping, is beginning to address systems-level solutions to some biomedical problems. The addition of broader efforts to integrate information content across preclinical model organisms and the incorporation of rigorous analytics, including closed-loop deep learning, will facilitate efforts to create systems pharmacology and toxicology with the ability to continuously optimize chemical biological interactions around societal needs. In this review, we outline progress toward this goal.


Assuntos
Toxicologia , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Farmacologia em Rede
3.
Clin Microbiol Rev ; 36(4): e0001323, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37966222

RESUMO

A major impediment for HIV cure is the ability of the virus to integrate its genome in the form of replication-competent proviral DNA into the cellular genome of the host and remain transcriptionally silent and hidden from the host's immune defense mechanisms in latent reservoir cells. These latent reservoirs are highly heterogeneous, long-lived cells that are capable of reactivating to restore the viremic stage in virally suppressed individuals upon treatment interruption, thus necessitating life-long antiretroviral treatment. Latency reversal has become one of the most explored therapeutic approaches for eliminating HIV reservoirs and effecting HIV cure. Various aspects governing the establishment, maintenance, and reversal of HIV latency continue to be an enigma and warrant further research. Quantifying the size of the latent reservoir pool is also a challenge as these cells are very few in number and cannot be easily differentiated from uninfected cells. This article provides a comprehensive review of the in vitro and in vivo models currently available for studying HIV latency as well as the recently developed molecular tools for detection and quantification of latent viral reservoirs.


Assuntos
Infecções por HIV , Latência Viral , Humanos , Infecções por HIV/tratamento farmacológico , Linfócitos T CD4-Positivos , Antirretrovirais/uso terapêutico , Modelos Teóricos
4.
Immunol Cell Biol ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853634

RESUMO

The ability to characterize immune cells and explore the molecular interactions that govern their functions has never been greater, fueled in recent years by the revolutionary advance of single-cell analysis platforms. However, precisely how immune cells respond to different stimuli and where differentiation processes and effector functions operate remain incompletely understood. Inferring cellular fate within single-cell transcriptomic analyses is now omnipresent, despite the assumptions typically required in such analyses. Recently developed experimental models support dynamic analyses of the immune response, providing insights into the temporal changes that occur within cells and the tissues in which such transitions occur. Here we will review these approaches and discuss how these can be combined with single-cell technologies to develop a deeper understanding of the immune responses that should support the development of better therapeutic options for patients.

5.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39063206

RESUMO

Today, plastic pollution is one of the biggest threats to the environment and public health. In the tissues of exposed species, micro- and nano-fragments accumulate, leading to genotoxicity, altered metabolism, and decreased lifespan. A model to investigate the genotoxic and tumor-promoting potential of nanoplastics (NPs) is Drosophila melanogaster. Here we tested polystyrene, which is commonly used in food packaging, is not well recycled, and makes up at least 30% of landfills. In order to investigate the biological effects and carcinogenic potential of 100 µm polystyrene nanoparticles (PSNPs), we raised Oregon [R] wild-type flies on contaminated food. After prolonged exposure, fluorescent PSNPs accumulated in the gut and fat bodies. Furthermore, PSNP-fed flies showed considerable alterations in weight, developmental time, and lifespan, as well as a compromised ability to recover from starvation. Additionally, we noticed a decrease in motor activity in DNAlig4 mutants fed with PSNPs, which are known to be susceptible to dietary stressors. A qPCR molecular investigation of the larval intestines revealed a markedly elevated expression of the genes drice and p53, suggesting a response to cell damage. Lastly, we used warts-defective mutants to assess the carcinogenic potential of PSNPs and discovered that exposed flies had more aberrant masses than untreated ones. In summary, our findings support the notion that ingested nanopolystyrene triggers metabolic and genetic modifications in the exposed organisms, eventually delaying development and accelerating death and disease.


Assuntos
Drosophila melanogaster , Nanopartículas , Poliestirenos , Animais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Poliestirenos/toxicidade , Nanopartículas/toxicidade , Nanopartículas/química , Carcinógenos/toxicidade , Larva/efeitos dos fármacos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Longevidade/efeitos dos fármacos , Corpo Adiposo/metabolismo , Corpo Adiposo/efeitos dos fármacos
6.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612601

RESUMO

Cutaneous wound healing is a complex biological process involving a series of well-coordinated events aimed at restoring skin integrity and function. Various experimental models have been developed to study the mechanisms underlying skin wound repair and to evaluate potential therapeutic interventions. This review explores the diverse array of skin wound healing models utilized in research, ranging from rodent excisional wounds to advanced tissue engineering constructs and microfluidic platforms. More importantly, the influence of lipids on the wound healing process is examined, emphasizing their role in enhancing barrier function restoration, modulating inflammation, promoting cell proliferation, and promoting remodeling. Lipids, such as phospholipids, sphingolipids, and ceramides, play crucial roles in membrane structure, cell signaling, and tissue repair. Understanding the interplay between lipids and the wound microenvironment provides valuable insights into the development of novel therapeutic strategies for promoting efficient wound healing and tissue regeneration. This review highlights the significance of investigating skin wound healing models and elucidating the intricate involvement of lipids in the healing process, offering potential avenues for improving clinical outcomes in wound management.


Assuntos
Ceramidas , Inflamação , Humanos , Proliferação de Células , Microfluídica , Fosfolipídeos
7.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256166

RESUMO

Prostate cancer (PCa) has been known as the most prevalent cancer disease and the second leading cause of cancer mortality in men almost all over the globe. There is an urgent need for establishment of PCa models that can recapitulate the progress of genomic landscapes and molecular alterations during development and progression of this disease. Notably, several organoid models have been developed for assessing the complex interaction between PCa and its surrounding microenvironment. In recent years, PCa organoids have been emerged as powerful in vitro 3D model systems that recapitulate the molecular features (such as genomic/epigenomic changes and tumor microenvironment) of PCa metastatic tumors. In addition, application of organoid technology in mechanistic studies (i.e., for understanding cellular/subcellular and molecular alterations) and translational medicine has been recognized as a promising approach for facilitating the development of potential biomarkers and novel therapeutic strategies. In this review, we summarize the application of PCa organoids in the high-throughput screening and establishment of relevant xenografts for developing novel therapeutics for metastatic, castration resistant, and neuroendocrine PCa. These organoid-based studies are expected to expand our knowledge from basic research to clinical applications for PCa diseases. Furthermore, we also highlight the optimization of PCa cultures and establishment of promising 3D organoid models for in vitro and in vivo investigations, ultimately facilitating mechanistic studies and development of novel clinical diagnosis/prognosis and therapies for PCa.


Assuntos
Medicina de Precisão , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Próstata , Organoides , Epigenômica , Microambiente Tumoral
8.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612907

RESUMO

Age-related Macular Degeneration (AMD) is a multifactorial ocular pathology that destroys the photoreceptors of the macula. Two forms are distinguished, dry and wet AMD, with different pathophysiological mechanisms. Although treatments were shown to be effective in wet AMD, they remain a heavy burden for patients and caregivers, resulting in a lack of patient compliance. For dry AMD, no real effective treatment is available in Europe. It is, therefore, essential to look for new approaches. Recently, the use of long-chain and very long-chain polyunsaturated fatty acids was identified as an interesting new therapeutic alternative. Indeed, the levels of these fatty acids, core components of photoreceptors, are significantly decreased in AMD patients. To better understand this pathology and to evaluate the efficacy of various molecules, in vitro and in vivo models reproducing the mechanisms of both types of AMD were developed. This article reviews the anatomy and the physiological aging of the retina and summarizes the clinical aspects, pathophysiological mechanisms of AMD and potential treatment strategies. In vitro and in vivo models of AMD are also presented. Finally, this manuscript focuses on the application of omega-3 fatty acids for the prevention and treatment of both types of AMD.


Assuntos
Ácidos Graxos Ômega-3 , Atrofia Geográfica , Degeneração Macular Exsudativa , Humanos , Ácidos Graxos Insaturados/uso terapêutico , Ácidos Graxos , Ácidos Graxos Ômega-3/uso terapêutico
9.
Indian J Microbiol ; 64(2): 743-748, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39010999

RESUMO

Stereoisomers are molecules that are identical in atomic constitution and bonding. The biological properties may, however, differ significantly between two enantiomers (individual stereoisomers). JBC 1847, a phenothiazine derivative with strong antimicrobial activity against Gram-positive bacteria, exists in two enantiomers, S and R. Under standard chemical synthesis (S)-and (R)-JBC 1847 will be present in 50/50 amount (racemic). In this study, we have investigated the antimicrobial activity, the in vivo tolerance and therapeutic efficacy of purified (S)-JBC 1847. Compared to JBC 1847 racemic, the antimicrobial activity of (S)-JBC 1847 in vitro was in the same range or slightly increased, while the maximum tolerable concentration in vivo was five times higher for (S)-JBC 1847 (5 mg/kg versus 20 mg/kg bodyweight). Furthermore, the in vivo efficacy of (S)-JBC 1847 in a mouse peritonitis MRSA model was comparable to the activity of vancomycin. In conclusion, the antimicrobial activity and tolerance of a medical stereoisomeric compound may be significantly different using purified enantiomers compared with the racemic state. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01309-3.

10.
J Cell Sci ; 134(5)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33589501

RESUMO

Staphylococcus aureus infects ∼30% of the human population and causes a spectrum of pathologies ranging from mild skin infections to life-threatening invasive diseases. The strict host specificity of its virulence factors has severely limited the accuracy of in vivo models for the development of vaccines and therapeutics. To resolve this, we generated a humanised zebrafish model and determined that neutrophil-specific expression of the human C5a receptor conferred susceptibility to the S. aureus toxins PVL and HlgCB, leading to reduced neutrophil numbers at the site of infection and increased infection-associated mortality. These results show that humanised zebrafish provide a valuable platform to study the contribution of human-specific S. aureus virulence factors to infection in vivo that could facilitate the development of novel therapeutic approaches and essential vaccines.


Assuntos
Staphylococcus aureus , Fatores de Virulência , Animais , Humanos , Receptor da Anafilatoxina C5a/genética , Staphylococcus aureus/genética , Virulência , Fatores de Virulência/genética , Peixe-Zebra
11.
J Pathol ; 257(4): 526-544, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35533046

RESUMO

Cancer-associated fibroblasts (CAFs) have conflicting roles in the suppression and promotion of cancer. Current research focuses on targeting the undesirable properties of CAFs, while attempting to maintain tumour-suppressive roles. CAFs have been widely associated with primary or secondary therapeutic resistance, and strategies to modify CAF function have therefore largely focussed on their combination with existing therapies. Despite significant progress in preclinical studies, clinical translation of CAF targeted therapies has achieved limited success. Here we will review our emerging understanding of heterogeneous CAF populations in tumour biology and use examples from pancreatic ductal adenocarcinoma to explore why successful clinical targeting of protumourigenic CAF functions remains elusive. Single-cell technologies have allowed the identification of CAF subtypes with a differential impact on prognosis and response to therapy, but currently without clear consensus. Identification and pharmacological targeting of CAF subtypes associated with immunotherapy response offers new hope to expand clinical options for pancreatic cancer. Various CAF subtype markers may represent biomarkers for patient stratification, to obtain enhanced response with existing and emerging combinatorial therapeutic strategies. Thus, CAF subtyping is the next frontier in understanding and exploiting the tumour microenvironment for therapeutic benefit. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Biomarcadores , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/patologia , Humanos , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Neoplasias Pancreáticas
12.
J Pathol ; 257(4): 545-560, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35218558

RESUMO

The epidermis is the outer stratified epithelium of the skin, forming the physical barrier that is indispensable for homeostasis. Epidermal proteolysis, mainly but not exclusively executed by kallikrein-related peptidases (KLKs), is tightly regulated to ensure maintenance of physiological skin renewal and an intact skin barrier. Perturbation of epidermal proteolytic networks is implicated in a wide array of rare and common skin pathologies of diverse genetic backgrounds. Recent studies of monogenic human skin diseases and newly developed animal models have revealed new mechanisms of regulation of proteolytic pathways in epidermal physiology and in disease states. These new data have challenged some accepted views, for example the role of matriptase in epidermal desquamation, which turned out to be restricted to mouse skin. The significance of PAR2 signaling in skin inflammation should also be reconsidered in the face of recent findings. Cumulatively, recent studies necessitate a sophisticated redefinition of the proteolytic and signaling pathways that operate in human skin. We elaborate how epidermal proteolysis is finely regulated at multiple levels, and in a spatial manner that has not been taken into consideration so far, in which specific proteases are confined to distinct epidermal sublayers. Of interest, transglutaminases have emerged as regulators of epidermal proteolysis and desquamation by spatially fixing endogenous protease inhibitors, constituting regulatory factors that were not recognized before. Furthermore, new evidence suggests a link between proteolysis and lipid metabolism. By synthesis of established notions and recent discoveries, we provide an up-to-date critical evaluation and synthesis of current knowledge and the extended complexity of proteolysis regulation and signaling pathways in skin. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Epiderme , Proteólise , Pele , Animais , Epiderme/metabolismo , Humanos , Calicreínas/genética , Calicreínas/metabolismo , Camundongos , Pele/metabolismo , Fenômenos Fisiológicos da Pele
13.
J Pathol ; 257(4): 379-382, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35635736

RESUMO

The 2022 Annual Review Issue of The Journal of Pathology, Recent Advances in Pathology, contains 15 invited reviews on research areas of growing importance in pathology. This year, the articles include those that focus on digital pathology, employing modern imaging techniques and software to enable improved diagnostic and research applications to study human diseases. This subject area includes the ability to identify specific genetic alterations through the morphological changes they induce, as well as integrating digital and computational pathology with 'omics technologies. Other reviews in this issue include an updated evaluation of mutational patterns (mutation signatures) in cancer, the applications of lineage tracing in human tissues, and single cell sequencing technologies to uncover tumour evolution and tumour heterogeneity. The tissue microenvironment is covered in reviews specifically dealing with proteolytic control of epidermal differentiation, cancer-associated fibroblasts, field cancerisation, and host factors that determine tumour immunity. All of the reviews contained in this issue are the work of invited experts selected to discuss the considerable recent progress in their respective fields and are freely available online (https://onlinelibrary.wiley.com/journal/10969896). © 2022 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias , Humanos , Mutação , Neoplasias/genética , Neoplasias/patologia , Software , Microambiente Tumoral/genética , Reino Unido
14.
Adv Exp Med Biol ; 1415: 565-569, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440087

RESUMO

Since its inception, primary retinal cultures have been an in vitro tool for modeling the in vivo environment of the retina for biological studies on development and disease. They offer simple and controlled experimental approaches when compared to in vivo models. In this review we highlight the strengths and weaknesses of primary retinal culture models, and the features of dispersed retinal cell cultures.


Assuntos
Técnicas de Cultura de Células , Retina , Neurônios , Biologia , Diferenciação Celular
15.
Urol Int ; 107(9): 848-856, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37666229

RESUMO

INTRODUCTION: The aim of the study was to investigate the potential mechanism of specificity protein 1 (SP1) in bladder cancer progression through the PTEN-mediated AKT/mTOR pathway. METHODS: Human bladder cancer cell lines (HT-1197, HT-1376, and T24) and normal ureteral epithelial cell line SV-HUC-1 were used. SP1 expression was detected via quantitative real-time PCR and Western blotting. Cell viability, migration, invasion, and apoptosis were assessed using CCK-8, transwell, and flow cytometry assays, respectively. The involvement of the PTEN-mediated AKT/mTOR pathway was evaluated by Western blot. A mouse xenograft model was built, and immunohistochemical staining was applied to visualize SP1 and Ki67 expression in tumor tissues. RESULTS: SP1 was overexpressed in bladder cancer cells. SP1 knockdown inhibited viability, migration, and invasion and promoted apoptosis in bladder cancer cells. PTEN intervention increased cell viability, migration, and invasion and decreased apoptosis, which was reversed by SP1 knockdown. The activation of the AKT/mTOR pathway resulting from PTEN knockdown was attenuated by SP1 knockdown. In vivo results showed that SP1 knockdown suppressed tumor growth, increased PTEN expression, and decreased AKT/mTOR pathway-related protein levels. CONCLUSION: SP1 promotes bladder cancer progression by inhibiting the PTEN-mediated AKT/mTOR pathway. Targeting SP1 may be a potential therapeutic strategy for treating bladder cancer.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias da Bexiga Urinária , Animais , Humanos , Camundongos , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Neoplasias da Bexiga Urinária/genética
16.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069274

RESUMO

Musculoskeletal frailty-a common and debilitating condition linked to aging and chronic diseases-presents a major public health issue. In vivo models have become a key tool for researchers as they investigate the condition's underlying mechanisms and develop effective interventions. This systematic review examines the current body of research on in vivo models of musculoskeletal frailty, without any time constraints. To achieve this aim, we utilized three electronic databases and incorporated a total of 11 studies. Our investigation delves into varied animal models that simulate specific features of musculoskeletal frailty, including muscle loss, bone density reduction, and functional decline. Furthermore, we examine the translational prospects of these models in augmenting our comprehension of musculoskeletal frailty and streamlining the production of groundbreaking therapeutic approaches. This review provides significant insights and guidance for healthcare researchers and practitioners who aim to combat musculoskeletal frailty, ultimately enhancing the quality of life for older adults and individuals affected by this condition.


Assuntos
Fragilidade , Humanos , Idoso , Qualidade de Vida , Envelhecimento/fisiologia , Idoso Fragilizado
17.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003234

RESUMO

Bronchial asthma is a heterogeneous disease characterized by persistent respiratory system inflammation, airway hyperreactivity, and airflow obstruction. Airway remodeling, defined as changes in airway wall structure such as extensive epithelial damage, airway smooth muscle hypertrophy, collagen deposition, and subepithelial fibrosis, is a key feature of asthma. Lung fibrosis is a common occurrence in the pathogenesis of fatal and long-term asthma, and it is associated with disease severity and resistance to therapy. It can thus be regarded as an irreversible consequence of asthma-induced airway inflammation and remodeling. Asthma heterogeneity presents several diagnostic challenges, particularly in distinguishing between chronic asthma and other pulmonary diseases characterized by disruption of normal lung architecture and functions, such as chronic obstructive pulmonary disease. The search for instruments that can predict the development of irreversible structural changes in the lungs, such as chronic components of airway remodeling and fibrosis, is particularly difficult. To overcome these challenges, significant efforts are being directed toward the discovery and investigation of molecular characteristics and biomarkers capable of distinguishing between different types of asthma as well as between asthma and other pulmonary disorders with similar structural characteristics. The main features of bronchial asthma etiology, pathogenesis, and morphological characteristics as well as asthma-associated airway remodeling and lung fibrosis as successive stages of one process will be discussed in this review. The most common murine models and biomarkers of asthma progression and post-asthmatic fibrosis will also be covered. The molecular mechanisms and key cellular players of the asthmatic process described and systematized in this review are intended to help in the search for new molecular markers and promising therapeutic targets for asthma prediction and therapy.


Assuntos
Asma , Fibrose Pulmonar , Humanos , Animais , Camundongos , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , Remodelação das Vias Aéreas , Asma/patologia , Pulmão/patologia , Fibrose , Inflamação/patologia , Biomarcadores
18.
Int J Mol Sci ; 24(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37445860

RESUMO

Breast cancer (BC) and ovarian cancer (OC) are among the most common and deadly cancers affecting women worldwide. Both are complex diseases with marked heterogeneity. Despite the induction of screening programs that increase the frequency of earlier diagnosis of BC, at a stage when the cancer is more likely to respond to therapy, which does not exist for OC, more than 50% of both cancers are diagnosed at an advanced stage. Initial therapy can put the cancer into remission. However, recurrences occur frequently in both BC and OC, which are highly cancer-subtype dependent. Therapy resistance is mainly attributed to a rare subpopulation of cells, named cancer stem cells (CSC) or tumor-initiating cells, as they are capable of self-renewal, tumor initiation, and regrowth of tumor bulk. In this review, we will discuss the distinctive markers and signaling pathways that characterize CSC, their interactions with the tumor microenvironment, and the strategies they employ to evade immune surveillance. Our focus will be on identifying the common features of breast cancer stem cells (BCSC) and ovarian cancer stem cells (OCSC) and suggesting potential therapeutic approaches.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Feminino , Humanos , Mama/metabolismo , Neoplasias da Mama/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/metabolismo , Microambiente Tumoral
19.
J Mammary Gland Biol Neoplasia ; 27(2): 211-230, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35697909

RESUMO

Historically, human breast cancer has been modeled largely in vitro using long-established cell lines primarily in two-dimensional culture, but also in three-dimensional cultures of varying cellular and molecular complexities. A subset of cell line models has also been used in vivo as cell line-derived xenografts (CDX). While outstanding for conducting detailed molecular analysis of regulatory mechanisms that may function in vivo, results of drug response studies using long-established cell lines have largely failed to translate clinically. In an attempt to address this shortcoming, many laboratories have succeeded in developing clinically annotated patient-derived xenograft (PDX) models of human cancers, including breast, in a variety of host systems. While immunocompromised mice are the predominant host, the immunocompromised rat and pig, zebrafish, as well as the chicken egg chorioallantoic membrane (CAM) have also emerged as potential host platforms to help address perceived shortcomings of immunocompromised mice. With any modeling platform, the two main issues to be resolved are criteria for "credentialing" the models as valid models to represent human cancer, and utility with respect to the ability to generate clinically relevant translational research data. Such data are beginning to emerge, particularly with the activities of PDX consortia such as the NCI PDXNet Program, EuroPDX, and the International Breast Cancer Consortium, as well as a host of pharmaceutical companies and contract research organizations (CRO). This review focuses primarily on these important aspects of PDX-related research, with a focus on breast cancer.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular , Modelos Animais de Doenças , Feminino , Xenoenxertos , Humanos , Camundongos , Ratos , Suínos , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
20.
J Mol Cell Cardiol ; 172: 90-99, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36007393

RESUMO

Cardiovascular disease is the leading cause of death worldwide, outpacing pulmonary disease, infectious disease, and all forms of cancer. Myocardial infarction (MI) dominates cardiovascular disease, contributing to four out of five cardiovascular related deaths. Following MI, patients suffer adverse and irreversible myocardial remodeling associated with cardiomyocyte loss and infiltration of fibrotic scar tissue. Current therapies following MI only mitigate the cardiac physiological decline rather than restore damaged myocardium function. Direct cardiac reprogramming is one strategy that has promise in repairing injured cardiac tissue by generating new, functional cardiomyocytes from cardiac fibroblasts (CFs). With the ectopic expression of transcription factors, microRNAs, and small molecules, CFs can be reprogrammed into cardiomyocyte-like cells (iCMs) that display molecular signatures, structures, and contraction abilities similar to endogenous cardiomyocytes. The in vivo induction of iCMs following MI leads to significant reduction in fibrotic cardiac remodeling and improved heart function, indicating reprogramming is a viable option for repairing damaged heart tissue. Recent work has illustrated different methods to understand the mechanisms driving reprogramming, in an effort to improve the efficiency of iCM generation and create an approach translational into clinic. This review will provide an overview of CFs and describe different in vivo reprogramming methods.


Assuntos
Infarto do Miocárdio , Humanos , Fibroblastos/metabolismo , Miócitos Cardíacos/metabolismo , Miocárdio/patologia , Infarto do Miocárdio/metabolismo , Fibrose , Reprogramação Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA