Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stem Cells ; 42(2): 146-157, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37952119

RESUMO

The expression of large conductance calcium-activated potassium channels (BK channels) in adipose tissue has been identified for years. BK channel deletion can improve metabolism in vivo, but the relative mechanisms remain unclear. Here, we examined the effects of BK channels on the differentiation of adipose-derived stem cells (ADSCs) and the related mechanisms. BKα and ß1 subunits were expressed on adipocytes. We found that both deletion of the KCNMA1 gene, encoding the pore forming α subunit of BK channels, and the BK channel inhibitor paxilline increased the expression of key genes in the peroxisome proliferator activated receptor (PPAR) pathway and promoted adipogenetic differentiation of ADSCs. We also observed that the MAPK-ERK pathway participates in BK channel deficiency-promoted adipogenic differentiation of ADSCs and that ERK inhibitors blocked the differentiation-promoting effect of BK channel deficiency. Hyperplasia of adipocytes is considered beneficial for metabolic health. These results indicate that BK channels play an important role in adipose hyperplasia by regulating the differentiation of ADSCs and may become an important target for studying the pathogenesis and treatment strategies of metabolic disorder-related diseases.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta , Sistema de Sinalização das MAP Quinases , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Hiperplasia , Diferenciação Celular , Adipócitos/metabolismo
2.
Neural Regen Res ; 14(7): 1152-1157, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30804240

RESUMO

Stem cell transplantation has brought new hope for the treatment of neurological diseases. The key to stem cell therapy lies in inducing the specific differentiation of stem cells into nerve cells. Because the differentiation of stem cells in vitro and in vivo is affected by multiple factors, the final differentiation outcome is strongly associated with the microenvironment in which the stem cells are located. Accordingly, the optimal microenvironment for inducing stem cell differentiation is a hot topic. EGb761 is extracted from the leaves of the Ginkgo biloba tree. It is used worldwide and is becoming one of the focuses of stem cell research. Studies have shown that EGb761 can antagonize oxygen free radicals, stabilize cell membranes, promote neurogenesis and synaptogenesis, increase the level of brain-derived neurotrophic factors, and replicate the environment required during the differentiation of stem cells into nerve cells. This offers the possibility of using EGb761 to induce the differentiation of stem cells, facilitating stem cell transplantation. To provide a comprehensive reference for the future application of EGb761 in stem cell therapy, we reviewed studies investigating the influence of EGb761 on stem cells. These started with the composition and neuropharmacology of EGb761, and eventually led to the finding that EGb761 and some of its important components play important roles in the differentiation of stem cells and the protection of a beneficial microenvironment for stem cell transplantation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA