RESUMO
Elevated serum alpha-fetoprotein (AFP) can be observed in liver cirrhosis and hepatocellular carcinoma (HCC). The glycosylation patterns of AFP have been shown to differentiate these conditions, with AFP glycoforms with core fucosylation (AFP-L3) serving as a malignancy risk predictor for HCC. We have developed a method to detect endogenously present AFP proteoforms and to quantify the relative abundance of AFP-L3 glycoforms (AFP-L3%) in serum samples. This method consists of immune enrichment of endogenous AFP, followed by liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) intact protein analysis of AFP. Data are available via ProteomeXchange with identifier PXD038606. Based on the AFP profiles in authentic patient serum samples, we have identified that the frequently observed AFP glycoforms without core fucosylation (AFP-L1) are G2S2 and G2S1, and common AFP-L3 glycoforms are G2FS1 and G2FS2. The intensities of glycoforms in the deconvoluted spectrum are used to quantify AFP-L3% in each sample. The method evaluation included reproducibility, specificity, dilution integrity, and comparison of AFP-L3% with a lectin-binding gel shift electrophoresis (GSE) assay. The AFP-L1 and AFP-L3 proteoforms were reproducibly identified in multiple patient serum samples, resulting in reproducible AFP-L3% quantification. There was considerable agreement between the developed LC-HRMS and commercial GSE methods when quantifying AFP-L3% (Pearson r = 0.63) with a proportional bias.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , alfa-Fetoproteínas/análise , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Biomarcadores Tumorais , Glicosilação , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Identification of hemoglobin (Hb) variants is of significant value in the clinical diagnosis of hemoglobinopathy. However, conventional methods for identification of Hb variants in clinical laboratories can be inadequate due to the lack of structural characterization. We describe the use of neutral-coating capillary electrophoresis coupled with high-resolution mass spectrometry (CE-HR-MS) to achieve high-performance top-down identification of Hb variants. METHODS: An Orbitrap Q-Exactive Plus mass spectrometer was coupled with an ECE-001 capillary electrophoresis (CE) unit through an EMASS-II ion source. A PS1 neutral-coating capillary was used for CE. Samples of red blood cells were lysed in water and diluted in 10 mM ammonium formate buffer for analysis. Deconvolution of raw mass spectrometry data was carried out to merge multiple charge states and isotopic peaks of an analyte to obtain its monoisotopic mass. RESULTS: The neutral-coating CE could baseline separate individual Hb subunits dissociated from intact Hb forms, and the HR-MS could achieve both intact-protein analysis and top-down analysis of analytes. A number of patient samples that contain Hb subunit variants were analyzed, and the variants were successfully identified using the CE-HR-MS method. CONCLUSIONS: The CE-HR-MS method has been demonstrated as a useful tool for top-down identification of Hb variants. With the ability to characterize the primary structures of Hb subunits, the CE-HR-MS method has significant advantages to complement or partially replace the conventional methods for the identification of Hb variants.
Assuntos
Eletroforese Capilar , Hemoglobinopatias , Humanos , Espectrometria de Massas/métodos , Eletroforese Capilar/métodos , Eritrócitos , Hemoglobinas/genéticaRESUMO
The ever-increasing complexity of biological samples to be analysed by mass spectrometry has led to the necessity of sophisticated separation techniques, including multidimensional separation. Despite a high degree of orthogonality, the coupling of liquid chromatography (LC) and capillary zone electrophoresis (CZE) has not gained notable attention in research. Here, we present a heart-cut nanoLC-CZE-ESI-MS platform to analyse intact proteins. NanoLC and CZE-MS are coupled using a four-port valve with an internal nanoliter loop. NanoLC and CZE-MS conditions were optimised independently to find ideal conditions for the combined setup. The valve setup enables an ideal transfer efficiency between the dimensions while maintaining good separation conditions in both dimensions. Due to the higher loadability, the nanoLC-CZE-MS setup exhibits a 280-fold increased concentration sensitivity compared to CZE-MS. The platform was used to characterise intact human alpha-1-acid glycoprotein (AGP), an extremely heterogeneous N-glycosylated protein. With the nanoLC-CZE-MS approach, 368 glycoforms can be assigned at a concentration of 50 µg/mL as opposed to the assignment of only 186 glycoforms from 1 mg/mL by CZE-MS. Additionally, we demonstrate that glycosylation profiling is accessible for dried blood spot analysis (25 µg/mL AGP spiked), indicating the general applicability of our setup to biological matrices. The combination of high sensitivity and orthogonal selectivity in both dimensions makes the here-presented nanoLC-CZE-MS approach capable of detailed characterisation of intact proteins and their proteoforms from complex biological samples and in physiologically relevant concentrations.
Assuntos
Cromatografia Líquida/métodos , Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Nanotecnologia , Orosomucoide/análise , Glicosilação , Humanos , Limite de Detecção , Reprodutibilidade dos TestesRESUMO
Bispecific monoclonal antibodies (BsAbs) are receiving great attention due to their extensive benefits as biopharmaceuticals and their involvement in IgG4 mediated autoimmune diseases. While the production of BsAbs is getting more accessible, their analytical characterization remains challenging. We explored the potential of sheathless CE-MS for monitoring exchange efficiency and stability of in-house produced bispecific antibodies. Two IgG4 bispecific antibodies with different molecular characteristics were prepared using controlled Fragment antigen binding (Fab)-arm exchange. Separation of BsAbs from their parent monospecific antibodies was achieved using a polyethyleniimine (PEI)-coated capillary and acidic background electrolytes permitting reliable assessment of the exchange efficiency. This was especially valuable for a Fab-glycosylated BsAb where the high glycan heterogeneity resulted in an overlap of masses with the monospecific parent antibody, hindering their discrimination by MS only. The method showed also good capabilities to monitor the stability of the generated BsAbs under different storage conditions. The levels of degradation products were different for the studied antibodies indicating pronounced differences in stability. Overall, the proposed method represents a useful analytical tool for exchange efficiency and stability studies of bispecific antibodies.
Assuntos
Anticorpos Biespecíficos/análise , Anticorpos Biespecíficos/química , Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Anticorpos Biespecíficos/isolamento & purificação , Anticorpos Biespecíficos/metabolismo , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/análise , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/metabolismo , Polissacarídeos/química , Estabilidade ProteicaRESUMO
Trifluoroacetic acid (TFA) is commonly used as mobile phase additive to improve retention and peak shape characteristics in hydrophilic interaction liquid chromatography (HILIC) of intact proteins. However, when using electrospray ionization-mass spectrometry (ESI-MS) detection, TFA may cause ionization suppression and adduct formation, leading to reduced analyte sensitivity. To address this, we describe a membrane-based microfluidic chip with multiple parallel channels for the selective post-column removal of TFA anions from HILIC. An anion-exchange membrane was used to physically separate the column effluent from a stripper flow solution comprising acetonitrile, formic acid, and propionic acid. The exchange of ions allowed the post-column removal of TFA used during HILIC separation of model proteins. The multichannel design of the device allows the use of flow rates of 0.2 mL/min without the need for a flow splitter, using mobile phases containing 0.1% TFA (13 mM). Separation selectivity and efficiency were maintained (with minor band broadening effects) while increasing the signal intensity and peak areas by improving ionization and reducing TFA adduct formation.
Assuntos
Dispositivos Lab-On-A-Chip , Proteínas/análise , Ácido Trifluoracético/isolamento & purificação , Animais , Bovinos , Galinhas , Cromatografia Líquida , Desenho de Equipamento , Cavalos , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
This chapter aims to explore various parameters involved in achieving high-end capillary electrophoresis hyphenated to mass spectrometry (CE-MS) analysis of proteins, peptides, and their posttranslational modifications. The structure of the topics discussed in this book chapter is conveniently mapped on the scheme of the CE-MS system itself, starting from sample preconcentration and injection techniques and finishing with mass analyzer considerations. After going through the technical considerations, a variety of relevant applications for this analytical approach are presented, including posttranslational modifications analysis, clinical biomarker discovery, and its growing use in the biotechnological industry.
Assuntos
Eletroforese Capilar , Proteômica , Espectrometria de Massas , Peptídeos , ProteínasRESUMO
Top-down mass spectrometry (MS)-based proteomics enable a comprehensive analysis of proteoforms with molecular specificity to achieve a proteome-wide understanding of protein functions. However, the lack of a universal software for top-down proteomics is becoming increasingly recognized as a major barrier, especially for newcomers. Here, we have developed MASH Explorer, a universal, comprehensive, and user-friendly software environment for top-down proteomics. MASH Explorer integrates multiple spectral deconvolution and database search algorithms into a single, universal platform which can process top-down proteomics data from various vendor formats, for the first time. It addresses the urgent need in the rapidly growing top-down proteomics community and is freely available to all users worldwide. With the critical need and tremendous support from the community, we envision that this MASH Explorer software package will play an integral role in advancing top-down proteomics to realize its full potential for biomedical research.
Assuntos
Proteômica , Software , Algoritmos , Espectrometria de Massas , ProteomaRESUMO
Capillary zone electrophoresis-electrospray ionization-mass spectrometry (CZE-ESI-MS) is attracting renewed attention for proteomic and metabolomic analysis. An important reason for this interest is the maturation and commercialization of interfaces for coupling CZE with ESI-MS. One of these interfaces is an electro-kinetically pumped sheath flow nanospray interface developed by the Dovichi group, in which a very low sheath flow is generated based on electroosmosis within a glass emitter. CMP Scientific has commercialized this interface as the EMASS-II ion source. In this work, we compared the performance of the EMASS-II ion source with our in-house system. The performance of the systems is equivalent. We also coupled the EMASS-II ion source with a PrinCE Next|480 capillary electrophoresis autosampler and an Orbitrap mass spectrometer, and analyzed this system's performance in terms of sensitivity, reproducibility, and separation performance for separation of tryptic digests, intact proteins, and amino acids. The system produced reproducible analysis of BSA digest; the RSDs of peptide intensity and migration time across 24 runs were less than 20 and 6%, respectively. The system produced a linear calibration curve of intensity across a 30-fold range of tryptic digest concentration. The combination of a commercial autosampler and electrospray interface efficiently separated amino acids, peptides, and intact proteins, and only required 5 µL of sample for analysis. Graphical Abstract The commercial and locally constructed versions of the interface provide similar numbers of protein identifications from a Xenopus laevis fertilized egg digest.
Assuntos
Automação , Eletroforese Capilar/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Aminoácidos/análise , Calibragem , Cinética , Peptídeos/química , Reprodutibilidade dos TestesRESUMO
A capillary electrophoresis-mass spectrometry (CE-MS) method was developed for the characterization and integrity assessment of the Mycobacterium tuberculosis (MTB) antigens TB10.4 and Ag85B and their chemically produced glycoconjugates, which are glycovaccine candidates against tuberculosis (TB). In order to prevent protein adsorption to the inner capillary wall and to achieve efficient separation of the antigen proteoforms, a polyionic multilayer coating of polybrene-dextran sulfate-polybrene (PB-DS-PB) was used in combination with 1.5 M acetic acid as background electrolyte (BGE). Coupling of CE to high-resolution time-of-flight MS was achieved by a coaxial interface employing a sheath liquid of isopropanol-water (50:50, v/v) containing 0.1 % formic acid. The MTB antigens were exposed to experimental conditions used for chemical glycosylation (but no activated saccharide was added) in order to investigate their stability during glycovaccine production. CE-MS analysis revealed the presence of several closely related degradation products, including truncated, oxidized and conformational variants, which were assigned by accurate mass. Analysis of synthesized mannose conjugates of TB10.4 and Ag85B allowed the determination of the glycoform composition of the neo-glycoproteins next to the characterization of degradation products which were shown to be partly glycoconjugated. Moreover, the selectivity of CE-MS allowed specific detection of deamidated species (protein mass change of 1.0 Da only), indicating that chemical glycosylation increased susceptibility to deamidation. Overall, the results show that CE-MS represents a useful analytical tool for the detailed characterization and optimization of neo-glycoconjugate products. Graphical Abstract Flowchart illustrating Mycobacterium tuberculosis (MTB) antigen glycosylation, glycoconjugate variant and degradation product separation by capillary electrophoresis (CE) and their characterization by intact mass spectrometry (MS).
Assuntos
Aciltransferases/química , Antígenos de Bactérias/química , Proteínas de Bactérias/química , Eletroforese Capilar/métodos , Glicoconjugados/química , Mycobacterium tuberculosis/química , Vacinas contra a Tuberculose/química , Aciltransferases/imunologia , Adsorção , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Glicoconjugados/imunologia , Glicosilação , Brometo de Hexadimetrina/química , Humanos , Espectrometria de Massas/métodos , Modelos Moleculares , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Tuberculose/prevenção & controle , Vacinas contra a Tuberculose/imunologiaRESUMO
Bacterial pathogens can cause a broad range of infections with detrimental effects on health. Vaccine development is essential as multi-drug resistance in bacterial infections is a rising concern. Recombinantly produced proteins carrying O-antigen glycosylation are promising glycoconjugate vaccine candidates to prevent bacterial infections. However, methods for their comprehensive structural characterization are lacking. Here, we present a bottom-up approach for their site-specific characterization, detecting N-glycopeptides by nano reversed-phase liquid chromatography-mass spectrometry (RP-LC-MS). Glycopeptide analyses revealed information on partial site-occupancy and site-specific glycosylation heterogeneity and helped corroborate the polysaccharide structures and their modifications. Bottom-up analysis was complemented by intact glycoprotein analysis using nano RP-LC-MS allowing the fast visualization of the polysaccharide distribution in the intact glycoconjugate. At the glycopeptide level, the model glycoconjugates analyzed showed different repeat unit (RU) distributions that spanned from 1 to 21 RUs attached to each of the different glycosylation sites. Interestingly, the intact glycoprotein analysis displayed a RU distribution ranging from 1 to 28 RUs, showing the predominant species when the different glycopeptide distributions are combined in the intact glycoconjugate. The complete workflow based on LC-MS measurements allows detailed and comprehensive analysis of the glycosylation state of glycoconjugate vaccines.
Assuntos
Vacinas Bacterianas , Glicoconjugados , Glicopeptídeos , Glicoconjugados/química , Glicoconjugados/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/química , Glicosilação , Glicopeptídeos/química , Glicopeptídeos/análise , Espectrometria de Massas/métodos , Vacinas Conjugadas/química , Vacinas Conjugadas/imunologia , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodosRESUMO
Detecting exosomal markers using laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS) is a novel approach for examining liquid biopsies of non-small cell lung cancer (NSCLC) samples. However, LDI-TOF MS is limited by low sensitivity and poor reproducibility when analyzing intact proteins directly. In this report, gold nanoparticles/cellulose nanocrystals (AuNPs/CNC) is introduced as the matrix for direct analysis of intact proteins in NSCLC serum exosomes. AuNPs/CNC with "dual dispersion" effects dispersed and stabilized AuNPs and improved ion inhibition effects caused by protein aggregation. These features increased the signal-to-noise ratio of [M+H]+ peaks by two orders of magnitude and lowered the detection limit of intact proteins to 0.01 mg mL-1. The coefficient of variation with or without AuNPs/CNC is measured as 10.2% and 32.5%, respectively. The excellent reproducibility yielded a linear relationship (y = 15.41x - 7.983, R2 = 0.989) over the protein concentration range of 0.01 to 20 mg mL-1. Finally, AuNPs/CNC-assisted LDI-TOF MS provides clinically relevant fingerprint information of exosomal proteins in NSCLC serum, and characteristic proteins S100 calcium-binding protein A10, Urokinase plasminogen activator surface receptor, Plasma protease C1 inhibitor, Tyrosine-protein kinase Fgr and Mannose-binding lectin associated serine protease 2 represented excellent predictive biomarkers of NSCLC risk.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Exossomos , Neoplasias Pulmonares , Nanopartículas Metálicas , Humanos , Ouro/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , LasersRESUMO
Detection of ß-2 transferrin in body fluid could help identify cerebrospinal fluid (CSF) leakage. The most common method, isoelectric focusing, was qualitative and could not provide detailed N-glycan structural information. We presented an alternative method using top-down liquid chromatography-time of flight mass spectrometry (LC-TOF MS). After immunoaffinity enrichment, fluid transferrin glycoforms were analyzed by a high-resolution LC-TOF MS, and the N-glycan structure predicted by accurate mass. The performance was validated with imprecision at 15%, with a cut-off of 0.04 for ß-2 transferrin to tetrasialotransferrin ratio to confirm the presence of CSF in fluid samples.
RESUMO
BACKGROUND: The non-enzymatic glycation of proteins and their advanced glycation end products (AGEs) are associated with protein transformations such as in the development of diseases and biopharmaceutical storage. The characterization of heavily glycated proteins at the intact level is of high interest as it allows to describe co-occurring protein modifications. However, the high heterogeneity of glycated protein makes this process challenging, and novel methods are required to accomplish this. RESULTS: In this study, we investigated two novel LC-HRMS methods to study glycated reference proteins at the intact protein level: low-flow hydrophilic-interaction liquid chromatography (HILIC) and native size-exclusion chromatography (SEC). Model proteins were exposed to conditions that favored extensive glycation and the formation of AGEs. After glycation, complicated MS spectra were observed, along with a sharply reduced signal response, possibly due to protein denaturation and the formation of aggregates. When using HILIC-MS, the glycated forms of the proteins could be resolved based on the number of reducing monosaccharides. Moreover, some positional glycated isomers were separated. The SEC-MS method under non-denaturing conditions provided insights into glycated aggregates but offered only a limited separation of glycated species based on molar mass. Overall, more than 25 different types of species were observed in both methods, differing in molar mass by 14-162 Da. 19 of these species have not been previously reported. SIGNIFICANCE: The proposed strategies show great potential to characterize highly glycated intact proteins from native and denaturing perspectives and provide new opportunities for fast clinical diagnoses and investigating glycation-related diseases.
Assuntos
Processamento de Proteína Pós-Traducional , Proteínas , Espectrometria de Massas/métodos , Cromatografia Líquida , Cromatografia em GelRESUMO
Asthma is a Th2-mediated disease that involves Th2 cell and eosinophil migration into the bronchial mucosa which is dependent upon the expression of a specific set of chemokines within the lung. Among them, CCL18 seems to play a key role because of its preferential expression in the lung, and its up-regulation by Th2 cytokines. Here, we show that the optimal naïve T cell and basophil chemotaxis, and basophil histamine release induced by rhCCL18 occurred at a 100 time lower concentration with CHO-derived rhCCL18 than with E. coli-derived rhCCL18. FT-ICR mass spectrometry of the intact chemokines showed that the rhCCL18 produced by CHO cells contained the 2 disulfide bonds Cys10-Cys34 and Cys11-Cys50, in clear contrast to the rhCCL18 derived from E. coli where the Cys10-Cys34 bond was absent. We found that reduction of the Cys10-Cys34 of the CHO-derived rhCCL18 resulted in a shift of its activity, reaching the same level as the E. coli-derived rhCCL18. These results demonstrate that the Cys10-Cys34 disulfide bond is involved in the function of CCL18.
Assuntos
Asma/metabolismo , Quimiocinas CC/metabolismo , Cisteína/química , Células Th2/imunologia , Animais , Asma/imunologia , Basófilos/imunologia , Basófilos/metabolismo , Células CHO , Linhagem Celular , Movimento Celular/imunologia , Quimiocinas CC/química , Quimiocinas CC/genética , Cricetulus , Cisteína/genética , Eosinófilos/metabolismo , Histamina/imunologia , Liberação de Histamina , Humanos , Pulmão/imunologiaRESUMO
OBJECTIVE: The precise and accurate quantification of human growth hormone (GH) in plasma/ serum is crucial for the diagnosis and treatment of diseases like GH deficiency or acromegaly. However, the ligand-binding assays (LBAs) currently used for routine testing show considerable methodological variability. Here, we present a complementary, combined top-down and bottom-up LC-MS-based method to quantify (intact) GH in plasma and serum, which concurrently provides a basis for a MS-based analysis of GH in doping controls. DESIGN: Extraction of GH from plasma/ serum was accomplished by protein precipitation, followed by an immunocapture step using protein A-coupled magnetic beads and a polyclonal anti-GH antibody. The intact protein was subsequently analyzed top-down on a 2D-LC-HRMS/MS system. In addition, sample extracts were digested with trypsin and analyzed for signal peptides corresponding to 'total', 22 kDa and 20 kDa GH (bottom-up). Both assays were validated according to current guidelines and compared to the GH isoform differential immunoassay used in routine doping control analysis. GH concentrations in serum samples of healthy adults, patients with acromegaly, and in samples obtained after administration of recombinant GH were analyzed as proof-of-principle. RESULTS: The intact monomeric 22 kDa isoform of GH was selectively quantified in a representative working range of 0.5 to 10 ng/ml by top-down LC-HRMS/MS. Subsequent bottom-up analysis provided additional data on 'total' and 20 kDa GH. Top-down and bottom-up assay results for the 22 kDa isoform correlated well with the corresponding immunoassay results (R2 > 0.95). For a possible application of the method in an anti-doping context, the ratio between 22 kDa and 'total' GH was evaluated, indicating differences between the various donor groups, but only with limited significance. CONCLUSION: The top-down and bottom-up LC-HRMS/MS method developed here presents a valuable tool for the quantification of GH in plasma/ serum complementary to established LBAs used at present in clinical measurements. Albeit the examination of the GH isoform proportions by the LC-MS method does not yet allow for the assessment of GH abuse, the obtained findings provide an important basis to enable LC-MS-based GH analysis of doping control samples in the future.
Assuntos
Acromegalia , Dopagem Esportivo , Hormônio do Crescimento Humano , Adulto , Humanos , Acromegalia/diagnóstico , Hormônio do Crescimento , Isoformas de ProteínasRESUMO
Protein aggregation can induce low sensitivity and poor repeatability of matrix-assisted laser desorption/ionization time-of-fight mass spectrometry (MALDI-TOF MS) analysis for intact protein. Herein, we introduced a strategy to decrease protein aggregation in the sample solution by using cellulose nanocrystal (CNC). The results indicated that protein granule size was effectively reduced by adding CNC to the sample solution. Through MALDI-TOF MS analysis, the signal-to-noise ratio of [M + H]+ peak increased 2-fold, and the detection of limit was <10 µg/mL for intact protein. The CNC also contributed to excellent point-to-point repeatability for MALDI-TOF MS analysis with the coefficient of variation (CV) of 10.0% with CNC vs 48.9% without CNC in Hb solution. Also, the repeatability of Pueraria protein ion signals was improved by using CNC, and the CV with and without CNC was 16.1% and 39.6%, respectively. Moreover, protein ion intensity exhibited great linear relationship (y = 53.04x - 3.474, R2 = 0.9936) with the concentrations (ranging from 0.1 to 10 mg/mL) when using CNC. Further investigation revealed that m/z 19,000 and m/z 21,000 peaks of Pueraria could be used for the adulteration analysis and post-translational modification research, demonstrating our method has the potential for broad applications.
Assuntos
Nanopartículas , Pueraria , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Agregados Proteicos , Celulose , ProteínasRESUMO
Mass spectrometry (MS) is uniquely powerful for measuring the mass of intact proteins and other biomolecules. New applications have expanded intact protein analysis into biopharmaceuticals, native MS, and top-down proteomics, all of which have driven the need for more automated data-processing pipelines. However, key metrics in the field are often not precisely defined. For example, there are different views on how to calculate uncertainty from spectra. This Critical Insight will explore the different definitions of mass, error, and uncertainty. It will discuss situations where different definitions may be more suitable and provide recommendations for best practices. Targeting both beginners and experts, the goal of the discussion is to provide a common foundation of terminology, enhance statistical rigor, and improve automation of data analysis.
Assuntos
Produtos Biológicos , Proteômica , Espectrometria de Massas/métodos , Proteínas/química , Proteômica/métodos , IncertezaRESUMO
Supercharging reagents assist protein ionization by producing higher charge states and increasing signal intensities, thus improving sensitivity. Described here is an approach to employ a dual-spray ionization source with DMSO as a supercharging reagent to expand in-source supercharging. Under denaturing conditions, dual-source supercharging enhances ionization up to an order of magnitude for proteins of various properties and sizes, but the effect is not uniform. Efficient mixing of solutions from two nebulizing plumes was observed, which allowed sufficient transfer of supercharging molecules to a protein. The described method and proposed mechanism require at least 2.5% of DMSO to produce visible enhancement.
RESUMO
The availability of rapid methods that can accurately define and quantify biopharmaceutical critical quality attributes has been the driving force for the implementation of mass spectrometry techniques throughout the development and production pipeline. While the multi-attribute method (MAM) has become widely adopted and developed, some critical information cannot be monitored through this workflow, such as correct chain assembly or the presence of fragments or aggregates. In this study, we combine intact protein mass spectrometry and the multi-attribute method to create an intact multi-attribute method - or iMAM. Using a CFR Part 11 compliant data system, we evaluated the proposed workflow using several intact analysis approaches under both denaturing and native conditions. As for the standard MAM approach, iMAM involves the generation of an intact protein target workbook which is created from the analysis of a reference sample, with ID confirmation obtained from deconvolution results and chromatographic retention times, while quantitation is obtained from the intensities of the m/z of most abundant charge states. The created processing method is then applied to the analysis of subsequent samples. New peak detection can also be performed, monitoring the number of components revealed after each analysis. The entire data process can be automated to generate a report within the chromatography data system software. Three case studies presented herein show the potential of iMAM for implementation at different stages of the production pipeline, from product development to stability testing and batch release.
Assuntos
Anticorpos Monoclonais , Antineoplásicos Imunológicos , Anticorpos Monoclonais/química , Cromatografia Líquida/métodos , Clero , Humanos , Espectrometria de Massas/métodosRESUMO
Mass deconvolution, the determination of proteoform precursor and fragment masses, is crucial for top-down proteomics data analysis. Here we describe the detailed procedure to run FLASHDeconv, an ultrafast, high-quality mass deconvolution tool. Both spectrum- and feature-level deconvolution results are obtainable in various output formats by FLASHDeconv. FLASHDeconv is runnable in different environments such as the command line and OpenMS workflows.