RESUMO
Viruses have evolved a range of strategies to utilize or manipulate the host's cellular translational machinery for efficient infection, although the mechanisms by which infectious bronchitis virus (IBV) manipulates the host translation machinery remain unclear. In this study, we firstly demonstrate that IBV infection causes host shutoff, although viral protein synthesis is not affected. We then screened 23 viral proteins, and identified that more than one viral protein is responsible for IBV-induced host shutoff, the inhibitory effects of proteins Nsp15 were particularly pronounced. Ribosome profiling was used to draw the landscape of viral mRNA and cellular genes expression model, and the results showed that IBV mRNAs gradually dominated the cellular mRNA pool, the translation efficiency of the viral mRNAs was lower than the median efficiency (about 1) of cellular mRNAs. In the analysis of viral transcription and translation, higher densities of RNA sequencing (RNA-seq) and ribosome profiling (Ribo-seq) reads were observed for structural proteins and 5' untranslated regions, which conformed to the typical transcriptional characteristics of nested viruses. Translational halt events and the number of host genes increased significantly after viral infection. The translationally paused genes were enriched in translation, unfolded-protein-related response, and activation of immune response pathways. Immune- and inflammation-related mRNAs were inefficiently translated in infected cells, and IBV infection delayed the production of IFN-ß and IFN-λ. Our results describe the translational landscape of IBV-infected cells and demonstrate new strategies by which IBV induces host gene shutoff to promote its replication. IMPORTANCE: Infectious bronchitis virus (IBV) is a γ-coronavirus that causes huge economic losses to the poultry industry. Understanding how the virus manipulates cellular biological processes to facilitate its replication is critical for controlling viral infections. Here, we used Ribo-seq to determine how IBV infection remodels the host's biological processes and identified multiple viral proteins involved in host gene shutoff. Immune- and inflammation-related mRNAs were inefficiently translated, the translation halt of unfolded proteins and immune activation-related genes increased significantly, benefitting IBV replication. These data provide new insights into how IBV modulates its host's antiviral responses.
Assuntos
Galinhas , Infecções por Coronavirus , Interações Hospedeiro-Patógeno , Vírus da Bronquite Infecciosa , Biossíntese de Proteínas , Ribossomos , Replicação Viral , Vírus da Bronquite Infecciosa/fisiologia , Vírus da Bronquite Infecciosa/genética , Animais , Ribossomos/metabolismo , Infecções por Coronavirus/virologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Interações Hospedeiro-Patógeno/genética , Galinhas/virologia , RNA Viral/genética , RNA Viral/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/genética , Linhagem Celular , HumanosRESUMO
Infectious bronchitis virus (IBV) is a significant respiratory pathogen that affects chickens worldwide. As an avian coronavirus, IBV leads to productive infection in chicken macrophages. However, the effects of IBV infection in macrophages on cyclooxygenase-2 (COX-2) expression are still to be elucidated. Therefore, we investigated the role of IBV infection on the production of COX-2, an enzyme involved in the synthesis of prostaglandin E2 (PGE2) in chicken macrophages. The chicken macrophage cells were infected with two IBV strains, and the cells and culture supernatants were harvested at predetermined time points to measure intracellular and extracellular IBV infection. IBV infection was quantified as has been the COX-2 and PGE2 productions. We found that IBV infection enhances COX-2 production at both mRNA and protein levels in chicken macrophages. When a selective COX-2 antagonist was used to reduce the COX-2 expression in macrophages, we observed that IBV replication decreased. When IBV-infected macrophages were treated with PGE2 receptor (EP2 and EP4) inhibitors, IBV replication was reduced. Upon utilizing a selective COX-2 antagonist to diminish PGE2 expression in macrophages, a discernible decrease in IBV replication was observed. Treatment of IBV-infected macrophages with a PGE2 receptor (EP2) inhibitor resulted in a reduction in IBV replication, whereas the introduction of exogenous PGE2 heightened viral replication. Additionally, pretreatment with a Janus-kinase two antagonist attenuated the inhibitory effect of recombinant chicken interferon (IFN)-γ on viral replication. The evaluation of immune mediators, such as inducible nitric oxide (NO) synthase (iNOS), NO, and interleukin (IL)-6, revealed enhanced expression following IBV infection of macrophages. In response to the inhibition of COX-2 and PGE2 receptors, we observed a reduction in the expressions of iNOS and IL-6 in macrophages, correlating with reduced IBV infection. Overall, IBV infection increased COX-2 and PGE2 production in addition to iNOS, NO, and IL-6 expression in chicken macrophages in a time-dependent manner. Inhibition of the COX-2/PGE2 pathway may lead to increased macrophage defence mechanisms against IBV infection, resulting in a reduction in viral replication and iNOS and IL-6 expressions. Understanding the molecular mechanisms underlying these processes may shed light on potential antiviral targets for controlling IBV infection.
Assuntos
Dinoprostona , Vírus da Bronquite Infecciosa , Animais , Ciclo-Oxigenase 2/genética , Interleucina-6/genética , GalinhasRESUMO
Coronaviruses infect a wide variety of host species, resulting in a range of diseases in both humans and animals. The coronavirus genome consists of a large positive-sense single-stranded molecule of RNA containing many RNA structures. One structure, denoted s2m and consisting of 41 nucleotides, is located within the 3' untranslated region (3' UTR) and is shared between some coronavirus species, including infectious bronchitis virus (IBV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2, as well as other pathogens, including human astrovirus. Using a reverse genetic system to generate recombinant viruses, we investigated the requirement of the s2m structure in the replication of IBV, a globally distributed economically important Gammacoronavirus that infects poultry causing respiratory disease. Deletion of three nucleotides predicted to destabilize the canonical structure of the s2m or the deletion of the nucleotides corresponding to s2m impacted viral replication in vitro. In vitro passaging of the recombinant IBV with the s2m sequence deleted resulted in a 36-nucleotide insertion in place of the deletion, which was identified to be composed of a duplication of flanking sequences. A similar result was observed following serial passage of human astrovirus with a deleted s2m sequence. RNA modeling indicated that deletion of the nucleotides corresponding to the s2m impacted other RNA structures present in the IBV 3' UTR. Our results indicated for both IBV and human astrovirus a preference for nucleotide occupation in the genome location corresponding to the s2m, which is independent of the specific s2m sequence. IMPORTANCE Coronaviruses infect many species, including humans and animals, with substantial effects on livestock, particularly with respect to poultry. The coronavirus RNA genome consists of structural elements involved in viral replication whose roles are poorly understood. We investigated the requirement of the RNA structural element s2m in the replication of the Gammacoronavirus infectious bronchitis virus, an economically important viral pathogen of poultry. Using reverse genetics to generate recombinant IBVs with either a disrupted or deleted s2m, we showed that the s2m is not required for viral replication in cell culture; however, replication is decreased in tracheal tissue, suggesting a role for the s2m in the natural host. Passaging of these viruses as well as human astrovirus lacking the s2m sequence demonstrated a preference for nucleotide occupation, independent of the s2m sequence. RNA modeling suggested deletion of the s2m may negatively impact other essential RNA structures.
Assuntos
Vírus da Bronquite Infecciosa , Mamastrovirus , Mutagênese Insercional , Animais , Humanos , Regiões 3' não Traduzidas/genética , Galinhas/virologia , Vírus da Bronquite Infecciosa/genética , Mamastrovirus/genética , Mutagênese Insercional/genética , Doenças das Aves Domésticas/virologia , RNA Viral/genética , Replicação Viral/genética , Estabilidade de RNA/genética , Deleção de Sequência/genéticaRESUMO
Infectious bronchitis virus (IBV) infections are initiated by the transmembrane spike (S) glycoprotein, which binds to host factors and fuses the viral and cell membranes. The N-terminal domain of the S1 subunit of IBV S protein binds to sialic acids, but the precise location of the sialic acid binding domain (SABD) and the role of the SABD in IBV-infected chickens remain unclear. Here, we identify the S1 N-terminal amino acid (aa) residues 19 to 227 (209 aa total) of IBV strains SD (GI-19) and GD (GI-7), and the corresponding region of M41 (GI-1), as the minimal SABD using truncated protein histochemistry and neuraminidase assays. Both α-2,3- and α-2,6-linked sialic acids on the surfaces of CEK cells can be used as attachment receptors by IBV, leading to increased infection efficiency. However, 9-O acetylation of the sialic acid glycerol side chain inhibits IBV S1 and SABD protein binding. We further constructed recombinant strains in which the S1 gene or the SABD in the GD and SD genomes were replaced with the corresponding region from M41 by reverse genetics. Infecting chickens with these viruses revealed that the virulence and nephrotropism of rSDM41-S1, rSDM41-206, rGDM41-S1, and rGDM41-206 strains were decreased to various degrees compared to their parental strains. A positive sera cross-neutralization test showed that the serotypes were changed for the recombinant viruses. Our results provide insight into IBV infection of host cells that may aid vaccine design. IMPORTANCE To date, only α-2,3-linked sialic acid has been identified as a potential host binding receptor for IBV. Here, we show the minimum region constituting the sialic acid binding domain (SABD) and the binding characteristics of the S1 subunit of spike (S) protein of IBV strains SD (GI-19), GD (GI-7), and M41 (GI-1) to various sialic acids. The 9-O acetylation modification partially inhibits IBV from binding to sialic acid, while the virus can also bind to sialic acid molecules linked to host cells through an α-2,6 linkage, serving as another receptor determinant. Substitution of the putative SABD from strain M41 into strains SD and GD resulted in reduced virulence, nephrotropism, and a serotype switch. These findings suggest that sialic acid binding has diversified during the evolution of γ-coronaviruses, impacting the biological properties of IBV strains. Our results offer insight into the mechanisms by which IBV invades host cells.
Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Glicoproteína da Espícula de Coronavírus , Animais , Galinhas , Vírus da Bronquite Infecciosa/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Oligopeptídeos/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismoRESUMO
With the emergence of new variant strains resulting from high mutation rates and genome recombination, avian infectious bronchitis virus (IBV) has caused significant economic losses to the poultry industry worldwide. Little is known about the underlying mechanisms of IBV-host interactions, particularly how IBV utilizes host metabolic pathways for efficient viral replication and transmission. In the present study, the effects of the cell membrane, viral envelope membrane, and viperin-mediated cholesterol synthesis on IBV replication were explored. Our results revealed significant increase in cholesterol levels and the expression of viperin after IBV infection. Acute cholesterol depletion in the cell membrane and viral envelope membrane by treating cells with methyl-ß-cyclodextrin (MßCD) obviously inhibited IBV replication; thereafter, replenishment of the cell membrane with cholesterol successfully restored viral replication, and direct addition of exogenous cholesterol to the cell membrane significantly promoted IBV infection during the early stages of infection. In addition, overexpression of viperin effectively suppressed cholesterol synthesis, as well as IBV replication, whereas knockdown of viperin (gene silencing with siRNA targeting viperin, siViperin) significantly increased IBV replication and cholesterol levels, whereas supplementation with exogenous cholesterol to viperin-transfected cells markedly restored viral replication. In conclusion, the increase in viperin induced by IBV infection plays an important role in IBV replication by affecting cholesterol production, providing a theoretical basis for understanding the pathogenesis of IBV and discovering new potential antiviral targets.
Assuntos
Galinhas , Colesterol , Vírus da Bronquite Infecciosa , Replicação Viral , Vírus da Bronquite Infecciosa/fisiologia , Animais , Colesterol/metabolismo , Doenças das Aves Domésticas/virologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologiaRESUMO
Two vaccination-challenge trials were performed using a commercial infectious bronchitis virus (IBV) BR1 vaccine, given alone or combined with a commercial IBV Mass vaccine against challenges with IBV M41, 793B, D388 (QX), Q1, Brasil-1 or Variant 2 challenge viruses, which includes the IB viruses that are dominant in South America. The efficacy of the vaccines against the challenge viruses was investigated by determination of the ciliary activity of the tracheal epithelium after challenge. The level of protection induced by the IBV BR1 vaccine alone against the six IBV challenge strains, of which five were of heterologous genotypes, varied from 50% to 100% with an average of 80%. The level of protection induced by the combination of the IBV BR1 and IBV Mass vaccines against the six IBV challenge strains, of which four were of heterologous genotypes, varied from 80% to 100% with an average of 92%. Vaccination with IBV BR1 alone provided a high level of protection against most tested challenge viruses, though the combination of IBV BR1 and IBV Mass was more consistent, showing less variation and compliance with the criterium mentioned in the European Pharmacopoeia 10th edition (at least 80% protection) for all tested challenge viruses. These trials show that vaccination with a combination of IBV BR1 and IBV Mass vaccines provides high levels of protection against the circulating IBV strains in South America.
RESUMO
Infectious bronchitis virus (IBV) strains of genotype GVIII have been emerging in Europe in the last decade, but no biological characterization has been reported so far. This paper reports the extensive genetic and biological characterization of IBV strain D2860 of genotype GVIII which was isolated from a Dutch layer flock that showed a drop in egg production. Whole genome sequencing showed that it has a high similarity (95%) to CK/DE/IB80/2016 (commonly known as IB80). Cross-neutralization tests with antigens and serotype-specific antisera of a panel of different non-GVIII genotypes consistently gave less than 2% antigenic cross-relationship with D2860. Five experiments using specified pathogen-free chickens of 0, 4, 29 and 63 weeks of age showed that D2860 was not able to cause clinical signs, drop in egg production, false layers or renal pathology. There was also a distinct lack of ciliostasis at both 5 and 8 days post-inoculation at any age, despite proof of infection by immunohistochemical (IHC) staining, RT-PCR and serology. IHC showed immunostaining between 5 and 8 days post inoculation in epithelial cells of sinuses and conchae, while only a few birds displayed immunostaining in the trachea. In vitro comparison of replication of D2860 and M41 in chicken embryo kidney cells at 37°C and at 41°C indicated that D2860 might have a degree of temperature sensitivity that might cause it to prefer the colder parts of the respiratory tract.
Assuntos
Galinhas , Infecções por Coronavirus , Genótipo , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/imunologia , Animais , Galinhas/virologia , Doenças das Aves Domésticas/virologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Organismos Livres de Patógenos Específicos , Feminino , Filogenia , Genoma Viral/genética , Replicação Viral , Traqueia/virologiaRESUMO
Infectious bronchitis virus (IBV) is the first coronavirus discovered in the world in the early 1930s and despite decades of extensive immunoprophylaxis efforts, it remains a major health concern to poultry producers worldwide. Rapid evolution due to large poultry population sizes coupled with high mutation and recombination events and the reliance of the antiviral immune response on specific antibodies against the epitopes of the S1 glycoprotein, render the control of IBV extremely challenging. The numerous and rapidly evolving genetic and antigenic IBV types are currently classified based on the whole S1 gene sequence, into 36 lineages clustered in eight genotypes. Most lineages (29) are grouped in genotype I (GI). "Variant 2" (Israel/Variant 2/1998) is the prototype strain of lineage GI-23 and, since this lineage emerged during the mid-1990s in the Middle East, it has evolved into numerous genetically related strains and disseminated to five continents. The hallmarks of IBV Variant 2-like strain infections are high virulence and remarkable nephrotropism and nephropathogenicity; however, the molecular mechanisms of these traits remain to be elucidated. Limited protection from previously utilized vaccine strains and accumulated losses to poultry producers have urged the development and implementation of homologous Variant 2-like vaccine strains. The latest avian coronavirus biology with specific emphasis on the cumulative knowledge about IBV "Variant 2" and emergence of related strains, characteristics and control are reviewed.
RESUMO
AIMS: Despite metatranscriptomics becoming an emerging tool for pathogen surveillance, very little is known about the feasibility of this approach for understanding the fate of human-derived pathogens in drinking water sources. METHODS AND RESULTS: We conducted multiplexed microfluidic cards and metatranscriptomic sequencing of the drinking water source in a border city of North Korea in four seasons. Microfluidic card detected norovirus, hepatitis B virus (HBV), enterovirus, and Vibrio cholerae in the water. Phylogenetic analyses showed that environmental-derived sequences from norovirus GII.17, genotype C of HBV, and coxsackievirus A6 (CA6) were genetically related to the local clinical isolates. Meanwhile, metatranscriptomic assembly suggested that several bacterial pathogens, including Acinetobacter johnsonii and V. cholerae might be prevalent in the studied region. Metatranscriptomic analysis recovered 349 species-level groups with substantial viral diversity without detection of norovirus, HBV, and CA6. Seasonally distinct virus communities were also found. Specifically, 126, 73, 126, and 457 types of viruses were identified in spring, summer, autumn, and winter, respectively. The viromes were dominated by the Pisuviricota phylum, including members from Marnaviridae, Dicistroviridae, Luteoviridae, Potyviridae, Picornaviridae, Astroviridae, and Picobirnaviridae families. Further phylogenetic analyses of RNA (Ribonucleic Acid)-dependent RNA polymerase (RdRp) sequences showed a diverse set of picorna-like viruses associated with shellfish, of which several novel picorna-like viruses were also identified. Additionally, potential animal pathogens, including infectious bronchitis virus, Bat dicibavirus, Bat nodavirus, Bat picornavirus 2, infectious bursal disease virus, and Macrobrachium rosenbergii nodavirus were also identified. CONCLUSIONS: Our data illustrate the divergence between microfluidic cards and metatranscriptomics, highlighting that the combination of both methods facilitates the source tracking of human viruses in challenging settings without sufficient clinical surveillance.
Assuntos
Quirópteros , Água Potável , Norovirus , Picornaviridae , Vírus de RNA , Vírus , Animais , Humanos , Estações do Ano , Quirópteros/genética , Filogenia , Microfluídica , Vírus de RNA/genética , Norovirus/genética , RNA , RNA Viral/genéticaRESUMO
NIBV is an acute and highly contagious virus that has a major impact on the poultry industry. Wogonin, as a flavonoid drug, has antiviral effects, but there have been no reports indicating its role in renal injury caused by NIBV infection. The aim of this study is to investigate the antiviral effect of wogonin against NIBV. Renal tubular epithelial cells were isolated and cultured, and divided into four groups: Con, Con+Wog, NIBV and NIBV+Wog. We found that wogonin significantly inhibited the copy number of NIBV and significantly alleviated NIBV-induced cell apoptosis and necrosis. Moreover, wogonin inhibited the reduction in mitochondrial membrane potential and the aberrant opening of mPTP caused by NIBV. In conclusion, wogonin can protect renal tubular epithelial cells from damage by inhibiting the replication of NIBV and preventing mitochondrial apoptosis and necroptosis induced by NIBV.
Assuntos
Apoptose , Galinhas , Células Epiteliais , Flavanonas , Túbulos Renais , Necroptose , Animais , Flavanonas/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Células Epiteliais/metabolismo , Necroptose/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Túbulos Renais/virologia , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/citologia , Túbulos Renais/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Antivirais/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Infecções por Coronavirus/virologia , Infecções por Coronavirus/tratamento farmacológico , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/tratamento farmacológico , Replicação Viral/efeitos dos fármacos , Células CultivadasRESUMO
This article describes the first reported case of infectious bronchitis virus (IBV) in houbara bustards (Chlamydotis undulata) from Saudi Arabia. Infectious bronchitis virus is a highly infectious virus that leads to major economic losses in the poultry industry. It is prevalent globally and causes severe respiratory and reproductive diseases in chickens. Although a wealth of information exists about IBV prevalence and transmission in domestic birds, similar information is lacking for houbara bustards. The major objectives of this research were to investigate whether IBV infections exist among houbara bustards at the National Wildlife Research Center in Taif, Saudi Arabia, and to determine the prevalence of this virus in this bird population. Fifty-eight oropharyngeal and cloacal swabs were gathered from 29 unvaccinated birds without clinical signs between 2017 and 2023. Extraction of complete RNA from the swab samples and reverse transcription-polymerase chain reaction testing were used to identify IBV. The prevalence of IBV in this population was 37.9% (11 of 29; 95% confidence interval, 20.2-55.5%), indicating transmission asymptomatically among captive houbara bustards. This research identified for the first time that houbara bustards were exposed to IBV, and that this exposure is not uncommon. To counter IBV in Saudi Arabia, recommendations include continuous monitoring of the virus, isolation of infected birds, phylogenetic analysis, genotypic identification of the virus in houbara bustard, and development of an effective vaccination.
Assuntos
Doenças das Aves , Aves , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Animais , Vírus da Bronquite Infecciosa/isolamento & purificação , Vírus da Bronquite Infecciosa/genética , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/epidemiologia , Doenças das Aves/virologia , Doenças das Aves/epidemiologia , Arábia Saudita/epidemiologia , Aves/virologia , FilogeniaRESUMO
Infectious bronchitis virus (IBV) is a rapidly evolving virus affecting both vaccinated and unvaccinated poultry flocks and is responsible for significant economic losses globally; hence, it is imperative to obtain a deeper understanding of this pathogen. In this study, seven IBV strains were isolated from commercial and backyard poultry flocks during 2015-2018. We obtained full-length IBV genomes of two viruses using the Illumina sequencing method, while five additional viruses were genetically characterized through full-length spike (S1) gene sequencing. Phylogenetic and distance analysis based on complete S1 gene and full-length genome sequences revealed that one IBV isolate belonged to genotype GI-1 and six viruses were clustered within genotype GI-13. Deduced amino acid sequences of GI-13 strains exhibited 31.8-37.2â% divergence with the commonly used classic vaccine strains (M41) and 2.7-12.6â% with variant vaccine strains (4/91) in Pakistan. High evolutionary distances suggest that the IBV viruses circulating in Pakistan are under continuous evolutionary pressure. Moreover, ch/IBV/Pak/AW-2/2017 was found to have originated from an intra-genotypic recombination event between the variant group (GI-23 lineage as a major parent) and variant vaccine strain (4/91-like as a minor parent) and is the first example of recombination within genotype GI-13 in Pakistan. Together, these findings provide genetic and evolutionary insights into the currently circulating IBV genotypes in Pakistan, which could help to better understand the origin, spread and evolution of IBVs, and to ascertain the importance of disease monitoring as well as re-evaluation forof currently used vaccines and vaccination programmes.
Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Galinhas , Vírus da Bronquite Infecciosa/genética , Filogenia , Paquistão/epidemiologia , Sequência de Aminoácidos , Genótipo , Doenças das Aves Domésticas/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterináriaRESUMO
Avian coronavirus infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute highly contagious economically relevant respiratory disease of poultry. Vaccination is used to control IBV infections, with live-attenuated vaccines generated via serial passage of a virulent field isolate through embryonated hens' eggs. A fine balance must be achieved between attenuation and the retention of immunogenicity. The exact molecular mechanism of attenuation is unknown, and vaccines produced in this manner present a risk of reversion to virulence as few consensus level changes are acquired. Our previous research resulted in the generation of a recombinant IBV (rIBV) known as M41-R, based on a pathogenic strain M41-CK. M41-R was attenuated in vivo by two amino acid changes, Nsp10-Pro85Leu and Nsp14-Val393Leu; however, the mechanism of attenuation was not determined. Pro85 and Val393 were found to be conserved among not only IBV strains but members of the wider coronavirus family. This study demonstrates that the same changes are associated with a temperature-sensitive (ts) replication phenotype at 41°C in vitro, suggesting that the two phenotypes may be linked. Vaccination of specific-pathogen-free chickens with M41-R induced 100% protection against clinical disease, tracheal ciliary damage, and challenge virus replication following homologous challenge with virulent M41-CK. Temperature sensitivity has been used to rationally attenuate other viral pathogens, including influenza, and the identification of amino acid changes that impart both a ts and an attenuated phenotype may therefore offer an avenue for future coronavirus vaccine development. IMPORTANCE Infectious bronchitis virus is a pathogen of economic and welfare concern for the global poultry industry. Live-attenuated vaccines against are generated by serial passage of a virulent isolate in embryonated eggs until attenuation is achieved. The exact mechanisms of attenuation are unknown, and vaccines produced have a risk of reversion to virulence. Reverse genetics provides a method to generate vaccines that are rationally attenuated and are more stable with respect to back selection due to their clonal origin. Genetic populations resulting from molecular clones are more homogeneous and lack the presence of parental pathogenic viruses, which generation by multiple passage does not. In this study, we identified two amino acids that impart a temperature-sensitive replication phenotype. Immunogenicity is retained and vaccination results in 100% protection against homologous challenge. Temperature sensitivity, used for the development of vaccines against other viruses, presents a method for the development of coronavirus vaccines.
Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas Virais , Aminoácidos , Animais , Galinhas , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Aves Domésticas , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Temperatura , Vacinas Atenuadas , Vacinas Virais/genéticaRESUMO
Infectious bronchitis virus (IBV) is an avian coronavirus that causes infectious bronchitis, an acute and highly contagious respiratory disease of chickens. IBV evolution under the pressure of comprehensive and widespread vaccination requires surveillance for vaccine resistance, as well as periodic vaccine updates. Reverse genetics systems are very valuable tools in virology, as they facilitate rapid genetic manipulation of viral genomes, thereby advancing basic and applied research. We report here the construction of an infectious clone of IBV strain Beaudette as a bacterial artificial chromosome (BAC). The engineered full-length IBV clone allowed the rescue of an infectious virus that was phenotypically indistinguishable from the parental virus. We used the infectious IBV clone and examined whether an enhanced green fluorescent protein (EGFP) can be produced by the replicase gene ORF1 and autocatalytically released from the replicase polyprotein through cleavage by the main coronavirus protease. We show that IBV tolerates insertion of the EGFP ORF at the 3' end of the replicase gene, between the sequences encoding nsp13 and nsp16 (helicase, RNA exonuclease, RNA endonuclease, and RNA methyltransferase). We further show that EGFP is efficiently cleaved from the replicase polyprotein and can be localized in double-membrane vesicles along with viral RNA polymerase and double-stranded RNA, an intermediate of IBV genome replication. One of the engineered reporter EGFP viruses were genetically stable during passage in cultured cells. We demonstrate that the reporter EGFP viruses can be used to study virus replication in host cells and for antiviral drug discovery and development of diagnostic assays. IMPORTANCE Reverse genetics systems based on bacterial artificial chromosomes (BACs) are the most valuable systems in coronavirus research. Here, we describe the establishment of a reverse genetics system for the avian coronavirus strain Beaudette, the most intensively studied strain. We cloned a copy of the avian coronavirus genome into a BAC vector and recovered infectious virus in permissive cells. We used the new system to construct reporter viruses that produce enhanced green fluorescent protein (EGFP). The EGFP coding sequence was inserted into 11 known cleavage sites of the major coronavirus protease in the replicase gene ORF1. Avian coronavirus tolerated the insertion of the EGFP coding sequence at three sites. The engineered reporter viruses replicated with parental efficiency in cultured cells and were sufficiently genetically stable. The new system facilitates functional genomics of the avian coronavirus genome but can also be used for the development of novel vaccines and anticoronaviral drugs.
Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Genética Reversa , Animais , Galinhas , Infecções por Coronavirus/veterinária , Genes Reporter , Proteínas de Fluorescência Verde , Vírus da Bronquite Infecciosa/genética , Peptídeo Hidrolases , Poliproteínas , RNA Viral/genéticaRESUMO
This study aims to explore the crosstalk between GRP78/PERK/ATF-4 signaling pathway and renal apoptosis induced by nephropathogenic infectious bronchitis virus (NIBV). Hy-Line brown chickens were divided into two groups (Con, n = 100 and Dis, n = 200). At 28 days of age, each chicken in the Dis group was intranasally injected with SX9 strain (10-5/0.2 ml). Venous blood and kidney tissues were collected at 1, 5, 11, 18 and 28 days postinfection. Our results showed that NIBV infection upregulated the levels of creatinine, uric acid, and calcium (Ca2+) levels. Histopathological examination revealed severe hemorrhage and inflammatory cell infiltration near the renal tubules. Meanwhile, NIBV virus particles and apoptotic bodies were observed by ultramicro electron microscope. In addition, RT-qPCR and Western blot showed that NIBV upregulated the expression of GRP78, PERK, eIF2α, ATF-4, CHOP, Caspase-3, Caspase-9, P53, Bax, and on the contrary, downregulated the expression of Bcl-2. Furthermore, immunofluorescence localization analysis showed that the positive expression of Bcl-2 protein was significantly decreased. Correlation analysis indicated that endoplasmic reticulum (ER) stress gene expression, apoptosis gene expression, and renal injury were potentially related. Taken together, NIBV infection can induce renal ER stress and apoptosis by activating of GRP78/PERK/ATF-4 signaling pathway, leading to kidney damage. IMPORTANCE Nephropathogenic infectious bronchitis virus (NIBV) induced renal endoplasmic reticulum stress in chickens. NIBV infection induced kidney apoptosis in chickens. GRP78/PERK/ATF-4 signaling pathway is potentially related to renal apoptosis induced by NIBV.
Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Apoptose , Chaperona BiP do Retículo Endoplasmático/metabolismo , Vírus da Bronquite Infecciosa/patogenicidade , Rim/patologia , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/genética , Animais , Apoptose/genética , Cálcio/metabolismo , Galinhas , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/genética , Rim/metabolismo , Rim/virologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais/genética , eIF-2 Quinase/genéticaRESUMO
The Gammacoronavirus infectious bronchitis virus (IBV) is a highly contagious global pathogen prevalent in all types of poultry flocks. IBV is responsible for economic losses and welfare issues in domestic poultry, resulting in a significant risk to food security. IBV vaccines are currently generated by serial passage of virulent IBV field isolates through embryonated hens' eggs. The different patterns of genomic variation accumulated during this process means that the exact mechanism of attenuation is unknown and presents a risk of reversion to virulence. Additionally, the passaging process adapts the virus to replicate in chicken embryos, increasing embryo lethality. Vaccines produced in this manner are therefore unsuitable for in ovo application. We have developed a reverse genetics system, based on the pathogenic IBV strain M41, to identify genes which can be targeted for rational attenuation. During the development of this reverse genetics system, we identified four amino acids, located in nonstructural proteins (nsps) 10, 14, 15, and 16, which resulted in attenuation both in vivo and in ovo. Further investigation highlighted a role of amino acid changes, Pro85Leu in nsp 10 and Val393Leu in nsp 14, in the attenuated in vivo phenotype observed. This study provides evidence that mutations in nsps offer a promising mechanism for the development of rationally attenuated live vaccines against IBV, which have the potential for in ovo application. IMPORTANCE The Gammacoronavirus infectious bronchitis virus (IBV) is the etiological agent of infectious bronchitis, an acute, highly contagious, economically important disease of poultry. Vaccination is achieved using a mixture of live attenuated vaccines for young chicks and inactivated vaccines as boosters for laying hens. Live attenuated vaccines are generated through serial passage in embryonated hens' eggs, an empirical process which achieves attenuation but retains immunogenicity. However, these vaccines have a risk of reversion to virulence, and they are lethal to the embryo. In this study, we identified amino acids in the replicase gene which attenuated IBV strain M41, both in vivo and in ovo. Stability assays indicate that the attenuating amino acids are stable and unlikely to revert. The data in this study provide evidence that specific modifications in the replicase gene offer a promising direction for IBV live attenuated vaccine development, with the potential for in ovo application.
Assuntos
Aminoácidos , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Proteínas não Estruturais Virais , Vacinas Virais , Aminoácidos/química , Aminoácidos/genética , Animais , Embrião de Galinha , Galinhas , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Feminino , Vírus da Bronquite Infecciosa/genética , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Vacinas Atenuadas/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Vacinas Virais/genéticaRESUMO
Infectious bronchitis virus (IBV), a γ-coronavirus, causes the economically important poultry disease infectious bronchitis. Cellular stress response is an effective antiviral strategy that leads to stress granule (SG) formation. Previous studies suggested that SGs were involved in the antiviral activity of host cells to limit viral propagation. Here, we aimed to delineate the molecular mechanisms regulating the SG response to pathogenic IBV strain infection. We found that most chicken embryo kidney (CEK) cells formed no SGs during IBV infection and IBV replication inhibited arsenite-induced SG formation. This inhibition was not caused by changes in the integrity or abundance of SG proteins during infection. IBV nonstructural protein 15 (Nsp15) endoribonuclease activity suppressed SG formation. Regardless of whether Nsp15 was expressed alone, with recombinant viral infection with Newcastle disease virus as a vector, or with EndoU-deficient IBV, the Nsp15 endoribonuclease activity was the main factor inhibiting SG formation. Importantly, uridine-specific endoribonuclease (EndoU)-deficient IBV infection induced colocalization of IBV N protein/dsRNA and SG-associated protein TIA1 in infected cells. Additionally, overexpressing TIA1 in CEK cells suppressed IBV replication and may be a potential antiviral factor for impairing viral replication. These data provide a novel foundation for future investigations of the mechanisms by which coronavirus endoribonuclease activity affects viral replication. IMPORTANCE Endoribonuclease is conserved in coronaviruses and affects viral replication and pathogenicity. Infectious bronchitis virus (IBV), a γ-coronavirus, infects respiratory, renal, and reproductive systems, causing millions of dollars in lost revenue to the poultry industry worldwide annually. Mutating the viral endoribonuclease poly(U) resulted in SG formation, and TIA1 protein colocalized with the viral N protein and dsRNA, thus damaging IBV replication. These results suggest a new antiviral target design strategy for coronaviruses.
Assuntos
Infecções por Coronavirus , Endorribonucleases , Vírus da Bronquite Infecciosa , Grânulos de Estresse , Replicação Viral , Animais , Antivirais/farmacologia , Embrião de Galinha , Galinhas , Infecções por Coronavirus/veterinária , Endorribonucleases/genética , Vírus da Bronquite Infecciosa/enzimologia , Vírus da Bronquite Infecciosa/fisiologia , Doenças das Aves Domésticas/virologia , RNA de Cadeia DuplaRESUMO
Despite vaccine use, novel strains and variants of infectious bronchitis virus (IBV) have emerged continuously, leading to economic losses to the poultry industry worldwide. This study aimed to characterize the IBV isolate CK/CH/GX/202109 from three yellow broilers in Guangxi, China. Recombination was shown to have occurred in regions of the 1ab gene. Compared to the whole genome of ck/CH/LGX/130530, which is genotypically related to tl/CH/LDT3-03, the 202109 strain had 21 mutations. The pathological assessment showed that this variant caused 30% and 40% mortality in 1-day-old chicks infected with oral and ocular inoculum, respectively. Nephritis, enlarged proventriculus, inflammation of the gizzard, and atrophy of the bursa of Fabricius were also observed at both 7 and 14 days post-infection (dpi). Viral loads in the trachea, proventriculus, gizzard, kidney, bursa, and cloacal swabs were higher at 7 dpi than at 14 dpi. Clinicopathological and immunohistochemical analyses revealed that this virus exhibited multiple organ tropisms capable of infecting the trachea, proventriculus, gizzard, kidney, bursa, ileum, jejunum, and rectum. Almost none of the 1-day-old infected chicks seroconverted until 14 dpi. While the virus was found in the ileum, jejunum, and rectum in the 28-day-old ocular group, the majority of 28-day-old infected chickens seroconverted at 10 dpi. These study findings demonstrate that recombination events and mutations during the evolution of IBV may greatly alter tissue tropism and emphasize the need for the continued surveillance of novel strains and variants in order to control this infection.
Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Animais , Galinhas/genética , Vírus da Bronquite Infecciosa/genética , Genoma Viral , China , Tropismo , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/prevenção & controle , FilogeniaRESUMO
Infectious bronchitis virus (IBV) is an avian pathogen from the Coronavirus family causing major health issues in poultry flocks worldwide. Because of its negative impact on health, performance, and bird welfare, commercial poultry are routinely vaccinated by administering live attenuated virus. However, field strains are capable of rapid adaptation and may evade vaccine-induced immunity. We set out to describe dynamics within and between lineages and assess potential escape from vaccine-induced immunity. We investigated a large nucleotide sequence database of over 1700 partial sequences of the S1 spike protein gene collected from clinical samples of Dutch chickens submitted to the laboratory of Royal GD between 2011 and 2020. Relative frequencies of the two major lineages GI-13 (793B) and GI-19 (QX) did not change in the investigated period, but we found a succession of distinct GI-19 sublineages. Analysis of dN/dS ratio over all sequences demonstrated episodic diversifying selection acting on multiple sites, some of which overlap predicted N-glycosylation motifs. We assessed several measures that would indicate divergence from vaccine strains, both in the overall database and in the two major lineages. However, the frequency of vaccine-homologous lineages did not decrease, no increase in genetic variation with time was detected, and the sequences did not grow more divergent from vaccine sequences in the examined time window. Concluding, our results show sublineage turnover within the GI-19 lineage and we demonstrate episodic diversifying selection acting on the partial sequence, but we cannot confirm nor rule out escape from vaccine-induced immunity.RESEARCH HIGHLIGHTSSuccession of GI-19 IBV variants in broiler populations.IBV lineages overrepresented in either broiler, or layer production chickens.Ongoing episodic selection at the IBV S1 spike protein gene sequence.Several positively selected codons coincident with N-glycosylation motifs.
Assuntos
Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas Virais , Animais , Aves Domésticas , Galinhas , Vírus da Bronquite Infecciosa/genética , Glicoproteína da Espícula de Coronavírus/genética , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Doenças das Aves Domésticas/prevenção & controleRESUMO
The antigenic and molecular characteristics of BR-I infectious bronchitis viruses (IBVs) isolated from Brazil are reported. IBVs isolated from commercial flocks with different clinical manifestations between 2003 and 2019 were submitted to antigenic and molecular characterization. The complete S1 glycoprotein gene of 11 field isolates was amplified and sequenced. The virus neutralization (VN) test showed 94.75% neutralization with a BR-I isolate and 30% or less against other worldwide reference strains. The nucleotide and amino acid sequence analyses revealed 84.3-100% and 83.5-100% identity among them, respectively. The identity values ranged from 57.1 to 82.6% for nucleotides and from 46.6-84.4% for amino acids compared with those of other genotypes. By phylogenetic tree analysis, the Brazilian isolates were branched into the BR-I genotype (lineage GI-11), which was differentiated from foreign reference strains. Selective pressure analyses of BR-I IBVs revealed evolution under purifying selection (negative pressure) for the complete S1 gene but four specific sites (87, 121, 279, and 542) under diversifying selection (positive pressure). Profiles of cleavage sites and potential N-glycosylation sites differed from those of other genotypes. The low molecular relationship among the Brazilian viruses and foreign serotypes was concordant with the VN test results. The low antigenic relatedness (ranging from 5.3-30% between Brazilian genotype BR-I and reference IBV serotypes of North America, Europe, and Asia) indicates that the BR-I genotype is a different serotype, referred to for the first time and hereafter as serotype BR-I. RESEARCH HIGHLIGHTSStrains of the BR-I genotype presented robust antigenic and molecular similarity.BR-I strains evolved under purifying selection mode (negative pressure).The BR-I genotype originated in Brazil and dispersed to other countries.BR-I genotype viruses can be referred to as the BR-I serotype.