Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(12): 2990-3005.e17, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38772370

RESUMO

Integrins link the extracellular environment to the actin cytoskeleton in cell migration and adhesiveness. Rapid coordination between events outside and inside the cell is essential. Single-molecule fluorescence dynamics show that ligand binding to the bent-closed integrin conformation, which predominates on cell surfaces, is followed within milliseconds by two concerted changes, leg extension and headpiece opening, to give the high-affinity integrin conformation. The extended-closed integrin conformation is not an intermediate but can be directly accessed from the extended-open conformation and provides a pathway for ligand dissociation. In contrast to ligand, talin, which links the integrin ß-subunit cytoplasmic domain to the actin cytoskeleton, modestly stabilizes but does not induce extension or opening. Integrin activation is thus initiated by outside-in signaling and followed by inside-out signaling. Our results further imply that talin binding is insufficient for inside-out integrin activation and that tensile force transmission through the ligand-integrin-talin-actin cytoskeleton complex is required.


Assuntos
Integrinas , Talina , Animais , Humanos , Camundongos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Adesão Celular , Células CHO , Cricetulus , Integrinas/metabolismo , Integrinas/química , Ligantes , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Imagem Individual de Molécula , Talina/metabolismo , Talina/química
2.
Mol Cell ; 83(11): 1903-1920.e12, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267907

RESUMO

Exercise benefits the human body in many ways. Irisin is secreted by muscle, increased with exercise, and conveys physiological benefits, including improved cognition and resistance to neurodegeneration. Irisin acts via αV integrins; however, a mechanistic understanding of how small polypeptides like irisin can signal through integrins is poorly understood. Using mass spectrometry and cryo-EM, we demonstrate that the extracellular heat shock protein 90α (eHsp90α) is secreted by muscle with exercise and activates integrin αVß5. This allows for high-affinity irisin binding and signaling through an Hsp90α/αV/ß5 complex. By including hydrogen/deuterium exchange data, we generate and experimentally validate a 2.98 Å RMSD irisin/αVß5 complex docking model. Irisin binds very tightly to an alternative interface on αVß5 distinct from that used by known ligands. These data elucidate a non-canonical mechanism by which a small polypeptide hormone like irisin can function through an integrin receptor.


Assuntos
Comunicação Celular , Fibronectinas , Humanos , Fibronectinas/metabolismo , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 121(34): e2401251121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39136993

RESUMO

Integrin activation resulting in enhanced adhesion to the extracellular matrix plays a key role in fundamental cellular processes. Although integrin activation has been extensively studied in circulating cells such as leukocytes and platelets, much less is known about the regulation and functional impact of integrin activation in adherent cells such as smooth muscle. Here, we show that two different asthmagenic cytokines, IL-13 and IL-17A, activate type I and IL-17 cytokine receptor families, respectively, to enhance adhesion of airway smooth muscle. These cytokines also induce activation of ß1 integrins detected by the conformation-specific antibody HUTS-4. Moreover, HUTS-4 binding is increased in the smooth muscle of patients with asthma compared to nonsmokers without lung disease, suggesting a disease-relevant role for integrin activation in smooth muscle. Indeed, integrin activation induced by the ß1-activating antibody TS2/16, the divalent cation manganese, or the synthetic peptide ß1-CHAMP that forces an extended-open integrin conformation dramatically enhances force transmission in smooth muscle cells and airway rings even in the absence of cytokines. We demonstrate that cytokine-induced activation of ß1 integrins is regulated by a common pathway of NF-κB-mediated induction of RhoA and its effector Rho kinase, which in turn stimulates PIP5K1γ-mediated synthesis of PIP2 at focal adhesions, resulting in ß1 integrin activation. Taken together, these data identify a pathway by which type I and IL-17 cytokine receptor family stimulation induces functionally relevant ß1 integrin activation in adherent smooth muscle and help to explain the exaggerated force transmission that characterizes chronic airway diseases such as asthma.


Assuntos
Asma , Integrina beta1 , Interleucina-13 , Interleucina-17 , Músculo Liso , NF-kappa B , Quinases Associadas a rho , Humanos , Integrina beta1/metabolismo , Interleucina-17/metabolismo , Músculo Liso/metabolismo , NF-kappa B/metabolismo , Quinases Associadas a rho/metabolismo , Interleucina-13/metabolismo , Asma/metabolismo , Transdução de Sinais , Adesão Celular , Miócitos de Músculo Liso/metabolismo , Animais
4.
J Cell Sci ; 134(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34435628

RESUMO

Selectins and integrins are key players in the adhesion and signaling cascade that recruits leukocytes to inflamed tissues. Selectin binding induces ß2 integrin binding to slow leukocyte rolling. Here, a micropipette was used to characterize neutrophil adhesion to E-selectin and intercellular adhesion molecule-1 (ICAM-1) at room temperature. The time-dependent adhesion frequency displayed two-stage kinetics, with an E-selectin-mediated fast increase to a low plateau followed by a slow increase to a high plateau mediated by intermediate-affinity binding of integrin αLß2 to ICAM-1. The αLß2 activation required more than 5 s contact to E-selectin and spleen tyrosine kinase (Syk) activity. A multi-zone channel was used to analyze αLß2 activation by P-selectin in separate zones of receptors or antibodies, finding an inverse relationship between the rolling velocity on ICAM-1 and P-selectin dose, and a P-selectin dose-dependent change from bent to extended conformations with a closed headpiece that was faster at 37°C than at room temperature. Activation of αLß2 exhibited different levels of cooperativity and persistent times depending on the strength and duration of selectin stimulation. These results define the precise timing and kinetics of intermediate activation of αLß2 by E- and P-selectins.


Assuntos
Selectina E , Antígeno-1 Associado à Função Linfocitária , Antígenos CD18 , Adesão Celular , Selectina E/genética , Selectina E/metabolismo , Molécula 1 de Adesão Intercelular , Cinética , Neutrófilos/metabolismo , Selectina-P
5.
Eur J Immunol ; 52(5): 730-736, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35133647

RESUMO

Conformational change of the ß2 integrin lymphocyte function-associated antigen 1 (LFA-1) is an early marker of T cell activation. A protocol using the mAb clone m24 recognizing the active, extended high-affinity conformation has been previously described for the assessment of functional CD4+ and CD8+ T cells in response to MHC-peptide stimulation. We investigated the applicability of the m24 mAb to detect the activation of γδ T cells in response to different soluble and immobilized stimuli. m24 mAb staining was associated with the expression of cytokines and was detectable as early as 10 min after stimulation, but with different kinetics depending on the nature of the stimulus. Hence, we conclude that this assay is suitable for the detection of functional γδ T cells and allows the assessment of activation more rapidly than alternative methods such as cytokine detection. Intracellular staining, protein trafficking inhibitors, or prior knowledge of the stimulating moiety recognized are no longer required for monitoring γδ T cell activation.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T , Linfócitos T CD8-Positivos , Citocinas/metabolismo , Integrinas/metabolismo , Ativação Linfocitária
6.
Proc Natl Acad Sci U S A ; 116(25): 12295-12300, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31160446

RESUMO

Lateral transmembrane (TM) helix-helix interactions between single-span membrane proteins play an important role in the assembly and signaling of many cell-surface receptors. Often, these helices contain two highly conserved yet distinct interaction motifs, arranged such that the motifs cannot be engaged simultaneously. However, there is sparse experimental evidence that dual-engagement mechanisms play a role in biological signaling. Here, we investigate the function of the two conserved interaction motifs in the TM domain of the integrin ß3-subunit. The first motif uses reciprocating "large-large-small" amino acid packing to mediate the interaction of the ß3 and αIIb TM domains and maintain the inactive resting conformation of the platelet integrin αIIbß3. The second motif, S-x3-A-x3-I, is a variant of the classical "G-x3-G" motif. Using site-directed mutagenesis, optical trap-based force spectroscopy, and molecular modeling, we show that S-x3-A-x3-I does not engage αIIb but rather mediates the interaction of the ß3 TM domain with the TM domain of the αv-subunit of the integrin αvß3. Like αIIbß3, αvß3 on circulating platelets is inactive, and in the absence of platelet stimulation is unable to interact with components of the subendothelial matrix. However, disrupting any residue in the ß3 S-x3-A-x3-I motif by site-directed mutations is sufficient to induce αvß3 binding to the αvß3 ligand osteopontin and to the monoclonal antibody WOW-1. Thus, the ß3-integrin TM domain is able to engage in two mutually exclusive interactions that produce alternate α-subunit pairing, creating two integrins with distinct biological functions.


Assuntos
Integrina alfaVbeta3/metabolismo , Proteínas de Membrana/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Animais , Plaquetas/metabolismo , Células CHO , Membrana Celular/metabolismo , Sequência Conservada , Cricetulus , Humanos , Integrina alfaVbeta3/genética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Domínios Proteicos
7.
Am J Physiol Cell Physiol ; 321(2): C308-C316, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34133240

RESUMO

Leukocyte recruitment is a critical step in the pathogenesis of inflammatory and immunological responses. Cell adhesion molecules (CAMs) are involved in controlling cell movements and the recruitment process, and the integrin family of CAMs plays a key role. During cell movement, integrin function is dynamically and precisely regulated. However, this balance might be broken under pathological conditions. Thus, the functional regulation and molecular mechanisms of integrins related to diseases are often a focus of research. Integrin ß2 is one of the most commonly expressed integrins in leukocytes that mediate leukocyte adhesion and migration, and it plays an important role in immune responses and inflammation. In this review, we focus on specific functions of integrin ß2 in leukocyte recruitment, the conformational changes and signal transduction of integrin ß2 activation, the similarities between murine and human factors, and how new insights into these processes can inform future therapies for inflammation and immune diseases.


Assuntos
Movimento Celular/fisiologia , Integrinas/metabolismo , Leucócitos/metabolismo , Transdução de Sinais/fisiologia , Animais , Adesão Celular/fisiologia , Humanos , Inflamação/metabolismo , Leucócitos/imunologia
8.
Biochem Biophys Res Commun ; 536: 14-19, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360093

RESUMO

Glioblastoma multiforme (GBM), the most common brain tumor in adults, has an extremely poor prognosis, which is attributed to the aggressive properties of GBM cells, such as dysregulated proliferation and disseminative migration. We recently found that peptide TNIIIA2, derived from tenascin-C (TNC), which is highly expressed in GBM, contributes to the acquisition of these aggressive properties through ß1-integrin activation. In general, cancer cells often acquire an additional malignant property that confers resistance to apoptosis due to loss of adhesion to the extracellular matrix, termed anoikis resistance. Our present results show that regulation of ß1-integrin activation also plays a key role in both the development and loss of anoikis resistance in GBM cells. Despite being derived from a GBM with an extremely poor prognosis, the human GBM cell line T98G was susceptible to anoikis but became anoikis resistant via treatment with peptide TNIIIA2, which is able to activate ß1-integrin. The TNIIIA2-conferred anoikis resistance of T98G cells was disrupted by further addition of peptide FNIII14, which has the ability to inactivate ß1-integrin. Moreover, anchorage-independent survival of GBM cells in suspension culture was abrogated by peptide FNIII14, but not by RGD and CS-1 peptides, which are antagonistic for integrins α5ß1, αvß3, and α4ß1. These results suggest that GBM cells develop anoikis resistance through activation of ß1-integrin by TNC-derived peptide TNIIIA2, which is abundantly released into the tumor microenvironment of GBM. Inactivation of ß1-integrin may provide a promising strategy to overcome the apoptosis resistance of cancer cells, including GBM.


Assuntos
Anoikis , Integrina beta1/metabolismo , Peptídeos/farmacologia , Tenascina/química , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fibronectinas/química , Humanos
9.
Proc Natl Acad Sci U S A ; 115(41): 10339-10344, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30254158

RESUMO

Multicellular organisms have well-defined, tightly regulated mechanisms for cell adhesion. Heterodimeric αß integrin receptors play central roles in this function and regulate processes for normal cell functions, including signaling, cell migration, and development, binding to the extracellular matrix, and senescence. They are involved in hemostasis and the immune response, participate in leukocyte function, and have biological implications in angiogenesis and cancer. Proper control of integrin activation for cellular communication with the external environment requires several physiological processes. Perturbation of these equilibria may lead to constitutive integrin activation that results in bleeding disorders. Furthermore, integrins play key roles in cancer progression and metastasis in which certain tumor types exhibit higher levels of various integrins. Thus, the integrin-associated signaling complex is important for cancer therapy development. During inside-out signaling, the cytoskeletal protein talin plays a key role in regulating integrin affinity whereby the talin head domain activates integrin by binding to the cytoplasmic tail of ß-integrin and acidic membrane phospholipids. To understand the mechanism of integrin activation by talin, we determined the crystal structure of the talin head domain bound to the acidic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2), allowing us to design a lipid-binding-deficient talin mutant. Our confocal microscopy with talin knockout cells suggests that the talin-cell membrane interaction seems essential for focal adhesion formation and stabilization. Basal integrin activation in Chinese hamster ovary cells suggests that the lipid-binding-deficient talin mutant inhibits integrin activation. Thus, membrane attachment of talin seems necessary for integrin activation and focal adhesion formation.


Assuntos
Membrana Celular/metabolismo , Adesões Focais/fisiologia , Integrinas/metabolismo , Talina/química , Talina/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Células CHO , Cricetulus , Cristalografia por Raios X , Modelos Moleculares , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Conformação Proteica , Domínios Proteicos , Talina/genética
10.
Proc Natl Acad Sci U S A ; 115(39): E9105-E9114, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30209215

RESUMO

Integrin α/ß heterodimer adopts a compact bent conformation in the resting state, and upon activation undergoes a large-scale conformational rearrangement. During the inside-out activation, signals impinging on the cytoplasmic tail of ß subunit induce the α/ß separation at the transmembrane and cytoplasmic domains, leading to the extended conformation of the ectodomain with the separated leg and the opening headpiece that is required for the high-affinity ligand binding. It remains enigmatic which integrin subunit drives the bent-to-extended conformational rearrangement in the inside-out activation. The ß3 integrins, including αIIbß3 and αVß3, are the prototypes for understanding integrin structural regulation. The Leu33Pro polymorphism located at the ß3 PSI domain defines the human platelet-specific alloantigen (HPA) 1a/b, which provokes the alloimmune response leading to clinically important bleeding disorders. Some, but not all, anti-HPA-1a alloantibodies can distinguish the αIIbß3 from αVß3 and affect their functions with unknown mechanisms. Here we designed a single-chain ß3 subunit that mimics a separation of α/ß heterodimer on inside-out activation. Our crystallographic and functional studies show that the single-chain ß3 integrin folds into a bent conformation in solution but spontaneously extends on the cell surface. This demonstrates that the ß3 subunit autonomously drives the membrane-dependent conformational rearrangement during integrin activation. Using the single-chain ß3 integrin, we identified the conformation-dependent property of anti-HPA-1a alloantibodies, which enables them to differently recognize the ß3 in the bent state vs. the extended state and in the complex with αIIb vs. αV This study provides deeper understandings of integrin conformational activation on the cell surface.


Assuntos
Glucuronidase/química , Integrina beta3/química , Isoanticorpos/química , Especificidade de Anticorpos , Cristalografia por Raios X , Glucuronidase/metabolismo , Células HEK293 , Humanos , Integrina alfaVbeta3/química , Integrina alfaVbeta3/metabolismo , Integrina beta3/metabolismo , Isoanticorpos/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/química , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Domínios Proteicos , Dobramento de Proteína
11.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638997

RESUMO

One of the mechanisms by which PI3 kinase can regulate platelet function is through phosphorylation of downstream substrates, including glycogen synthase kinase-3 (GSK3)α and GSK3ß. Platelet activation results in the phosphorylation of an N-terminal serine residue in GSK3α (Ser21) and GSK3ß (Ser9), which competitively inhibits substrate phosphorylation. However, the role of phosphorylation of these paralogs is still largely unknown. Here, we employed GSK3α/ß phosphorylation-resistant mouse models to explore the role of this inhibitory phosphorylation in regulating platelet activation. Expression of phosphorylation-resistant GSK3α/ß reduced thrombin-mediated platelet aggregation, integrin αIIbß3 activation, and α-granule secretion, whereas platelet responses to the GPVI agonist collagen-related peptide (CRP-XL) were significantly enhanced. GSK3 single knock-in lines revealed that this divergence is due to differential roles of GSK3α and GSK3ß phosphorylation in regulating platelet function. Expression of phosphorylation-resistant GSK3α resulted in enhanced GPVI-mediated platelet activation, whereas expression of phosphorylation-resistant GSK3ß resulted in a reduction in PAR-mediated platelet activation and impaired in vitro thrombus formation under flow. Interestingly, the latter was normalised in double GSK3α/ß KI mice, indicating that GSK3α KI can compensate for the impairment in thrombosis caused by GSK3ß KI. In conclusion, our data indicate that GSK3α and GSK3ß have differential roles in regulating platelet function.


Assuntos
Plaquetas/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Ativação Plaquetária/genética , Agregação Plaquetária/genética , Transdução de Sinais/genética , Trombose/metabolismo , Animais , Doadores de Sangue , Células Cultivadas , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Integrinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombina/metabolismo , Trombose/genética
12.
Proc Natl Acad Sci U S A ; 114(18): 4685-4690, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28416675

RESUMO

Integrins undergo large-scale conformational changes upon activation. Signaling events driving integrin activation have previously been discussed conceptually, but not quantitatively. Here, recent measurements of the intrinsic ligand-binding affinity and free energy of each integrin conformational state on the cell surface, together with the length scales of conformational change, are used to quantitatively compare models of activation. We examine whether binding of cytoskeletal adaptors to integrin cytoplasmic domains is sufficient for activation or whether exertion of tensile force by the actin cytoskeleton across the integrin-ligand complex is also required. We find that only the combination of adaptor binding and cytoskeletal force provides ultrasensitive regulation. Moreover, switch-like activation by force depends on the large, >130 Å length-scale change in integrin extension, which is well tailored to match the free-energy difference between the inactive (bent-closed) and active (extended-open) conformations. The length scale and energy cost in integrin extension enable activation by force in the low pN range and appear to be the key specializations that enable cell adhesion through integrins to be coordinated with cytoskeletal dynamics.


Assuntos
Citoesqueleto/metabolismo , Integrinas/metabolismo , Modelos Biológicos , Humanos , Células K562
13.
Fish Shellfish Immunol ; 87: 638-649, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30753917

RESUMO

Integrins are an important family of cell receptors that can bind foreign particles and promote cell phagocytosis after they are activated. In the present study, a novel ß integrin was identified from pacific oyster Crassostrea gigas with an extracellular domain, a single transmembrane segment, and a short cytoplasmic domain. It was phylogenetically clustered with phagocytosis-related insecta ßV, and designated as CgßV. CgßV shared a conserved NPX[Y/F] motif related to integrin activation with other phagocytosis-related ß integrins. The mRNA transcripts of CgßV were widely detected in oyster tissues including hemocytes, gonad, adductor muscle, mantle, gill, and hepatopancreas, and the expression level in hemocytes was significantly up-regulated at 12 h after lipopolysaccharide (LPS) stimulation (p < 0.05), which was 2.29-fold higher than that in the control group. CgßV proteins were mainly observed on the hemocytes surface. The oyster hemocytes were found to bind fluorescein isothiocyanate (FITC)-labeled Arg-Gly-Asp-containing peptides (RGDCPs), and the binding capability was significantly up-regulated with the peak percentage of 37.6% at 12 h post LPS stimulation, which was higher than that in the control group (8.8%, p < 0.05), suggesting the activation of RGD-binding integrins on oyster hemocytes surface. The label-free RGDCPs and anti-CgßV antibody inhibited the binding capability of hemocytes towards FITC-labeled RGDCPs, which were significant lower in RGD blocking group (7.4%, p < 0.05) and anti-CgßV blocking group (22.1%, p < 0.05) than that in the control group (37.6%), indicating that CgßV could be a RGD-binding integrin. Phagocytosis assay demonstrated that LPS could enhance the phagocytosis of hemocytes towards Escherichia coli and fluorescent beads with the phagocytic rate (PR) of 18.3% and 17.4%, and phagocytic index (PI) of 5.29 and 37.71, respectively, which were significant higher than that in the control group (11.0% and 3.65 for E. coli, 9.8% and 29.26 for fluorescent beads, respectively, p < 0.05). In addition, both the label-free RGDCPs and anti-CgßV antibody significantly hindered the phagocytosis of hemocytes towards E. coli and fluorescent beads. After the E. coli and fluorescent beads were opsonized by oyster serum, the label-free RGDCPs still inhibited the phagocytosis of hemocytes towards them, while the anti-CgßV antibody could only inhibit the phagocytosis of hemocytes towards E. coli, suggesting that only the activated CgßV was involved in the enhancing phagocytosis for bacteria in oyster. Moreover, the key components of conserved integrin-mediated phagocytosis pathway including GTPases, talin proteins, Ca2+ and cAMP were all induced by LPS in hemocytes of oyster. All these results suggested that the activated CgßV enhanced RGD-binding and phagocytic capabilities of hemocytes, shedding lights on the mechanisms of integrin-mediated phagocytosis in mollusks.


Assuntos
Crassostrea/fisiologia , Hemócitos/imunologia , Cadeias beta de Integrinas/genética , Oligopeptídeos/metabolismo , Fagocitose , Animais , Crassostrea/genética , Crassostrea/imunologia , Cadeias beta de Integrinas/metabolismo
14.
Platelets ; 30(1): 41-47, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29863951

RESUMO

Platelets are highly specialized cells that continuously patrol the vasculature to ensure its integrity (hemostasis). At sites of vascular injury, they are able to respond to trace amounts of agonists and to rapidly transition from an anti-adhesive/patrolling to an adhesive state (integrin inside-out activation) required for hemostatic plug formation. Pathological conditions that disturb the balance in the underlying signaling processes can lead to unwanted platelet activation (thrombosis) or to an increased bleeding risk. The small GTPases of the RAP subfamily, highly expressed in platelets, are critical regulators of cell adhesion, cytoskeleton remodeling, and MAP kinase signaling. Studies by our group and others demonstrate that RAP GTPases, in particular RAP1A and RAP1B, are the key molecular switches that turn on platelet activation/adhesiveness at sites of injury. In this review, we will summarize major findings on the role of RAP GTPases in platelet biology with a focus on the signaling pathways leading to the conversion of integrins to a high-affinity state.


Assuntos
Plaquetas/metabolismo , Integrinas/metabolismo , Transdução de Sinais , Proteínas rap de Ligação ao GTP/metabolismo , Animais , Humanos , Integrinas/genética , Espaço Intracelular/metabolismo , Ativação Plaquetária/genética , Adesividade Plaquetária/genética , Isoformas de Proteínas , Transporte Proteico , Lesões do Sistema Vascular/etiologia , Lesões do Sistema Vascular/metabolismo , Proteínas rap de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
15.
Pediatr Cardiol ; 40(7): 1401-1409, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31367953

RESUMO

Integrin receptors enable cells to sense and respond to their chemical and physical environment. As a class of membrane receptors, they provide a dynamic, tightly regulated link between the extracellular matrix or cellular counter-receptors and intracellular cytoskeletal and signaling networks. They enable transmission of mechanical force across the plasma membrane, and particularly for cardiomyocytes, may sense the mechanical load placed on cells. Talins and Kindlins are two families of FERM-domain proteins which bind the cytoplasmic tail of integrins, recruit cytoskeletal and signaling proteins involved in mechano-transduction, and those which synergize to activate integrins, allowing the integrins to physically change and bind to extracellular ligands. In this review, we will discuss the roles of talin and kindlin, particularly as integrin activators, with a focus on cardiac myocytes.


Assuntos
Integrinas/genética , Proteínas de Membrana/fisiologia , Proteínas de Neoplasias/fisiologia , Talina/genética , Animais , Coração/fisiologia , Humanos , Integrinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Talina/metabolismo
16.
J Cell Sci ; 129(10): 2030-42, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27044755

RESUMO

Vimentin, an intermediate filament protein induced during epithelial-to-mesenchymal transition, is known to regulate cell migration and invasion. However, it is still unclear how vimentin controls such behaviors. In this study, we aimed to find a new integrin regulator by investigating the H-Ras-mediated integrin suppression mechanism. Through a proteomic screen using the integrin ß3 cytoplasmic tail protein, we found that vimentin might work as an effector of H-Ras signaling. H-Ras converted filamentous vimentin into aggregates near the nucleus, where no integrin binding can occur. In addition, an increase in the amount of vimentin filaments accessible to the integrin ß3 tail enhanced talin-induced integrin binding to its ligands by inducing integrin clustering. In contrast, the vimentin head domain, which was found to bind directly to the integrin ß3 tail and compete with endogenous vimentin filaments for integrin binding, induced nuclear accumulation of vimentin filaments and reduced the amount of integrin-ligand binding. Finally, we found that expression of the vimentin head domain can reduce cell migration and metastasis. From these data, we suggest that filamentous vimentin underneath the plasma membrane is involved in increasing integrin adhesiveness, and thus regulation of the vimentin-integrin interaction might control cell adhesion.


Assuntos
Adesão Celular/genética , Citoesqueleto/metabolismo , Integrina beta3/genética , Vimentina/genética , Animais , Células CHO , Membrana Celular/genética , Membrana Celular/metabolismo , Movimento Celular/genética , Cricetinae , Cricetulus , Citoesqueleto/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Integrina beta3/metabolismo , Ligantes , Ligação Proteica , Mapas de Interação de Proteínas , Proteômica , Vimentina/metabolismo
17.
Am J Respir Cell Mol Biol ; 56(5): 620-627, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28157452

RESUMO

Rapid neutrophil recruitment is critical for the efficient clearance of bacterial pathogens from the lungs. Although ß2 integrins and their activation are required for neutrophil recruitment from postcapillary venules of the systemic circulation into inflamed tissues, the involvement of integrins in neutrophil recruitment in response to respiratory infection varies among bacterial pathogens. For stimuli eliciting ß2 integrin-dependent neutrophil influx, including Pseudomonas aeruginosa, it remains unclear whether the activation of ß2 integrins is an essential step in this process. In the current study, we analyze neutrophil trafficking within the lungs of mice infected with Pseudomonas aeruginosa and evaluate the role of ß2 integrin activation through genetic deletion of talin-1 or Kindlin-3 or by pharmacological inhibition of high-affinity ß2 integrins using a small molecule allosteric antagonist. We observe that attenuation of high-affinity ß2 integrins leads to an enhancement of neutrophil emigration into lung interstitium and airspaces. Neutrophil effector functions, including the production of reactive oxygen species and the phagocytosis of bacteria, are only partially dependent on high-affinity ß2 integrins. These results reveal a mechanism by which activated ß2 integrins limit neutrophil entry into the lung tissue and airspaces during acute pseudomonal pneumonia and suggest potential strategies for modulating neutrophil-mediated host defense.


Assuntos
Antígenos CD18/metabolismo , Infiltração de Neutrófilos , Pneumonia/imunologia , Pneumonia/microbiologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Doença Aguda , Animais , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/metabolismo , Pulmão/irrigação sanguínea , Pulmão/microbiologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Ácidos Ftálicos/farmacologia , Pneumonia/patologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/efeitos dos fármacos , beta-Alanina/análogos & derivados , beta-Alanina/farmacologia
18.
J Cell Sci ; 128(23): 4341-52, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26483383

RESUMO

SLAT (also known as DEF6) promotes T cell activation and differentiation by regulating NFAT-Ca(2+) signaling. However, its role in TCR-mediated inside-out signaling, which induces integrin activation and T cell adhesion, a central process in T cell immunity and inflammation, has not been explored. Here, we show that SLAT is crucial for TCR-induced adhesion to ICAM-1 and affinity maturation of LFA-1 in CD4(+) T cells. Mechanistic studies revealed that SLAT interacts, through its PH domain, with a key component of inside-out signaling, namely the active form of the small GTPase Rap1 (which has two isoforms, Rap1A and Rap1B). This interaction has been further shown to facilitate the interdependent recruitment of Rap1 and SLAT to the T cell immunological synapse upon TCR engagement. Furthermore, a SLAT mutant lacking its PH domain drastically inhibited LFA-1 activation and CD4(+) T cell adhesion. Finally, we established that a constitutively active form of Rap1, which is present at the plasma membrane, rescues the defective LFA-1 activation and ICAM-1 adhesion in SLAT-deficient (Def6(-/-)) T cells. These findings ascribe a new function to SLAT, and identify Rap1 as a target of SLAT function in TCR-mediated inside-out signaling.


Assuntos
Adesão Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/fisiologia , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Fatores de Troca do Nucleotídeo Guanina , Antígeno-1 Associado à Função Linfocitária/genética , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , Receptores de Antígenos de Linfócitos T/genética , Proteínas rap de Ligação ao GTP/genética , Proteínas rap1 de Ligação ao GTP/genética
19.
Adv Exp Med Biol ; 925: 103-115, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27864802

RESUMO

Secreted phospholipase A2 type IIA (sPLA2-IIA) is a well-established pro-inflammatory protein and has been a major target for drug discovery. However, the mechanism of its signaling action has not been fully understood. We previously found that sPLA2-IIA binds to integrins αvß3 and α4ß1 in human and that this interaction plays a role in sPLA2-IIA's signaling action. Our recent studies found that sPLA2-IIA activates integrins in an allosteric manner through direct binding to a newly identified binding site of integrins (site 2), which is distinct from the classical RGD-binding site (site 1). The sPLA2-IIA-induced integrin activation may be related to the signaling action of sPLA2-IIA. Since sPLA2-IIA is present in normal human tears in addition to rheumatoid synovial fluid at high concentrations the sPLA2-IIA-mediated integrin activation on leukocytes may be involved in immune responses in normal and pathological conditions.


Assuntos
Fosfolipases A2 do Grupo II/química , Integrina alfa4beta1/química , Integrina alfaVbeta3/química , Transdução de Sinais/imunologia , Regulação Alostérica , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Sítios de Ligação , Regulação da Expressão Gênica , Fosfolipases A2 do Grupo II/genética , Fosfolipases A2 do Grupo II/imunologia , Humanos , Integrina alfa4beta1/genética , Integrina alfa4beta1/imunologia , Integrina alfaVbeta3/genética , Integrina alfaVbeta3/imunologia , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Líquido Sinovial/química , Líquido Sinovial/imunologia , Lágrimas/química , Lágrimas/imunologia
20.
Proc Natl Acad Sci U S A ; 111(1): 379-84, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344262

RESUMO

Plexins and semaphorins comprise a large family of receptor-ligand pairs controlling cell guidance in nervous, immune, and vascular systems. How plexin regulation of neurite outgrowth, lymphoid trafficking, and vascular endothelial cell branching is linked to integrin function, central to most directed movement, remains unclear. Here we show that on developing thymocytes, plexinD1 controls surface topology of nanometer-scaled ß1 integrin adhesion domains in cis, whereas its ligation by sema3E in trans regulates individual ß1 integrin catch bonds. Loss of plexinD1 expression reduces ß1 integrin clustering, thereby diminishing avidity, whereas sema3E ligation shortens individual integrin bond lifetimes under force to reduce stability. Consequently, both decreased expression of plexinD1 during developmental progression and a thymic medulla-emanating sema3E gradient enhance thymocyte movement toward the medulla, thus enforcing the orchestrated lymphoid trafficking required for effective immune repertoire selection. Our results demonstrate plexin-tunable molecular features of integrin adhesion with broad implications for many cellular processes.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Regulação da Expressão Gênica , Glicoproteínas/metabolismo , Integrina beta1/metabolismo , Proteínas de Membrana/metabolismo , Timócitos/citologia , Animais , Autoanticorpos/sangue , Adesão Celular , Quimiocinas/metabolismo , Quimiotaxia , Proteínas do Citoesqueleto , Integrinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Glicoproteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Proteínas do Tecido Nervoso , Semaforinas , Transdução de Sinais , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA