Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(12): 2003-2014, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37924808

RESUMO

The c.1222C>T (p.Arg408Trp) variant in the phenylalanine hydroxylase gene (PAH) is the most frequent cause of phenylketonuria (PKU), the most common inborn error of metabolism. This autosomal-recessive disorder is characterized by accumulation of blood phenylalanine (Phe) to neurotoxic levels. Using real-world data, we observed that despite dietary and medical interventions, most PKU individuals harboring at least one c.1222C>T variant experience chronic, severe Phe elevations and do not comply with Phe monitoring guidelines. Motivated by these findings, we generated an edited c.1222C>T hepatocyte cell line and humanized c.1222C>T mouse models, with which we demonstrated efficient in vitro and in vivo correction of the variant with prime editing. Delivery via adeno-associated viral (AAV) vectors reproducibly achieved complete normalization of blood Phe levels in PKU mice, with up to 52% whole-liver corrective PAH editing. These studies validate a strategy involving prime editing as a potential treatment for a large proportion of individuals with PKU.


Assuntos
Fenilalanina Hidroxilase , Fenilcetonúrias , Camundongos , Animais , Fenilcetonúrias/genética , Fenilcetonúrias/terapia , Fenilalanina Hidroxilase/genética , Modelos Animais de Doenças , Fenilalanina/genética , Edição de Genes
2.
J Biol Chem ; 299(1): 102736, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423681

RESUMO

Molybdenum cofactor (Moco) is a prosthetic group necessary for the activity of four unique enzymes, including the essential sulfite oxidase (SUOX-1). Moco is required for life; humans with inactivating mutations in the genes encoding Moco-biosynthetic enzymes display Moco deficiency, a rare and lethal inborn error of metabolism. Despite its importance to human health, little is known about how Moco moves among and between cells, tissues, and organisms. The prevailing view is that cells that require Moco must synthesize Moco de novo. Although, the nematode Caenorhabditis elegans appears to be an exception to this rule and has emerged as a valuable system for understanding fundamental Moco biology. C. elegans has the seemingly unique capacity to both synthesize its own Moco as well as acquire Moco from its microbial diet. However, the relative contribution of Moco from the diet or endogenous synthesis has not been rigorously evaluated or quantified biochemically. We genetically removed dietary or endogenous Moco sources in C. elegans and biochemically determined their impact on animal Moco content and SUOX-1 activity. We demonstrate that dietary Moco deficiency dramatically reduces both animal Moco content and SUOX-1 activity. Furthermore, these biochemical deficiencies have physiological consequences; we show that dietary Moco deficiency alone causes sensitivity to sulfite, the toxic substrate of SUOX-1. Altogether, this work establishes the biochemical consequences of depleting dietary Moco or endogenous Moco synthesis in C. elegans and quantifies the surprising contribution of the diet to maintaining Moco homeostasis in C. elegans.


Assuntos
Metaloproteínas , Cofatores de Molibdênio , Sulfito Oxidase , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Dieta , Metaloproteínas/genética , Metaloproteínas/metabolismo , Molibdênio/metabolismo , Cofatores de Molibdênio/metabolismo , Pteridinas/metabolismo , Sulfito Oxidase/genética , Sulfito Oxidase/metabolismo
3.
Mol Genet Metab ; 142(4): 108513, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38917675

RESUMO

INTRODUCTION: Congenital disorders of glycosylation (CDG) are a continuously expanding group of monogenic disorders that disrupt glycoprotein and glycolipid biosynthesis, leading to multi-systemic manifestations. These disorders are categorized into various groups depending on which part of the glycosylation process is impaired. The cardiac manifestations in CDG can significantly differ, not only across different types but also among individuals with the same genetic cause of CDG. Cardiomyopathy is an important phenotype in CDG. The clinical manifestations and progression of cardiomyopathy in CDG patients have not been well characterized. This study aims to delineate common patterns of cardiomyopathy across a range of genetic causes of CDG and to propose baseline screening and follow-up evaluation for this patient population. METHODS: Patients with molecular confirmation of CDG who were enrolled in the prospective or memorial arms of the Frontiers in Congenital Disorders of Glycosylation Consortium (FCDGC) natural history study were ascertained for the presence of cardiomyopathy based on a retrospective review of their medical records. All patients were evaluated by clinical geneticists who are members of FCDGC at their respective academic centers. Patients were screened for cardiomyopathy, and detailed data were retrospectively collected. We analyzed their clinical and molecular history, imaging characteristics of cardiac involvement, type of cardiomyopathy, age at initial presentation of cardiomyopathy, additional cardiac features, the treatments administered, and their clinical outcomes. RESULTS: Of the 305 patients with molecularly confirmed CDG participating in the FCDGC natural history study as of June 2023, 17 individuals, nine females and eight males, were identified with concurrent diagnoses of cardiomyopathy. Most of these patients were diagnosed with PMM2-CDG (n = 10). However, cardiomyopathy was also observed in other diagnoses, including PGM1-CDG (n = 3), ALG3-CDG (n = 1), DPM1-CDG (n = 1), DPAGT1-CDG (n = 1), and SSR4-CDG (n = 1). All PMM2-CDG patients were reported to have hypertrophic cardiomyopathy. Dilated cardiomyopathy was observed in three patients, two with PGM1-CDG and one with ALG3-CDG; left ventricular non-compaction cardiomyopathy was diagnosed in two patients, one with PGM1-CDG and one with DPAGT1-CDG; two patients, one with DPM1-CDG and one with SSR4-CDG, were diagnosed with non-ischemic cardiomyopathy. The estimated median age of diagnosis for cardiomyopathy was 5 months (range: prenatal-27 years). Cardiac improvement was observed in three patients with PMM2-CDG. Five patients showed a progressive course of cardiomyopathy, while the condition remained unchanged in eight individuals. Six patients demonstrated pericardial effusion, with three patients exhibiting cardiac tamponade. One patient with SSR4-CDG has been recently diagnosed with cardiomyopathy; thus, the progression of the disease is yet to be determined. One patient with PGM1-CDG underwent cardiac transplantation. Seven patients were deceased, including five with PMM2-CDG, one with DPAGT1-CDG, and one with ALG3-CDG. Two patients died of cardiac tamponade from pericardial effusion; for the remaining patients, cardiomyopathy was not necessarily the primary cause of death. CONCLUSIONS: In this retrospective study, cardiomyopathy was identified in ∼6% of patients with CDG. Notably, the majority, including all those with PMM2-CDG, exhibited hypertrophic cardiomyopathy. Some cases did not show progression, yet pericardial effusions were commonly observed, especially in PMM2-CDG patients, occasionally escalating to life-threatening cardiac tamponade. It is recommended that clinicians managing CDG patients, particularly those with PMM2-CDG and PGM1-CDG, be vigilant of the cardiomyopathy risk and risk for potentially life-threatening pericardial effusions. Cardiac surveillance, including an echocardiogram and EKG, should be conducted at the time of diagnosis, annually throughout the first 5 years, followed by check-ups every 2-3 years if no concerns arise until adulthood. Subsequently, routine cardiac examinations every five years are advisable. Additionally, patients with diagnosed cardiomyopathy should receive ongoing cardiac care to ensure the effective management and monitoring of their condition. A prospective study will be required to determine the true prevalence of cardiomyopathy in CDG.

4.
Mol Genet Metab ; 141(3): 108149, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277988

RESUMO

We investigated a syndromic disease comprising blindness and neurodegeneration in 11 Saarlooswolfdogs. Clinical signs involved early adult onset retinal degeneration and adult-onset neurological deficits including gait abnormalities, hind limb weakness, tremors, ataxia, cognitive decline and behavioral changes such as aggression towards the owner. Histopathology in one affected dog demonstrated cataract, retinal degeneration, central and peripheral axonal degeneration, and severe astroglial hypertrophy and hyperplasia in the central nervous system. Pedigrees indicated autosomal recessive inheritance. We mapped the suspected genetic defect to a 15 Mb critical interval by combined linkage and autozygosity analysis. Whole genome sequencing revealed a private homozygous missense variant, PCYT2:c.4A>G, predicted to change the second amino acid of the encoded ethanolamine-phosphate cytidylyltransferase 2, XP_038402224.1:(p.Ile2Val). Genotyping of additional Saarlooswolfdogs confirmed the homozygous genotype in all eleven affected dogs and demonstrated an allele frequency of 9.9% in the population. This experiment also identified three additional homozygous mutant young dogs without overt clinical signs. Subsequent examination of one of these dogs revealed early-stage progressive retinal atrophy (PRA) and expansion of subarachnoid CSF spaces in MRI. Dogs homozygous for the pathogenic variant showed ether lipid accumulation, confirming a functional PCYT2 deficiency. The clinical and metabolic phenotype in affected dogs shows some parallels with human patients, in whom PCYT2 variants lead to a rare form of spastic paraplegia or axonal motor and sensory polyneuropathy. Our results demonstrate that PCYT2:c.4A>G in dogs cause PCYT2 deficiency. This canine model with histopathologically documented retinal, central, and peripheral neurodegeneration further deepens the knowledge of PCYT2 deficiency.


Assuntos
Doenças do Cão , Degeneração Retiniana , Humanos , Cães , Animais , Degeneração Retiniana/genética , Genótipo , Retina/patologia , Fenótipo , Mutação de Sentido Incorreto , Doenças do Cão/genética
5.
Mol Genet Metab ; 142(1): 108345, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387306

RESUMO

Mutations in MMACHC cause cobalamin C disease (cblC, OMIM 277400), the commonest inborn error of vitamin B12 metabolism. In cblC, deficient activation of cobalamin results in methylcobalamin and adenosylcobalamin deficiency, elevating methylmalonic acid (MMA) and total plasma homocysteine (tHcy). We retrospectively reviewed the medical files of seven cblC patients: three compound heterozygotes for the MMACHC (NM_015506.3) missense variant c.158T>C p.(Leu53Pro) in trans with the common pathogenic mutation c.271dupA (p.(Arg91Lysfs*14), "compounds"), and four c.271dupA homozygotes ("homozygotes"). Compounds receiving hydroxocobalamin intramuscular injection monotherapy had age-appropriate psychomotor performance and normal ophthalmological examinations. In contrast, c.271dupA homozygotes showed marked psychomotor retardation, retinopathy and feeding problems despite penta-therapy (hydroxocobalamin, betaine, folinic acid, l-carnitine and acetylsalicylic acid). Pretreatment levels of plasma and urine MMA and tHcy were higher in c.271dupA homozygotes than in compounds. Under treatment, levels of the compounds approached or entered the reference range but not those of c.271dupA homozygotes (tHcy: compounds 9.8-32.9 µM, homozygotes 41.6-106.8 (normal (N) < 14); plasma MMA: compounds 0.14-0.81 µM, homozygotes, 10.4-61 (N < 0.4); urine MMA: compounds 1.75-48 mmol/mol creatinine, homozygotes 143-493 (N < 10)). Patient skin fibroblasts all had low cobalamin uptake, but this was milder in compound cells. Also, the distribution pattern of cobalamin species was qualitatively different between cells from compounds and from homozygotes. Compared to the classic cblC phenotype presented by c.271dupA homozygous patients, c.[158T>C];[271dupA] compounds had mild clinical and biochemical phenotypes and responded strikingly to hydroxocobalamin monotherapy.


Assuntos
Proteínas de Transporte , Hidroxocobalamina , Fenótipo , Deficiência de Vitamina B 12 , Vitamina B 12 , Humanos , Hidroxocobalamina/administração & dosagem , Hidroxocobalamina/uso terapêutico , Masculino , Feminino , Deficiência de Vitamina B 12/genética , Deficiência de Vitamina B 12/tratamento farmacológico , Deficiência de Vitamina B 12/sangue , Vitamina B 12/sangue , Pré-Escolar , Proteínas de Transporte/genética , Estudos Retrospectivos , Oxirredutases/genética , Criança , Ácido Metilmalônico/sangue , Homocistinúria/tratamento farmacológico , Homocistinúria/genética , Lactente , Mutação de Sentido Incorreto , Homozigoto , Heterozigoto , Homocisteína/sangue , Adolescente , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Erros Inatos do Metabolismo dos Aminoácidos/sangue , Adulto
6.
Mol Genet Metab ; 142(3): 108496, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761651

RESUMO

Non-Ketotic Hyperglycinemia (NKH) is a rare inborn error of metabolism caused by impaired function of the glycine cleavage system (GCS) and characterised by accumulation of glycine in body fluids and tissues. NKH is an autosomal recessive condition and the majority of affected individuals carry mutations in GLDC (glycine decarboxylase). Current treatments for NKH have limited effect and are not curative. As a monogenic condition with known genetic causation, NKH is potentially amenable to gene therapy. An AAV9-based expression vector was designed to target sites of GCS activity. Using a ubiquitous promoter to drive expression of a GFP reporter, transduction of liver and brain was confirmed following intra-venous and/or intra-cerebroventricular administration to neonatal mice. Using the same capsid and promoter with transgenes to express mouse or human GLDC, vectors were then tested in GLDC-deficient mice that provide a model of NKH. GLDC-deficient mice exhibited elevated plasma glycine concentration and accumulation of glycine in liver and brain tissues as previously observed. Moreover, the folate profile indicated suppression of folate one­carbon metabolism (FOCM) in brain tissue, as found at embryonic stages, and reduced abundance of FOCM metabolites including betaine and choline. Neonatal administration of vector achieved reinstatement of GLDC mRNA and protein expression in GLDC-deficient mice. Treated GLDC-deficient mice showed significant lowering of plasma glycine, confirming functionality of vector expressed protein. AAV9-GLDC treatment also led to lowering of brain tissue glycine, and normalisation of the folate profile indicating restoration of glycine-derived one­carbon supply. These findings support the hypothesis that AAV-mediated gene therapy may offer potential in treatment of NKH.


Assuntos
Encéfalo , Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Glicina Desidrogenase (Descarboxilante) , Glicina , Hiperglicinemia não Cetótica , Fígado , Animais , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/metabolismo , Hiperglicinemia não Cetótica/terapia , Glicina Desidrogenase (Descarboxilante)/genética , Glicina Desidrogenase (Descarboxilante)/metabolismo , Dependovirus/genética , Camundongos , Humanos , Vetores Genéticos/genética , Glicina/metabolismo , Fígado/metabolismo , Encéfalo/metabolismo , Biomarcadores/metabolismo , Ácido Fólico/metabolismo
7.
Am J Med Genet A ; 194(8): e63622, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38572626

RESUMO

Nonketotic hyperglycinemia (NKH) is a relatively well-characterized inborn error of metabolism that results in a combination of lethargy, hypotonia, seizures, developmental arrest, and, in severe cases, death early in life. Three genes encoding components of the glycine cleavage enzyme system-GLDC, AMT, and GCSH-are independently associated with NKH. We report on a patient with severe NKH in whom the homozygous pathogenic variant in AMT (NM_000481.3):c.602_603del (p.Lys201Thrfs*75) and the homozygous likely pathogenic variant in GLDC(NM_000170.2):c.2852C>A (p.Ser951Tyr) were both identified. Our patient demonstrates a novel combination of two homozygous disease-causing variants impacting the glycine cleavage pathway at two different components, and elicits management- and genetic counseling-related challenges for the family.


Assuntos
Homozigoto , Hiperglicinemia não Cetótica , Humanos , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/patologia , Masculino , Glicina Desidrogenase (Descarboxilante)/genética , Aminometiltransferase/genética , Feminino , Mutação/genética , Lactente , Glicina/genética , Recém-Nascido , Fenótipo , Predisposição Genética para Doença , Aminoácido Oxirredutases , Complexos Multienzimáticos , Transferases
8.
J Inherit Metab Dis ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421058

RESUMO

The balance between a protective and a destructive immune response can be precarious, as exemplified by inborn errors in nucleotide metabolism. This class of inherited disorders, which mimics infection, can result in systemic injury and severe neurologic outcomes. The most common of these disorders is Aicardi Goutières syndrome (AGS). AGS results in a phenotype similar to "TORCH" infections (Toxoplasma gondii, Other [Zika virus (ZIKV), human immunodeficiency virus (HIV)], Rubella virus, human Cytomegalovirus [HCMV], and Herpesviruses), but with sustained inflammation and ongoing potential for complications. AGS was first described in the early 1980s as familial clusters of "TORCH" infections, with severe neurology impairment, microcephaly, and basal ganglia calcifications (Aicardi & Goutières, Ann Neurol, 1984;15:49-54) and was associated with chronic cerebrospinal fluid (CSF) lymphocytosis and elevated type I interferon levels (Goutières et al., Ann Neurol, 1998;44:900-907). Since its first description, the clinical spectrum of AGS has dramatically expanded from the initial cohorts of children with severe impairment to including individuals with average intelligence and mild spastic paraparesis. This broad spectrum of potential clinical manifestations can result in a delayed diagnosis, which families cite as a major stressor. Additionally, a timely diagnosis is increasingly critical with emerging therapies targeting the interferon signaling pathway. Despite the many gains in understanding about AGS, there are still many gaps in our understanding of the cell-type drivers of pathology and characterization of modifying variables that influence clinical outcomes and achievement of timely diagnosis.

9.
J Inherit Metab Dis ; 47(2): 340-354, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38238109

RESUMO

Sanfilippo syndrome (Mucopolysaccharidosis type III or MPS III) is a recessively inherited neurodegenerative lysosomal storage disorder. Mutations in genes encoding enzymes in the heparan sulphate degradation pathway lead to the accumulation of partially degraded heparan sulphate, resulting ultimately in the development of neurological deficits. Mutations in the gene encoding the membrane protein heparan-α-glucosaminide N-acetyltransferase (HGSNAT; EC2.3.1.78) cause MPS IIIC (OMIM#252930), typified by impaired cognition, sleep-wake cycle changes, hyperactivity and early death, often before adulthood. The precise disease mechanism that causes symptom emergence remains unknown, posing a significant challenge in the development of effective therapeutics. As HGSNAT is conserved in Drosophila melanogaster, we now describe the creation and characterisation of the first Drosophila models of MPS IIIC. Flies with either an endogenous insertion mutation or RNAi-mediated knockdown of hgsnat were confirmed to have a reduced level of HGSNAT transcripts and age-dependent accumulation of heparan sulphate leading to engorgement of the endo/lysosomal compartment. This resulted in abnormalities at the pre-synapse, defective climbing and reduced overall activity. Altered circadian rhythms (shift in peak morning activity) were seen in hgsnat neuronal knockdown lines. Further, when hgsnat was knocked down in specific glial subsets (wrapping, cortical, astrocytes or subperineural glia), impaired climbing or reduced activity was noted, implying that hgsnat function in these specific glial subtypes contributes significantly to this behaviour and targeting treatments to these cell groups may be necessary to ameliorate or prevent symptom onset. These novel models of MPS IIIC provide critical research tools for delineating the key cellular pathways causal in the onset of neurodegeneration in this presently untreatable disorder.


Assuntos
Mucopolissacaridose III , Animais , Mucopolissacaridose III/diagnóstico , Drosophila melanogaster/metabolismo , Mutação , Heparitina Sulfato , Neuroglia
10.
BMC Biol ; 21(1): 184, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667308

RESUMO

BACKGROUND: Monogenetic inborn errors of metabolism cause a wide phenotypic heterogeneity that may even differ between family members carrying the same genetic variant. Computational modelling of metabolic networks may identify putative sources of this inter-patient heterogeneity. Here, we mainly focus on medium-chain acyl-CoA dehydrogenase deficiency (MCADD), the most common inborn error of the mitochondrial fatty acid oxidation (mFAO). It is an enigma why some MCADD patients-if untreated-are at risk to develop severe metabolic decompensations, whereas others remain asymptomatic throughout life. We hypothesised that an ability to maintain an increased free mitochondrial CoA (CoASH) and pathway flux might distinguish asymptomatic from symptomatic patients. RESULTS: We built and experimentally validated, for the first time, a kinetic model of the human liver mFAO. Metabolites were partitioned according to their water solubility between the bulk aqueous matrix and the inner membrane. Enzymes are also either membrane-bound or in the matrix. This metabolite partitioning is a novel model attribute and improved predictions. MCADD substantially reduced pathway flux and CoASH, the latter due to the sequestration of CoA as medium-chain acyl-CoA esters. Analysis of urine from MCADD patients obtained during a metabolic decompensation showed an accumulation of medium- and short-chain acylcarnitines, just like the acyl-CoA pool in the MCADD model. The model suggested some rescues that increased flux and CoASH, notably increasing short-chain acyl-CoA dehydrogenase (SCAD) levels. Proteome analysis of MCADD patient-derived fibroblasts indeed revealed elevated levels of SCAD in a patient with a clinically asymptomatic state. This is a rescue for MCADD that has not been explored before. Personalised models based on these proteomics data confirmed an increased pathway flux and CoASH in the model of an asymptomatic patient compared to those of symptomatic MCADD patients. CONCLUSIONS: We present a detailed, validated kinetic model of mFAO in human liver, with solubility-dependent metabolite partitioning. Personalised modelling of individual patients provides a novel explanation for phenotypic heterogeneity among MCADD patients. Further development of personalised metabolic models is a promising direction to improve individualised risk assessment, management and monitoring for inborn errors of metabolism.


Assuntos
Erros Inatos do Metabolismo Lipídico , Metabolismo dos Lipídeos , Humanos , Acil-CoA Desidrogenase/genética , Coenzima A , Erros Inatos do Metabolismo Lipídico/genética
11.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474060

RESUMO

The pathophysiology of nonketotic hyperglycinemia (NKH), a rare neuro-metabolic disorder associated with severe brain malformations and life-threatening neurological manifestations, remains incompletely understood. Therefore, a valid human neural model is essential. We aimed to investigate the impact of GLDC gene variants, which cause NKH, on cellular fitness during the differentiation process of human induced pluripotent stem cells (iPSCs) into iPSC-derived astrocytes and to identify sustainable mechanisms capable of overcoming GLDC deficiency. We developed the GLDC27-FiPS4F-1 line and performed metabolomic, mRNA abundance, and protein analyses. This study showed that although GLDC27-FiPS4F-1 maintained the parental genetic profile, it underwent a metabolic switch to an altered serine-glycine-one-carbon metabolism with a coordinated cell growth and cell cycle proliferation response. We then differentiated the iPSCs into neural progenitor cells (NPCs) and astrocyte-lineage cells. Our analysis showed that GLDC-deficient NPCs had shifted towards a more heterogeneous astrocyte lineage with increased expression of the radial glial markers GFAP and GLAST and the neuronal markers MAP2 and NeuN. In addition, we detected changes in other genes related to serine and glycine metabolism and transport, all consistent with the need to maintain glycine at physiological levels. These findings improve our understanding of the pathology of nonketotic hyperglycinemia and offer new perspectives for therapeutic options.


Assuntos
Hiperglicinemia não Cetótica , Células-Tronco Pluripotentes Induzidas , Humanos , Hiperglicinemia não Cetótica/genética , Hiperglicinemia não Cetótica/patologia , Glicina Desidrogenase (Descarboxilante)/genética , Astrócitos/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Glicina , Serina
12.
Neonatal Netw ; 43(3): 139-147, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38816225

RESUMO

Although a rare cause of neonatal seizures, inborn errors of metabolism (IEMs) remain an essential component of a comprehensive differential diagnosis for poorly controlled neonatal epilepsy. Diagnosing neonatal-onset metabolic conditions proves a difficult task for clinicians; however, routine state newborn screening panels now include many IEMs. Three in particular-pyridoxine-dependent epilepsy, maple syrup urine disease, and Zellweger spectrum disorders-are highly associated with neonatal epilepsy and neurocognitive injury yet are often misdiagnosed. As research surrounding biomarkers for these conditions is emerging and gene sequencing technologies are advancing, clinicians are beginning to better establish early identification strategies for these diseases. In this literature review, the authors aim to present clinicians with an innovative clinical guide highlighting IEMs associated with neonatal-onset seizures, with the goal of promoting quality care and safety.


Assuntos
Convulsões , Humanos , Recém-Nascido , Convulsões/diagnóstico , Triagem Neonatal/métodos , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/complicações , Diagnóstico Diferencial , Doença da Urina de Xarope de Bordo/diagnóstico , Doença da Urina de Xarope de Bordo/complicações
13.
J Biol Chem ; 298(9): 102385, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35985424

RESUMO

Asparagine synthetase (ASNS) catalyzes synthesis of asparagine (Asn) and Glu from Asp and Gln in an ATP-dependent reaction. Asparagine synthetase deficiency (ASNSD) results from biallelic mutations in the ASNS gene. Affected children exhibit congenital microcephaly, continued brain atrophy, seizures, and often premature mortality. However, the underlying mechanisms are unclear. This report describes a compound heterozygotic ASNSD child with two novel mutations in the ASNS gene, c.1118G>T (paternal) and c.1556G>A (maternal), that lead to G373V or R519H ASNS variants. Structural mapping suggested that neither variant participates directly in catalysis. Growth of cultured fibroblasts from either parent was unaffected in Asn-free medium, whereas growth of the child's cells was suppressed by about 50%. Analysis of Asn levels unexpectedly revealed that extracellular rather than intracellular Asn correlated with the reduced proliferation during incubation of the child's cells in Asn-free medium. Our attempts to ectopically express the G373V variant in either HEK293T or JRS cells resulted in minimal protein production, suggesting instability. Protein expression and purification from HEK293T cells revealed reduced activity for the R519H variant relative to WT ASNS. Expression of WT ASNS in ASNS-null JRS cells resulted in nearly complete rescue of growth in Asn-free medium, whereas we observed no proliferation for the cells expressing either the G373V or R519H variant. These results support the conclusion that the coexpression of the G373V and R519H ASNS variants leads to significantly reduced Asn synthesis, which negatively impacts cellular growth. These observations are consistent with the ASNSD phenotype.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Aspartato-Amônia Ligase , Deficiência Intelectual , Microcefalia , Doenças Neurodegenerativas , Trifosfato de Adenosina , Asparagina/genética , Aspartato-Amônia Ligase/química , Atrofia , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Criança , Células HEK293 , Humanos , Deficiência Intelectual/genética , Microcefalia/genética , Mutação
14.
Am J Hum Genet ; 106(2): 256-263, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004446

RESUMO

We report an inborn error of metabolism caused by TKFC deficiency in two unrelated families. Rapid trio genome sequencing in family 1 and exome sequencing in family 2 excluded known genetic etiologies, and further variant analysis identified rare homozygous variants in TKFC. TKFC encodes a bifunctional enzyme involved in fructose metabolism through its glyceraldehyde kinase activity and in the generation of riboflavin cyclic 4',5'-phosphate (cyclic FMN) through an FMN lyase domain. The TKFC homozygous variants reported here are located within the FMN lyase domain. Functional assays in yeast support the deleterious effect of these variants on protein function. Shared phenotypes between affected individuals with TKFC deficiency include cataracts and developmental delay, associated with cerebellar hypoplasia in one case. Further complications observed in two affected individuals included liver dysfunction and microcytic anemia, while one had fatal cardiomyopathy with lactic acidosis following a febrile illness. We postulate that deficiency of TKFC causes disruption of endogenous fructose metabolism leading to generation of by-products that can cause cataract. In line with this, an affected individual had mildly elevated urinary galactitol, which has been linked to cataract development in the galactosemias. Further, in light of a previously reported role of TKFC in regulating innate antiviral immunity through suppression of MDA5, we speculate that deficiency of TKFC leads to impaired innate immunity in response to viral illness, which may explain the fatal illness observed in the most severely affected individual.


Assuntos
Catarata/etiologia , Cerebelo/anormalidades , Deficiências do Desenvolvimento/etiologia , Mutação , Malformações do Sistema Nervoso/etiologia , Fósforo-Oxigênio Liases/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Alelos , Sequência de Aminoácidos , Catarata/patologia , Cerebelo/patologia , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Feminino , Homozigoto , Humanos , Lactente , Masculino , Malformações do Sistema Nervoso/patologia , Linhagem , Fenótipo , Fosforilação , Homologia de Sequência , Sequenciamento do Exoma
15.
Mol Genet Metab ; 140(3): 107693, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716025

RESUMO

Newborn screening (NBS) began a revolution in the management of biochemical genetic diseases, greatly increasing the number of patients for whom dietary therapy would be beneficial in preventing complications in phenylketonuria as well as in a few similar disorders. The advent of next generation sequencing and expansion of NBS have markedly increased the number of biochemical genetic diseases as well as the number of patients identified each year. With the avalanche of new and proposed therapies, a second wave of options for the treatment of biochemical genetic disorders has emerged. These therapies range from simple substrate reduction to enzyme replacement, and now ex vivo gene therapy with autologous cell transplantation. In some instances, it may be optimal to introduce nucleic acid therapy during the prenatal period to avoid fetopathy. However, as with any new therapy, complications may occur. It is important for physicians and other caregivers, along with ethicists, to determine what new therapies might be beneficial to the patient, and which therapies have to be avoided for those individuals who have less severe problems and for which standard treatments are available. The purpose of this review is to discuss the "Standard" treatment plans that have been in place for many years and to identify the newest and upcoming therapies, to assist the physician and other healthcare workers in making the right decisions regarding the initiation of both the "Standard" and new therapies. We have utilized several diseases to illustrate the applications of these different modalities and discussed for which disorders they may be suitable. The future is bright, but optimal care of the patient, including and especially the newborn infant, requires a deep knowledge of the disease process and careful consideration of the necessary treatment plan, not just based on the different genetic defects but also with regards to different variants within a gene itself.


Assuntos
Erros Inatos do Metabolismo , Fenilcetonúrias , Recém-Nascido , Lactente , Gravidez , Feminino , Humanos , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/terapia , Erros Inatos do Metabolismo/diagnóstico , Triagem Neonatal , Fenilcetonúrias/genética , Fenilcetonúrias/terapia , Biologia Molecular , Sequenciamento de Nucleotídeos em Larga Escala
16.
Metabolomics ; 19(4): 29, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36988742

RESUMO

INTRODUCTION: Pompe disease is a rare, lysosomal disorder, characterized by intra-lysosomal glycogen accumulation due to an impaired function of α-glucosidase enzyme. The laboratory testing for Pompe is usually performed by enzyme activity, genetic test, or urine glucose tetrasaccharide (Glc4) screening by HPLC. Despite being a good preliminary marker, the Glc4 is not specific for Pompe. OBJECTIVE: The purpose of the present study was to develop a simple methodology using liquid chromatography-high resolution mass spectrometry (LC-HRMS) for targeted quantitative analysis of Glc4 combined with untargeted metabolic profiling in a single analytical run to search for complementary biomarkers in Pompe disease. METHODS: We collected 21 urine specimens from 13 Pompe disease patients and compared their metabolic signatures with 21 control specimens. RESULTS: Multivariate statistical analyses on the untargeted profiling data revealed Glc4, creatine, sorbitol/mannitol, L-phenylalanine, N-acetyl-4-aminobutanal, N-acetyl-L-aspartic acid, and 2-aminobenzoic acid as significantly altered in Pompe disease. This panel of metabolites increased sample class prediction (Pompe disease versus control) compared with a single biomarker. CONCLUSION: This study has demonstrated the potential of combined acquisition methods in LC-HRMS for Pompe disease investigation, allowing for routine determination of an established biomarker and discovery of complementary candidate biomarkers that may increase diagnostic accuracy, or improve the risk stratification of patients with disparate clinical phenotypes.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Humanos , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/urina , Metabolômica/métodos , Biomarcadores/urina , Fenótipo , Espectrometria de Massas em Tandem
17.
J Inherit Metab Dis ; 46(1): 3-14, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36175366

RESUMO

Arginase 1 Deficiency (ARG1-D) is a rare urea cycle disorder that results in persistent hyperargininemia and a distinct, progressive neurologic phenotype involving developmental delay, intellectual disability, and spasticity, predominantly affecting the lower limbs and leading to mobility impairment. Unlike the typical presentation of other urea cycle disorders, individuals with ARG1-D usually appear healthy at birth and hyperammonemia is comparatively less severe and less common. Clinical manifestations typically begin to develop in early childhood in association with high plasma arginine levels, with hyperargininemia (and not hyperammonemia) considered to be the primary driver of disease sequelae. Nearly five decades of clinical experience with ARG1-D and empirical studies in genetically manipulated models have generated a large body of evidence that, when considered in aggregate, implicates arginine directly in disease pathophysiology. Severe dietary protein restriction to minimize arginine intake and diversion of ammonia from the urea cycle are the mainstay of care. Although this approach does reduce plasma arginine and improve patients' cognitive and motor/mobility manifestations, it is inadequate to achieve and maintain sufficiently low arginine levels and prevent progression in the long term. This review presents a comprehensive discussion of the clinical and scientific literature, the effects and limitations of the current standard of care, and the authors' perspectives regarding the past, current, and future management of ARG1-D.


Assuntos
Hiperamonemia , Hiperargininemia , Distúrbios Congênitos do Ciclo da Ureia , Pré-Escolar , Humanos , Arginase/genética , Arginina , Hiperamonemia/metabolismo
18.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37958544

RESUMO

Sphingosine-1-phosphate lyase insufficiency syndrome (SPLIS) is an inborn error of metabolism caused by inactivating mutations in SGPL1, the gene encoding sphingosine-1-phosphate lyase (SPL), an essential enzyme needed to degrade sphingolipids. SPLIS features include glomerulosclerosis, adrenal insufficiency, neurological defects, ichthyosis, and immune deficiency. Currently, there is no cure for SPLIS, and severely affected patients often die in the first years of life. We reported that adeno-associated virus (AAV) 9-mediated SGPL1 gene therapy (AAV-SPL) given to newborn Sgpl1 knockout mice that model SPLIS and die in the first few weeks of life prolonged their survival to 4.5 months and prevented or delayed the onset of SPLIS phenotypes. In this study, we tested the efficacy of a modified AAV-SPL, which we call AAV-SPL 2.0, in which the original cytomegalovirus (CMV) promoter driving the transgene is replaced with the synthetic "CAG" promoter used in several clinically approved gene therapy agents. AAV-SPL 2.0 infection of human embryonic kidney (HEK) cells led to 30% higher SPL expression and enzyme activity compared to AAV-SPL. Newborn Sgpl1 knockout mice receiving AAV-SPL 2.0 survived ≥ 5 months and showed normal neurodevelopment, 85% of normal weight gain over the first four months, and delayed onset of proteinuria. Over time, treated mice developed nephrosis and glomerulosclerosis, which likely resulted in their demise. Our overall findings show that AAV-SPL 2.0 performs equal to or better than AAV-SPL. However, improved kidney targeting may be necessary to achieve maximally optimized gene therapy as a potentially lifesaving SPLIS treatment.


Assuntos
Terapia Genética , Parvovirinae , Esfingosina , Animais , Humanos , Camundongos , Aldeído Liases/genética , Aldeído Liases/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos Knockout , Parvovirinae/metabolismo , Fosfatos , Esfingosina/metabolismo
19.
Rev Neurol (Paris) ; 179(1-2): 10-29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36566124

RESUMO

Inherited neuropathies are a heterogeneous group of slowly progressive disorders affecting either motor, sensory, and/or autonomic nerves. Peripheral neuropathy may be the major component of a disease such as Charcot-Marie-Tooth disease or a feature of a more complex multisystemic disease involving the central nervous system and other organs. The goal of this review is to provide the clinical clues orientating the genetic diagnosis in a patient with inherited peripheral neuropathy. This review focuses on primary inherited neuropathies, amyloidosis, inherited metabolic diseases, while detailing clinical, neurophysiological and potential treatment of these diseases.


Assuntos
Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Humanos , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Neuropatia Hereditária Motora e Sensorial/diagnóstico , Neuropatia Hereditária Motora e Sensorial/genética
20.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(2): 169-177, 2023 Apr 25.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-37283101

RESUMO

Renal calculus is a common disease with complex etiology and high recurrence rate. Recent studies have revealed that gene mutations may lead to metabolic defects which are associated with the formation of renal calculus, and single gene mutation is involved in relative high proportion of renal calculus. Gene mutations cause changes in enzyme function, metabolic pathway, ion transport, and receptor sensitivity, causing defects in oxalic acid metabolism, cystine metabolism, calcium ion metabolism, or purine metabolism, which may lead to the formation of renal calculus. The hereditary conditions associated with renal calculus include primary hyperoxaluria, cystinuria, Dent disease, familial hypomagnesemia with hypercalciuria and nephrocalcinosis, Bartter syndrome, primary distal renal tubular acidosis, infant hypercalcemia, hereditary hypophosphatemic rickets with hypercalciuria, adenine phosphoribosyltransferase deficiency, hypoxanthine-guanine phosphoribosyltransferase deficiency, and hereditary xanthinuria. This article reviews the research progress on renal calculus associated with inborn error of metabolism, to provide reference for early screening, diagnosis, treatment, prevention and recurrence of renal calculus.


Assuntos
Cálculos Renais , Erros Inatos do Metabolismo , Nefrocalcinose , Urolitíase , Lactente , Humanos , Hipercalciúria/genética , Cálculos Renais/diagnóstico , Cálculos Renais/genética , Urolitíase/genética , Nefrocalcinose/genética , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA