Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 403
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 695: 149402, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38159412

RESUMO

Dexmedetomidine (DEX) is a highly selective and potent α2-adrenoceptor (α2-AR) agonist that is widely used as a clinical anesthetic to induce anxiolytic, sedative, and analgesic effects. In recent years, a growing body of evidence has demonstrated that DEX protects against acute kidney injury (AKI) caused by sepsis, drugs, surgery, and ischemia-reperfusion (I/R) in organs or tissues, indicating its potential role in the prevention and treatment of AKI. In this review, we summarized the evidence of the renoprotective effects of DEX on different models of AKI and explored the mechanism. We found that the renoprotective effects of DEX mainly involved antisympathetic effects, reducing inflammatory reactions and oxidative stress, reducing apoptosis, increasing autophagy, reducing ferroptosis, protecting renal tubular epithelial cells (RTECs), and inhibiting renal fibrosis. Thus, the use of DEX is a promising strategy for the management and treatment of perioperative AKI. The aim of this review is to further clarify the renoprotective mechanism of DEX to provide a theoretical basis for its use in basic research in various AKI models, clinical management, and the treatment of perioperative AKI.


Assuntos
Injúria Renal Aguda , Dexmedetomidina , Traumatismo por Reperfusão , Humanos , Dexmedetomidina/farmacologia , Dexmedetomidina/uso terapêutico , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/prevenção & controle , Transdução de Sinais , Inflamação/tratamento farmacológico , Apoptose , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle
2.
Mol Divers ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622351

RESUMO

Alzheimer's disease (AD) and osteoarthritis (OA) are both senile degenerative diseases. Clinical studies have found that OA patients have a significantly increased risk of AD in their later life. This study hypothesized that chronic aseptic inflammation might lead to AD in KOA patients. However, current research has not yet clarified the potential mechanism between AD and KOA. Therefore, this study intends to use KOA transcriptional profiling and single-cell sequencing analysis technology to explore the molecular mechanism of KOA affecting AD development, and screen potential molecular biomarkers and drugs for the prediction, diagnosis, and prognosis of AD in KOA patients. It was found that the higher the expression of TXNIP, MMP3, and MMP13, the higher the risk coefficient of AD was. In addition, the AUC of TXNIP, MMP3, and MMP13 were all greater than 0.70, which had good diagnostic significance for AD. Finally, through the virtual screening of core proteins in FDA drugs and molecular dynamics simulation, it was found that compound Cobicistat could be targeted to TXNIP, Itc could be targeted to MMP3, and Isavuconazonium could be targeted to MMP13. To sum up, TXNIP, MMP3, and MMP13 are prospective molecular markers in KOA with AD, which could be used to predict, diagnose, and prognosis.

3.
Skin Res Technol ; 30(7): e13630, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988131

RESUMO

OBJECTIVE: To investigate the role of NEAT1 targeted regulation of miR-125/ADAM9 mediated NF-κB pathway in inflammatory response in rosacea. METHOD: HaCaT cell rosacea phenotype was induced by LL37. The connection targeted by NEAT1 and miR-125a-5p was confirmed by Double-Luciferase report analysis. qPCR was employed to assess the levels of expression for NEAT1, miR-125a-5p, and ADAM9 genes. The levels of expression for ADAM9/TLR2/NF-κB P65 pathway proteins in each batch of cells were determined by Western blotting. The levels of expression for inflammatory factors, including TNF-α, IL-1ß, IL-6, and IL-18, were measured through ELISA experimentation. RESULTS: LL37 could successfully induce HaCaT cells to exhibit rosacea phenotype. The luciferase report experiment confirmed that NEAT1 could target and bind miR-125a-5p and inhibit its expression. ADAM9 exhibited increased expression in LL37-induced HaCaT cells, showing a positive association with NEAT1 expression and inverse relationship with miR-125a-5p activation. LL37 treatment promoted the expression of ADAM9/TLR2/NF-κB P65 pathway proteins. Silencing ADAM9 can inhibit the inflammatory signaling pathway and reduce the level of TNF-α, IL-1ß, IL-6, and IL-18 in HaCaT cells. CONCLUSION: NEAT1 can suppress the production of miR-125a-5p and activate the TLR2/NF-κB inflammatory pathway mediated by ADAM9, thereby promoting the inflammatory response in rosacea.


Assuntos
Proteínas ADAM , Proteínas de Membrana , MicroRNAs , NF-kappa B , RNA Longo não Codificante , Rosácea , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Rosácea/metabolismo , Rosácea/genética , Proteínas ADAM/metabolismo , Proteínas ADAM/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , NF-kappa B/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Transdução de Sinais , Células HaCaT , Catelicidinas , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/genética , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética
4.
Metab Brain Dis ; 39(5): 841-853, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38805141

RESUMO

Sevoflurane exposure can result in neurotoxicity especially among children, which remains an important complication after surgery. However, its related mechanisms remain unclear. Here, we investigated the biological roles of SHARPIN in sevoflurane-induced neurotoxicity. As detected by qPCR, Western blotting and immunohistochemical staining, SHARPIN and HMGB1 expression was elevated in sevoflurane-stimulated mice as compared with the control mice. SHARPIN depletion attenuated hippocampus injury, repressed the expression of HMGB1 and M1-like macrophage markers (iNOS, TNF-α, IL-1ß, IL-6), but enhanced the expression of M2-like macrophage markers (ARG-1, IL-10). GST pull-down and Co-IP assays demonstrated that SHARPIN directly interacted with HMGB1 to enhance HMGB1 expression in SH-SY5Y cells. The inhibitory effects of SHARPIN silencing on inflammatory reaction and M1-like macrophages were counteracted by HMGB1 overexpression. Finally, SHARPIN-HMGB1 pathway affected neuroinflammation triggered by sevoflurane via modulating macrophage polarization. Collectively, our data suggested that SHARPIN stimulated sevoflurane-induced neurotoxicity via converting M2-like macrophages to M1-like macrophages by enhancing HMGB1 expression. SHARPIN intervention may be a promising therapeutic method to relieve sevoflurane-induced neurotoxicity.


Assuntos
Proteína HMGB1 , Macrófagos , Sevoflurano , Regulação para Cima , Sevoflurano/toxicidade , Sevoflurano/farmacologia , Animais , Proteína HMGB1/metabolismo , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/etiologia , Animais Recém-Nascidos , Masculino , Camundongos Endogâmicos C57BL , Humanos , Anestésicos Inalatórios/toxicidade , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos
5.
Int Endod J ; 57(6): 713-726, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38467586

RESUMO

AIM: To evaluate the inflammatory reaction and the ability to induce mineralization activity of a new repair material, NeoPUTTY (NPutty; NuSmile, USA), in comparison with Bio-C Repair (BC; Angelus, Brazil) and MTA Repair HP (MTA HP; Angelus, Brazil). METHODOLOGY: Polyethylene tubes were filled with materials or kept empty (control group, CG) and implanted in subcutaneous tissue of rats for 7, 15, 30, and 60 days (n = 6/group). Capsule thickness, number of inflammatory cells (ICs), fibroblasts, collagen content, and von Kossa analysis were performed. Unstained sections were evaluated under polarized light and by immunohistochemistry for osteocalcin (OCN). Data were submitted to two-way anova followed by Tukey's test (p ≤ .05), except for OCN. OCN data were submitted to Kruskal-Wallis and Dunn and Friedman post hoc tests followed by the Nemenyi test at a significance level of 5%. RESULTS: At 7, 15, and 30 days, thick capsules containing numerous ICs were seen around the materials. At 60 days, a moderate inflammatory reaction was observed for NPutty, BC while MTA HP presented thin capsules with moderate inflammatory cells. In all periods, NPutty specimens contained the highest values of ICs (p < .05). From 7 to 60 days, the number of ICs reduced significantly while an increase in the number of fibroblasts and birefringent collagen content was observed. At 7 and 15 days, no significant difference was observed in the immunoexpression of OCN (p > .05). At 30 and 60 days, NPutty showed the lowest values of OCN (p < .05). At 60 days, a similar immunoexpression was observed for BC and MTA HP (p > .05). In all time intervals, capsules around NPutty, BC, and MTA HP showed von Kossa-positive and birefringent structures. CONCLUSIONS: Despite the greater inflammatory reaction promoted by NeoPutty than BC and MTA HP, the reduction in the thickness of capsules, the increase in the number of fibroblasts, and the reduction in the number of ICs indicate that this bioceramic material is biocompatible Furthermore, NeoPutty presents the ability to induce mineralization activity.


Assuntos
Materiais Biocompatíveis , Bismuto , Compostos de Cálcio , Teste de Materiais , Silicatos , Animais , Silicatos/farmacologia , Compostos de Cálcio/farmacologia , Ratos , Materiais Biocompatíveis/farmacologia , Ratos Wistar , Óxidos/farmacologia , Combinação de Medicamentos , Masculino , Compostos de Alumínio/farmacologia , Cimentos Dentários/farmacologia , Fibroblastos/efeitos dos fármacos , Colágeno/metabolismo
6.
Ren Fail ; 46(1): 2352629, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38769599

RESUMO

Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus (DM) and has become the main cause of end-stage renal disease worldwide. In recent years, with the increasing incidence of DM, the pathogenesis of DKD has received increasing attention. The pathogenesis of DKD is diverse and complex. Extracellular vesicles (EVs) contain cell-derived membrane proteins, nucleic acids (such as DNA and RNA) and other important cellular components and are involved in intercellular information and substance transmission. In recent years, an increasing number of studies have confirmed that EVs play an important role in the development of DKD. The purpose of this paper is to explain the potential diagnostic value of EVs in DKD, analyze the mechanism by which EVs participate in intercellular communication, and explore whether EVs may become drug carriers for targeted therapy to provide a reference for promoting the implementation and application of exosome therapy strategies in clinical practice.


Assuntos
Nefropatias Diabéticas , Vesículas Extracelulares , Humanos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/terapia , Nefropatias Diabéticas/etiologia , Vesículas Extracelulares/metabolismo , Comunicação Celular , Exossomos/metabolismo
7.
Pharm Biol ; 62(1): 544-561, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38946248

RESUMO

CONTEXT: Diabetic peripheral neuropathy (DPN) results in an enormous burden and reduces the quality of life for patients. Considering there is no specific drug for the management of DPN, traditional Chinese medicine (TCM) has increasingly drawn attention of clinicians and researchers around the world due to its characteristics of multiple targets, active components, and exemplary safety. OBJECTIVE: To summarize the current status of TCM in the treatment of DPN and provide directions for novel drug development, the clinical effects and potential mechanisms of TCM used in treating DPN were comprehensively reviewed. METHODS: Existing evidence on TCM interventions for DPN was screened from databases such as PubMed, the Cochrane Neuromuscular Disease Group Specialized Register (CENTRAL), and the Chinese National Knowledge Infrastructure Database (CNKI). The focus was on summarizing and analyzing representative preclinical and clinical TCM studies published before 2023. RESULTS: This review identified the ameliorative effects of about 22 single herbal extracts, more than 30 herbal compound prescriptions, and four Chinese patent medicines on DPN in preclinical and clinical research. The latest advances in the mechanism highlight that TCM exerts its beneficial effects on DPN by inhibiting inflammation, oxidative stress and apoptosis, endoplasmic reticulum stress and improving mitochondrial function. CONCLUSIONS: TCM has shown the power latent capacity in treating DPN. It is proposed that more large-scale and multi-center randomized controlled clinical trials and fundamental experiments should be conducted to further verify these findings.


Assuntos
Neuropatias Diabéticas , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Humanos , Neuropatias Diabéticas/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Animais , Qualidade de Vida , Estresse Oxidativo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos
8.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2585-2596, 2024 May.
Artigo em Zh | MEDLINE | ID: mdl-38812159

RESUMO

This study investigated the effects and mechanisms of total saponins of Panax japonicus(TSPJ) against liver injury induced by acetaminophen(APAP). Male Kunming mice were randomly divided into a blank control group, TSPJ group(200 mg·kg~(-1), ig), model group, APAP+ TSPJ low-dose group(50 mg·kg~(-1), ig), APAP+ TSPJ medium-dose group(100 mg·kg~(-1), ig), APAP+ TSPJ high-dose group(200 mg·kg~(-1), ig), and APAP+ N-acetyl-L-cysteine group(200 mg·kg~(-1), ip). The administration group received the corresponding medications via ig or ip once a day for 14 consecutive days. After the last administration for one hour, except for the blank control group and TSPJ group, all groups of mice were given 500 mg·kg~(-1) APAP by gavage. After 24 hours, mouse serum and liver tissue were collected for serum alanine aminotransferase(ALT), aspartate aminotransferase(AST), reactive oxygen species(ROS), tumor necrosis factor alpha(TNF-α), interleukin-1 beta(IL-1ß), cyclooxygenase-2(COX-2), IL-6, IL-4, IL-10, as well as lactate dehydrogenase(LDH), glutathione(GSH), superoxide dismutase(SOD), catalase(CAT), total antioxidant capacity(T-AOC), malondialdehyde(MDA), and myeloperoxidase(MPO) liver tissue. Hematoxylin-eosin staining was used to observe the morphological changes of liver tissue. The mRNA expression levels of lymphocyte antigen 6G(Ly6G), galectin 3(Mac-2), TNF-α, IL-1ß, COX-2, IL-6, IL-4, and IL-10 in liver tissue were determined by quantitative real-time polymerase chain reaction(PCR). Western blot was utilized to detect the protein expression levels of Ly6G, Mac-2, extracellular regulated protein kinases(ERK), phosphorylated extracellular regulated protein kinases(p-ERK), COX-2, inhibitor of nuclear factor κB protein α(IκBα), phosphorylated inhibitor of nuclear factor κB protein α(p-IκBα), and nuclear factor-κB subunit p65(NF-κB p65) in cytosol and nucleus in liver tissue. The results manifested that TSPJ dramatically reduced liver coefficient, serum ALT, AST, ROS, TNF-α, IL-1ß, IL-6, and COX-2 levels, LDH, MPO, and MDA contents in liver tissue, and mRNA expressions of TNF-α, IL-1ß, and IL-6 in APAP-induced liver injury mice. It prominently elevated serum IL-4 and IL-10 levels, GSH, CAT, SOD, and T-AOC contents, and mRNA expressions of IL-4 and IL-10 in liver tissue, improved the degree of liver pathological damage, and suppressed neutrophil infiltration and macrophage recruitment in liver tissue. In addition, TSPJ lessened the mRNA and protein expressions of neutrophil marker Ly6G, macrophage marker Mac-2, and COX-2 in liver tissue, protein expressions of p-ERK, p-IκBα, and NF-κB p65 in nuclear, and p-ERK/ERK and p-IκBα/p-IκBα ratios and hoisted protein expression of NF-κB p65 in cytosol. These results suggest that TSPJ has a significant protective effect on APAP-induced liver injury in mice, and it can alleviate APAP-induced oxidative damage and inflammatory response. Its mechanism may be related to suppressing ERK/NF-κB/COX-2 signaling pathway activation, thus inhibiting inflammatory cell infiltration, cytokine production, and liver cell damage.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Ciclo-Oxigenase 2 , Fígado , NF-kappa B , Panax , Saponinas , Transdução de Sinais , Animais , Acetaminofen/efeitos adversos , Acetaminofen/toxicidade , Camundongos , Panax/química , Masculino , Saponinas/farmacologia , Saponinas/administração & dosagem , NF-kappa B/genética , NF-kappa B/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/farmacologia
9.
Rocz Panstw Zakl Hig ; 75(1): 67-73, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38587091

RESUMO

Background: In recent years, a wider range of bakery products with a lower glycaemic response can be observed in the food industry. This contributes to the provision of a wider range of cereal bakery products. The gradual increase in the consumption of brown bread is significant, but despite this, white bread remains a part of the typical Western diet. Studies showed high intake of carbohydrates increase TG levels by enhancing hepatic synthesis of very low-density lipoprotein (VLDL) and decrease activity of lipoprotein lipase. White bread consumption has been therefore associated with an unhealthy lifestyle. Objective: The aim of this study was to assess the influence of the consumption of gluten bakery products on lipids and inflammatory parameters of the probands. Material and Methods: The monitored group consisted of 30 probands from the general population. The average age of the monitored group was 29.7 years. The intervention dose consisted of a different combination of several types of bakery products containing gluten (bread, pastries, soft pastries) within the individual weeks of consumption, while the intervention lasted 6 weeks. An intervention dose of 150 to 200 g per day was set for women and 200 to 250 g per day for men. Biochemical blood parameters were determined using a fully automatic Biolis 24i Premium blood serum biochemical analyzer, by end-point photometry method. We tested the differences between the biochemic parameters by one-factor analysis of variance (ANOVA) and compared them by Tuckey's Post Hoc Test. Results: The measurement of the lipid profile showed that the average levels of total cholesterol (TC) were above the reference value (<5.00 mmol. l-1) in each of the three performed measurements (P˂0.01). In the case of LDL, we found a similar trend in the development of lipoprotein values, while we positively evaluate a slight reduction of LDL in the measurement immediately after the intervention (P˂0.001). Certain changes during the study were also noted in HDL parameters with high statistical significance (P˂0.001). During the TG analysis, we found that probands have normal values(0.45-2.70 mmol. l-1). A reduction in average TG values was achieved in individual measurements, but without statistical significance (P˃0.05). In high sensitivity CRP (hs-CRP) parameters was achieved a bell curve of the development of average values, with a maximum measured immediately after the intervention. Changes in hs-CRP during the study were without statistical significance (P˃0.05). Conclusions: The measurement of the lipid profile showed that the average levels of TC, LDL and HDL, there were above the reference value in each of the three measurements performed. Through the analysis of TG, we found normal values and during the study there was a slight decrease. Furthermore, we found that intervention with bakery products containing gluten was associated with an increase in hs-CRP levels in our probands.


Assuntos
Proteína C-Reativa , Lipoproteínas , Masculino , Humanos , Feminino , Adulto , Triglicerídeos , HDL-Colesterol , LDL-Colesterol , Glutens
10.
Am J Transplant ; 23(5): 619-628, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36863480

RESUMO

The instant blood-mediated inflammatory reaction (IBMIR) is initiated by innate immune responses that cause substantial islet loss after intraportal transplantation. Thrombomodulin (TM) is a multifaceted innate immune modulator. In this study, we report the generation of a chimeric form of thrombomodulin with streptavidin (SA-TM) for transient display on the surface of islets modified with biotin to mitigate IBMIR. SA-TM protein expressed in insect cells showed the expected structural and functional features. SA-TM converted protein C into activated protein C, blocked phagocytosis of xenogeneic cells by mouse macrophages and inhibited neutrophil activation. SA-TM was effectively displayed on the surface of biotinylated islets without a negative effect on their viability or function. Islets engineered with SA-TM showed improved engraftment and established euglycemia in 83% of diabetic recipients when compared with 29% of recipients transplanted with SA-engineered islets as control in a syngeneic minimal mass intraportal transplantation model. Enhanced engraftment and function of SA-TM-engineered islets were associated with the inhibition of intragraft proinflammatory innate cellular and soluble mediators of IBMIR, such as macrophages, neutrophils, high-mobility group box 1, tissue factor, macrophage chemoattractant protein-1, interleukin-1ß, interleukin-6, tumor necrosis factor-α, interferon-γ. Transient display of SA-TM protein on the islet surface to modulate innate immune responses causing islet graft destruction has clinical potential for autologous and allogeneic islet transplantation.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Camundongos , Proteína C , Trombomodulina , Transplante Homólogo
11.
J Neurosci Res ; 101(10): 1538-1554, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37272728

RESUMO

Spinal cord injury (SCI) is a medical condition that results from severe trauma to the central nervous system; it imposes great psychological and economic burdens on affected patients and their families. The dynamic balance between reactive oxygen species (ROS) and antioxidants is essential for maintaining normal cellular physiological functions. As important intracellular signaling molecules, ROS regulate numerous physiological activities, including vascular reactivity and neuronal function. However, excessive ROS can cause damage to cellular macromolecules, including DNA, lipids, and proteins; this damage eventually leads to cell death. This review discusses the mechanisms of oxidative stress in SCI and describes some signaling pathways that regulate oxidative injury after injury, with the aim of providing guidance for the development of novel SCI treatment strategies.


Assuntos
Estresse Oxidativo , Traumatismos da Medula Espinal , Humanos , Espécies Reativas de Oxigênio , Traumatismos da Medula Espinal/terapia , Antioxidantes/uso terapêutico , Transdução de Sinais
12.
Rev Cardiovasc Med ; 24(11): 306, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39076455

RESUMO

Normal-functioning endothelium is crucial to maintaining vascular homeostasis and inhibiting the development and progression of cardiovascular diseases such as atherosclerosis. Exercise training has been proven effective in regulating arterial endothelial function, and the effect of this regulation is closely related to exercise intensity and the status of arterial endothelial function. With this review, we investigated the effects of the exercise of different intensity on the function of arterial endothelium and the underlying molecular biological mechanisms. Existing studies indicate that low-intensity exercise improves arterial endothelial function in individuals who manifest endothelial dysfunction relative to those with normal endothelial function. Most moderate-intensity exercise promotes endothelial function in individuals with both normal and impaired arterial endothelial function. Continuous high-intensity exercise can lead to impaired endothelial function, and high-intensity interval exercise can enhance both normal and impaired endothelial function. In addition, it was demonstrated that the production of vasomotor factors, oxidative stress, and inflammatory response is involved in the regulation of arterial endothelial function under different-intensity exercise interventions. We posit that this synthesis will then provide a theoretical basis for choosing the appropriate exercise intensity and optimize the prescription of clinical exercise for persons with normal and impaired endothelium.

13.
Cell Mol Neurobiol ; 43(8): 3885-3896, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37728817

RESUMO

Ischemic stroke (IS) is one of the leading causes of death and morbidity worldwide. As a novel form of cell death, ferroptosis is an important mechanism of ischemic stroke. Nuclear factor E2-related factor 2 (Nrf2) is the primary regulator of cellular antioxidant response. In addition to alleviating ischemic stroke nerve damage by reducing oxidative stress, Nrf2 regulates genes associated with ferroptosis, suggesting that Nrf2 may inhibit ferroptosis after ischemic stroke. However, the specific pathway of Nrf2 on ferroptosis in the field of ischemic stroke remains unclear. Therefore, this paper provides a concise overview of the mechanisms underlying ferroptosis, with a particular focus on the regulatory role of Nrf2. The discussion highlights the potential connections between Nrf2 and the mitigation of oxidative stress, regulation of iron metabolism, modulation of the interplay between ferroptosis and inflammation, as well as apoptosis. This paper focuses on the specific pathway of Nrf2 regulation of ferroptosis after ischemic stroke, providing scientific research ideas for further research on the treatment of ischemic stroke.


Assuntos
Ferroptose , AVC Isquêmico , Humanos , Fator 2 Relacionado a NF-E2 , Apoptose , Antioxidantes
14.
Fish Shellfish Immunol ; 141: 109051, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37689228

RESUMO

Herein, the effects of Agaricus bisporus Polysaccharides (ABPs) on anti-channel catfish virus (CCV) infections to promote their application in channel catfish culture were explored. Transcriptome and metabolome analyses were conducted on the spleen of a CCV-infected channel catfish model fed with or without ABPs. CCV infections upregulated many immune and apoptosis-related genes, such as IL-6, IFN-α3, IFN-γ1, IL-26, Casp3, Casp8, and IL-10, and activated specific immunity mediated by B cells. However, after adding ABPs, the expression of inflammation-related genes decreased in CCV-infected channel catfish, and the inflammatory inhibitors NLRC3 were upregulated. Meanwhile, the expression of apoptosis-related genes was reduced, indicating that ABPs can more rapidly and strongly enhance the immunity of channel catfish to resist viral infection. Moreover, the metabonomic analysis showed that channel catfish had a high energy requirement during CCV infection, and ABPs could enhance the immune function of channel catfish. In conclusion, ABPs can enhance the antiviral ability of channel catfish by enhancing immune response and regulating inflammation. Thus, these findings provided new insights into the antiviral response effects of ABPs, which might support their application in aquaculture.


Assuntos
Doenças dos Peixes , Ictaluridae , Ictalurivirus , Animais , Imunidade , Inflamação , Antivirais
15.
Support Care Cancer ; 31(4): 223, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939936

RESUMO

BACKGROUND: Radiotherapy-induced oral mucositis (RIOM) and chemotherapy-induced oral mucositis (CIOM) are common complications in cancer patients, leading to negative clinical manifestations, reduced quality of life, and unsatisfactory treatment outcomes. OBJECTIVE: The present study aimed to identify potential molecular mechanisms and candidate drugs by data mining. METHODS: We obtained a preliminary list of genes associated with RIOM and CIOM. In-depth information on these genes was explored by functional and enrichment analyses. Then, the drug-gene interaction database was used to determine the interaction of the final enriched gene list with known drugs and analyze the drug candidates. RESULTS AND CONCLUSION: This study identified 21 hub genes that may play an important role in RIOM and CIOM, respectively. Through our data mining, bioinformatics survey, and candidate drug selection, TNF, IL-6, and TLR9 could play an important role in disease progression and treatment. In addition, eight candidate drugs (olokizumab, chloroquine, hydroxychloroquine, adalimumab, etanercept, golimumab, infliximab, and thalidomide) were selected by the drug-gene interaction literature search additionally, as candidates for treating RIOM and CIOM.


Assuntos
Antineoplásicos , Mucosite , Neoplasias , Estomatite , Humanos , Mucosite/induzido quimicamente , Qualidade de Vida , Estomatite/induzido quimicamente , Estomatite/tratamento farmacológico , Neoplasias/tratamento farmacológico , Antineoplásicos/efeitos adversos
16.
BMC Ophthalmol ; 23(1): 372, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697295

RESUMO

Diabetic retinopathy is one of the most common and serious microvascular complications of diabetes mellitus. There are many factors leading to diabetic retinopathy, and its pathogenesis is still unclear. At present, there are still no effective measures for the early treatment of diabetic retinopathy, and the treatment options available when diabetes progresses to advanced stages are very limited, and the treatment results are often unsatisfactory. Detailed studies on the molecular mechanisms of diabetic retinopathy pathogenesis and the development of new therapeutic agents are of great importance. This review describes the potential pathogenesis of diabetic retinopathy for experimental studies and clinical practice.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/etiologia
17.
Metab Brain Dis ; 38(8): 2505-2520, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37486436

RESUMO

Intracerebral hemorrhage is a common neurological disease, and its pathological mechanism is complex. As the first recruited leukocyte subtype after intracerebral hemorrhage, neutrophils play an important role in tissue damage. In the past, it was considered that neutrophils performed their functions through phagocytosis, chemotaxis, and degranulation. In recent years, studies have found that neutrophils also have the function of secreting extracellular traps. Extracellular traps are fibrous structure composed of chromatin and granular proteins, which plays an important role in innate immunity. Studies have shown a large number of neutrophil extracellular traps in hematoma samples, plasma samples, and drainage samples after intracerebral hemorrhage. In this paper, we summarized the related mechanisms of neutrophil external traps and injury after intracerebral hemorrhage. Neutrophil extracellular traps are involved in the process of brain injury after intracerebral hemorrhage. The application of related inhibitors to inhibit the formation of neutrophil external traps or promote their dissolution can effectively alleviate the pathological damage caused by intracerebral hemorrhage.


Assuntos
Armadilhas Extracelulares , Humanos , Armadilhas Extracelulares/metabolismo , Neutrófilos , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo
18.
Ecotoxicol Environ Saf ; 265: 115536, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37797427

RESUMO

Chronic cadmium (Cd) exposure causes severe adverse health effects on the human body, especially the kidney tissue. Studies have demonstrated oxidative stress to be involved in renal pathological variations after exposure to Cd, but few effective treatments are available for the disease yet. Therefore, the present study was carried out to investigate the potential therapeutic intervention and its underlying molecular mechanisms of melatonin (MT), a natural antioxidant with multiple biological activities, against renal injury caused by Cd exposure in mice. C57BL/6 male mice (eight-week-old) were intragastrically administered with CdCl2, MT, or both for 30 days. Biochemical analysis showed that MT intervention significantly improved the SOD, GSH, and CAT activities while markedly decreasing the kidney MDA content of the mice exposed to Cd. Histological examination indicated that Cd exposure resulted in the atrophy of the renal glomerular, the degeneration and dilation of tubules, and the accumulation of fibrocytes. By contrast, MT administration effectively ameliorated the histological outcome of the injured kidney tissue. Moreover, administrating MT significantly inhibited proinflammatory cytokines TNF-α and iNOS expression in Cd-treated mice. Further, MT treatment markedly suppressed the expressions of renal fibrosis-related factors TGF-ß1, α-SMA, and collagen Ⅰ in the injured renal tissue and the accumulation and development of renal fibrosis. In addition, the administration of MT significantly reduced the expression of caspase-3 and cell apoptotic death in the kidney tissue of Cd-exposed mice. In all, the data showed that MT has a compelling therapeutic potential in alleviating the pathological variations of renal injury caused by Cd exposure.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Melatonina , Humanos , Masculino , Camundongos , Animais , Cádmio/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Melatonina/metabolismo , Camundongos Endogâmicos C57BL , Rim , Estresse Oxidativo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fibrose , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia
19.
J Assist Reprod Genet ; 40(7): 1623-1629, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37115332

RESUMO

The rapid outbreak of the coronavirus disease 2019 (COVID-19) pandemic has brought challenges to different medical fields, especially reproductive health. To date, most studies on the effects of COVID-19 on male reproduction have some limitations. In addition, there is little research on the mechanisms underlying by which severe acute respiratory syndrome coronavirus 2 infection affects semen quality. Here, we revealed the possible impact of COVID-19 on sperm parameters and the potential mechanisms. At present, it is still controversial whether COVID-19-induced fever adversely affects sperm parameters. Severe acute respiratory syndrome coronavirus 2 can induce up-regulation of pro-inflammatory cytokine, which leads to the destruction of blood-testis barrier and impairment of spermatogenesis. Moreover, severe viral infection of the respiratory system could induce systemic oxidative stress. Sperm are highly vulnerable to it due to their limited levels of antioxidant defense, unsophisticated DNA damage detection and repair mechanisms. Our review prompt medical staff and patients to consciously check the reproductive function of COVID-19 male patients. Moreover, opening our prospective beyond the direct infection could be the key to better understand the COVID-19 short and long-term effects and provide a new idea for future treatment of patients with reproductive function injury.


Assuntos
COVID-19 , Masculino , Humanos , COVID-19/complicações , Análise do Sêmen , Estudos Prospectivos , Sêmen , Espermatozoides
20.
J Liposome Res ; 33(2): 144-153, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35875973

RESUMO

OBJECTIVE: To investigate the preparation of novel nanoliposomes (Borneol Angelica Polysaccharide Liposomes, BAPL) for anti-cerebral ischaemia and verify its curative effects and mechanism. METHODS: By applying a uniform experiment design to investigate the fitting combination of BAPL. Encapsulation Efficiency Evaluation of BAPL Preparation; Particle Size and Surface Potential Evaluation of BAPL Biological activity; Cerebral ischaemia models of rats Evaluation of BAPL curative effects and mechanism. RESULTS: (1) The fitting combination of lecithin, Cholesterol, AP mass and the borneol mass was 60 mg, 60 mg, 45 mg and 5 mg. the highest encapsulation efficiency was 80.4%, the particle size was 179.1 nm, and the surface zeta potential was -17.2 mV. It conforms to the nano-material standards. (2) The results of animal experiments show that: In the BAPL group, the infarct volume of TTC staining was significantly decreased, and the expression levels of NF-κBp65, TLR-4, IL-8, IL-6, IL-1ß in brain tissue were significantly decreased, while the expression levels of ZO-1, ZO-2, IL-10 were significantly increased after cerebral ischaemia-reperfusion. CONCLUSION: BAPL is a novel nano and effective material for anti-cerebral ischaemia.


Assuntos
Isquemia Encefálica , Lipossomos , Ratos , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia , Polissacarídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA