Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 205: 112525, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896084

RESUMO

Organophosphate esters (OPEs) have been detected within car interior dust, suggesting that the indoor microenvironment of vehicles may represent a potential route of human exposure to OPEs. We recently showed that people with longer commutes are exposed to higher concentrations of tris(1,3-dichloro-2-isopropyl)phosphate (TDCIPP) - a widely used OPE - and other studies have suggested that dust removal may lead to lower exposure to chemicals. Therefore, the overall objective of this study was to determine if a decrease in interior car dust results in mitigation of personal OPE exposure. Participants (N = 49) were asked to wear silicone wristbands, and a subset of them wiped interior parts at the front of their vehicles prior to one study week (N = 25) or both study weeks (N = 11). There were no significant differences in total OPE concentrations (77.79-13,660 ng/g) nor individual OPE concentrations (0.04-4852.81 ng/g) across the different wiping groups nor in relation to participant residence ZIP codes and AC/Heater usage. These findings suggest that higher exposure to TDCIPP for participants with longer commutes may be independent of dust located on interior parts at the front of the vehicle. Therefore, our study demonstrates that there is a need for research on the potential contribution of other sources of TDCIPP exposure within car interiors.


Assuntos
Poeira , Retardadores de Chama , China , Poeira/análise , Exposição Ambiental/análise , Monitoramento Ambiental , Ésteres/análise , Retardadores de Chama/análise , Humanos , Organofosfatos/análise
2.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190479, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33161852

RESUMO

The Voyager 2 flybys of Uranus and Neptune revealed the first multipolar planetary magnetic fields and highlighted how much we have yet to learn about ice giant planets. In this review, we summarize observations of Uranus' and Neptune's magnetic fields and place them in the context of other planetary dynamos. The ingredients for dynamo action in general, and for the ice giants in particular, are discussed, as are the factors thought to control magnetic field strength and morphology. These ideas are then applied to Uranus and Neptune, where we show that no models are yet able to fully explain their observed magnetic fields. We then propose future directions for missions, modelling, experiments and theory necessary to answer outstanding questions about the dynamos of ice giant planets, both within our solar system and beyond. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

3.
Philos Trans A Math Phys Eng Sci ; 378(2187): 20190474, 2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33161856

RESUMO

Uranus and Neptune form a distinct class of planets in our Solar System. Given this fact, and ubiquity of similar-mass planets in other planetary systems, it is essential to understand their interior structure and composition. However, there are more open questions regarding these planets than answers. In this review, we concentrate on the things we do not know about the interiors of Uranus and Neptune with a focus on why the planets may be different, rather than the same. We next summarize the knowledge about the planets' internal structure and evolution. Finally, we identify the topics that should be investigated further on the theoretical front as well as required observations from space missions. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.

4.
Proc Natl Acad Sci U S A ; 114(45): 11873-11877, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078318

RESUMO

Liquid metallic hydrogen (LMH) is the most abundant form of condensed matter in our solar planetary structure. The electronic and thermal transport properties of this metallic fluid are of fundamental interest to understanding hydrogen's mechanism of conduction, atomic or pairing structure, as well as the key input for the magnetic dynamo action and thermal models of gas giants. Here, we report spectrally resolved measurements of the optical reflectance of LMH in the pressure region of 1.4-1.7 Mbar. We analyze the data, as well as previously reported measurements, using the free-electron model. Fitting the energy dependence of the reflectance data yields a dissociation fraction of 65 ± 15%, supporting theoretical models that LMH is an atomic metallic liquid. We determine the optical conductivity of LMH and find metallic hydrogen's static electrical conductivity to be 11,000-15,000 S/cm, substantially higher than the only earlier reported experimental values. The higher electrical conductivity implies that the Jovian and Saturnian dynamo are likely to operate out to shallower depths than previously assumed, while the inferred thermal conductivity should provide a crucial experimental constraint to heat transport models.

5.
Angew Chem Int Ed Engl ; 59(14): 5611-5615, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-31840399

RESUMO

A solid-to-hollow evolution in macroscopic structures is challenging in synthetic materials. A fundamentally new strategy is reported for guiding macroscopic, unidirectional shape evolution of materials without compromising the material's integrity. This strategy is based on the creation of a field with a "swelling pole" and a "shrinking pole" to drive polymers to disassemble, migrate, and resettle in the targeted region. This concept is demonstrated using dynamic hydrogels containing anchored acrylic ligands and hydrophobic long alkyl chains. Adding water molecules and ferric ions (Fe3+ ) to induce a swelling-shrinking field transforms the hydrogels from solid to hollow. The strategy is versatile in the generation of various closed hollow objects (for example, spheres, helix tubes, and cubes with different diameters) for different applications.

6.
Philos Trans A Math Phys Eng Sci ; 377(2146): 20180262, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-30982457

RESUMO

In recent years, evidence has emerged that solid water can contain substantial amounts of guest species, such as small gas molecules-in gas hydrate structures-or ions-in salty ice structures-and that these 'filled' ice structures can be stable under pressures of tens of Gigapascals and temperatures of hundreds of Kelvins. The inclusion of guest species can strongly modify the density, vibrational, diffusive and conductivity properties of ice under high pressure, and promote novel exotic properties. In this review, we discuss our experimental findings and molecular dynamics simulation results on the structures formed by salt- and gas-filled ices, their unusual properties, and the unexpected dynamical phenomena observed under pressure and temperature conditions relevant for planetary interiors modelling. This article is part of the theme issue 'The physics and chemistry of ice: scaffolding across scales, from the viability of life to the formation of planets'.

7.
Mikrochim Acta ; 185(1): 5, 2017 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-29594497

RESUMO

This paper reports on an electrochemical sensing system for L-cysteine. It is based on the use of hollow cubic Cu2O particles that were prepared in two steps. First, the Cu2O/ polystyrene (PS) composites were prepared by a surface ion exchange strategy for in-situ reductive deposition on the surface of carboxy-capped PS particles. Thereafter, the PS particles were removed from the Cu2O/PS composites by treatment with tetrahydrofuran (THF). The resulting hollow cubic Cu2O particles were placed in a Nafion matrix on a glassy carbon electrode (GCE) which exhibits high surface area, good site accessibility and excellent electrocatalytic activity for L-cysteine. The cyclic voltammetric response of the modified GCE to L-cysteine is about 2.8-fold stronger than when using a GCE modified with pure Cu2O. The detection limit for L-cysteine is lower by about 1 order of magnitude, and the working voltage is rather low (-0.08 V vs. Ag/AgCl). An excellent electrochemical selectivity for L-cysteine over other amino acids was also achieved. The method was successfully applied to the determination of L-cysteine in pharmaceutical samples. Graphical abstract An electrochemical sensing system for the detection of L-cysteine in amino acid injections has been established by using the hollow cubic Cu2O particles as recognition element.


Assuntos
Técnicas Biossensoriais/métodos , Carbono/química , Cisteína/análise , Técnicas Eletroquímicas/métodos , Cobre/química , Eletrodos , Polímeros de Fluorcarboneto/química , Limite de Detecção , Nanopartículas Metálicas , Oxirredução , Tamanho da Partícula , Poliestirenos/química , Propriedades de Superfície
8.
Space Sci Rev ; 220(5): 55, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036784

RESUMO

Saturn's mid-sized icy moons have complex relationships with Saturn's interior, the rings, and with each other, which can be expressed in their shapes, interiors, and geology. Observations of their physical states can, thus, provide important constraints on the ages and formation mechanism(s) of the moons, which in turn informs our understanding of the formation and evolution of Saturn and its rings. Here, we describe the cratering records of the mid-sized moons and the value and limitations of their use for constraining the histories of the moons. We also discuss observational constraints on the interior structures of the moons and geologically-derived inferences on their thermal budgets through time. Overall, the geologic records of the moons (with the exception of Mimas) include evidence of epochs of high heat flows, short- and long-lived subsurface oceans, extensional tectonics, and considerable cratering. Curiously, Mimas presents no clear evidence of an ocean within its surface geology, but its rotation and orbit indicate a present-day ocean. While the moons need not be primordial to produce the observed levels of interior evolution and geologic activity, there is likely a minimum age associated with their development that has yet to be determined. Uncertainties in the populations impacting the moons makes it challenging to further constrain their formation timeframes using craters, whereas the characteristics of their cores and other geologic inferences of their thermal evolutions may help narrow down their potential histories. Disruptive collisions may have also played an important role in the formation and evolution of Saturn's mid-sized moons, and even the rings of Saturn, although more sophisticated modeling is needed to determine the collision conditions that produce rings and moons that fit the observational constraints. Overall, the existence and physical characteristics of Saturn's mid-sized moons provide critical benchmarks for the development of formation theories.

9.
Icarus ; 376: 114840, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35140451

RESUMO

Magnetic investigations of icy moons have provided some of the most compelling evidence available confirming the presence of subsurface, liquid water oceans. In the exploration of ocean moons, especially Europa, there is a need for mathematical models capable of predicting the magnetic fields induced under a variety of conditions, including in the case of asymmetric oceans. Existing models are limited to either spherical symmetry or assume an ocean with infinite conductivity. In this work, we use a perturbation method to derive a semi-analytic result capable of determining the induced magnetic moments for an arbitrary layered body, provided each layer is nearly spherical. Crucially, we find that degree-2 tidal deformation results in changes to the induced dipole moments. We demonstrate application of our results to models of plausible asymmetry from the literature within the oceans of Europa and Miranda and the ionospheres of Callisto and Triton. For the models we consider, we find that in the asymmetric case, the induced magnetic field differs by more than 2 nT near the surface of Europa, 0.25-0.5 nT at 1 R above Miranda and Triton, and is essentially unchanged for Callisto. For Miranda and Triton, this difference is as much as 20%-30% of the induced field magnitude. If measurements near the moons can be made precisely to better than a few tenths of a nT, these values may be used by future spacecraft investigations to characterize asymmetry within the interior of icy moons.

10.
Icarus ; 354: 114020, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35136245

RESUMO

The five largest planets all have strong intrinsic magnetic fields that interact with their satellites, many of which contain electrically conducting materials on global scales. Conducting bodies exposed to time-varying magnetic fields induce secondary magnetic fields from movement of eddy currents. In the case of spherically symmetric conducting bodies, matching magnetic solutions at the boundary results in relatively simple relations between the excitation field and the induced field. In this work, we determine the more complicated induced magnetic field from a near-spherical conductor, where the outer boundary is expanded in spherical harmonics. Under the approximations that the excitation field is uniform at a single frequency, the product of wavenumber and radius for the body is large, and the average radius of the body is large compared to the perturbation from spherical symmetry, we find that each spherical harmonic in the shape expansion induces discrete magnetic moments that are independent from the other harmonics in the expansion. That is, simple superposition applies to the magnetic moments induced by each perturbation harmonic. We present a table of the magnetic moments induced by each spherical harmonic up to degree 2 in the perturbed shape. We also present a simple formula by which the induced magnetic field may be evaluated for any arbitrary shape described by expanding the radius of the conducting body in spherical harmonics. Unlike the Earth, many moons in the Solar System are tidally locked to their parent bodies, and many also contain saline, subsurface oceans. Conductive material in these moons is therefore expected to be non-spherical. Accounting for the boundary shape of Europa's ocean will be critical for interpretation of Europa Clipper magnetic measurements near the moon, where the effects of quadrupole-and-higher magnetic moments will be most apparent. The results of this work permit magnetic studies considering non-spherical oceans of satellites for the first time.

11.
Mon Not R Astron Soc ; 504(1): 636-647, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33935581

RESUMO

We present a first 3D magnetohydrodynamic (MHD) simulation of convective oxygen and neon shell burning in a non-rotating [Formula: see text] star shortly before core collapse to study the generation of magnetic fields in supernova progenitors. We also run a purely hydrodynamic control simulation to gauge the impact of the magnetic fields on the convective flow and on convective boundary mixing. After about 17 convective turnover times, the magnetic field is approaching saturation levels in the oxygen shell with an average field strength of [Formula: see text], and does not reach kinetic equipartition. The field remains dominated by small-to-medium scales, and the dipole field strength at the base of the oxygen shell is only [Formula: see text]. The angle-averaged diagonal components of the Maxwell stress tensor mirror those of the Reynolds stress tensor, but are about one order of magnitude smaller. The shear flow at the oxygen-neon shell interface creates relatively strong fields parallel to the convective boundary, which noticeably inhibit the turbulent entrainment of neon into the oxygen shell. The reduced ingestion of neon lowers the nuclear energy generation rate in the oxygen shell and thereby slightly slows down the convective flow. Aside from this indirect effect, we find that magnetic fields do not appreciably alter the flow inside the oxygen shell. We discuss the implications of our results for the subsequent core-collapse supernova and stress the need for longer simulations, resolution studies, and an investigation of non-ideal effects for a better understanding of magnetic fields in supernova progenitors.

12.
Artigo em Inglês | MEDLINE | ID: mdl-34886236

RESUMO

There has been a recent interest in how architecture affects mental health and psychological well-being, motivated by the fact that we spend the majority of our waking time inside and interacting with built environments. Some studies have investigated the psychological responses to indoor design parameters; for instance, contours, and proposed that curved interiors, when compared to angular ones, were aesthetically preferred and induced higher positive emotions. The present study aimed to systematically examine this hypothesis and further explore the impact of contrasting contours on affect, behavior, and cognition. We exposed 42 participants to four well-matched indoor living rooms under a free-exploration photorealistic virtual reality paradigm. We included style as an explorative second-level variable. Out of the 33 outcome variables measured, and after correcting for false discoveries, only two eventually confirmed differences in the contours analysis, in favor of angular rooms. Analysis of style primarily validated the contrast of our stimulus set, and showed significance in one other dependent variable. Results of additional analysis using the Bayesian framework were in line with those of the frequentist approach. The present results provide evidence against the hypothesis that curvature is preferred, suggesting that the psychological response to contours in a close-to-reality architectural setting could be more complex. This study, therefore, helps to communicate a more complete scientific view on the experience of interior spaces and proposes directions for necessary future research.


Assuntos
Saúde Mental , Realidade Virtual , Teorema de Bayes , Humanos
13.
EPJ Tech Instrum ; 5(1): 5, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30997319

RESUMO

This paper presents the setup and pressure calibration of an 800-ton multi-anvil apparatus installed at the Vrije Universiteit (Amsterdam, the Netherlands) to simulate pressure-temperature conditions in planetary interiors. This high-pressure device can expose cubic millimeter sized samples to near-hydrostatic pressures up to ~ 10 GPa and temperatures exceeding 2100 °C. The apparatus is part of the Distributed Planetary Simulation Facility (DPSF) of the EU Europlanet 2020 Research Infrastructure, and significantly extends the pressure-temperature range that is available through international access to this facility.

14.
Environ Sci Pollut Res Int ; 23(5): 4797-811, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26538262

RESUMO

Interior air environment and health problems of vehicles have attracted increasing attention, and benzene homologues (BHs) including benzene, toluene, ethylbenzene, xylenes, and styrene are primary hazardous gases in vehicular cabins. The BHs impact on the health of passengers and drivers in 38 taxis is assessed, and health risk equations of in-car BHs to different drivers and passengers are induced. The health risk of in-car BHs for male drivers is the highest among all different receptors and is 1.04, 6.67, and 6.94 times more than ones for female drivers, male passengers, and female passengers, respectively. In-car BHs could not lead to the non-cancer health risk to all passengers and drivers as for the maximal value of non-cancer indices is 0.41 and is less than the unacceptable value (1.00) of non-cancer health risk from USEPA. However, in-car BHs lead to cancer health risk to drivers as for the average value of cancer indices is 1.21E-04 which is 1.21 times more than the unacceptable value (1.00E-04) of cancer health risk from USEPA. Finally, for in-car airborne benzene concentration (X, µg/m(3)) to male drivers, female drivers, male passengers, and female passengers, the cancer health risk equations are Y = 1.48E-06X, Y = 1.42E-06X, Y = 2.22E-07X, and Y = 2.13E-07X, respectively, and the non-cancer health risk equations are Y = 1.70E-03X, Y = 1.63E-03X, Y = 2.55E-04X, and Y = 2.45E-04X, respectively.


Assuntos
Automóveis , Derivados de Benzeno , Benzeno , Adulto , China , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco , Estados Unidos , United States Environmental Protection Agency
15.
Astrophys J ; 832(1)2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30705445

RESUMO

Terrestrial exoplanets in the canonical habitable zone may have a variety of initial water fractions due to random volatile delivery by planetesimals. If the total planetary water complement is high, the entire surface may be covered in water, forming a "waterworld." On a planet with active tectonics, competing mechanisms act to regulate the abundance of water on the surface by determining the partitioning of water between interior and surface. Here we explore how the incorporation of different mechanisms for the degassing and regassing of water changes the volatile evolution of a planet. For all of the models considered, volatile cycling reaches an approximate steady state after ~2 Gyr. Using these steady states, we find that if volatile cycling is either solely dependent on temperature or seafloor pressure, exoplanets require a high abundance (≳0.3% of total mass) of water to have fully inundated surfaces. However, if degassing is more dependent on seafloor pressure and regassing mainly dependent on mantle temperature, the degassing rate is relatively large at late times and a steady state between degassing and regassing is reached with a substantial surface water fraction. If this hybrid model is physical, super-Earths with a total water fraction similar to that of the Earth can become waterworlds. As a result, further understanding of the processes that drive volatile cycling on terrestrial planets is needed to determine the water fraction at which they are likely to become waterworlds.

16.
Sci Adv ; 1(5): e1400260, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26601196

RESUMO

The iron-oxygen system is the most important reference of rocks' redox state. Even as minor components, iron oxides can play a critical role in redox equilibria, which affect the speciation of the fluid phases chemical differentiation, melting, and physical properties. Until our recent finding of Fe4O5, iron oxides were assumed to comprise only the polymorphs of FeO, Fe3O4, and Fe2O3. Combining synthesis at high pressure and temperature with microdiffraction mapping, we have identified yet another distinct iron oxide, Fe5O6. The new compound, which has an orthorhombic structure, was obtained in the pressure range from 10 to 20 GPa upon laser heating mixtures of iron and hematite at ~2000 K, and is recoverable to ambient conditions. The high-pressure orthorhombic iron oxides Fe5O6, Fe4O5, and h-Fe3O4 display similar iron coordination geometries and structural arrangements, and indeed exhibit coherent systematic behavior of crystallographic parameters and compressibility. Fe5O6, along with FeO and Fe4O5, is a candidate key minor phase of planetary interiors; as such, it is of major petrological and geochemical importance. We are revealing an unforeseen complexity in the Fe-O system with four different compounds-FeO, Fe5O6, Fe4O5, and h-Fe3O4-in a narrow compositional range (0.75 < Fe/O < 1.0). New, finely spaced oxygen buffers at conditions of the Earth's mantle can be defined.

17.
Philos Trans A Math Phys Eng Sci ; 372(2014): 20130076, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24664915

RESUMO

We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA