Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(41): e2114979120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37801472

RESUMO

The two main steps of translation, peptidyl transfer, and translocation are accompanied by counterclockwise and clockwise rotations of the large and small ribosomal subunits with respect to each other. Upon peptidyl transfer, the small ribosomal subunit rotates counterclockwise relative to the large subunit, placing the ribosome into the rotated conformation. Simultaneously, tRNAs move into the hybrid conformation, and the L1 stalk moves inward toward the P-site tRNA. The conformational dynamics of pretranslocation ribosomes were extensively studied by ensemble and single-molecule methods. Different experimental modalities tracking ribosomal subunits, tRNAs, and the L1 stalk showed that pretranslocation ribosomes undergo spontaneous conformational transitions. Thus, peptidyl transfer unlocks the ribosome and decreases an energy barrier for the reverse ribosome rotation during translocation. However, the tracking of translation with ribosomes labeled at rRNA helices h44 and H101 showed a lack of spontaneous rotations in pretranslocation complexes. Therefore, reverse intersubunit rotations occur during EF-G catalyzed translocation. To reconcile these views, we used high-speed single-molecule microscopy to follow translation in real time. We showed spontaneous rotations in puromycin-released h44-H101 dye-labeled ribosomes. During elongation, the h44-H101 ribosomes undergo partial spontaneous rotations. Spontaneous rotations in h44-H101-labeled ribosomes are restricted prior to aminoacyl-tRNA binding. The pretranslocation h44-H101 ribosomes spontaneously exchanged between three different rotational states. This demonstrates that peptidyl transfer unlocks spontaneous rotations and pretranslocation ribosomes can adopt several thermally accessible conformations, thus supporting the Brownian model of translocation.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Ribossomos , Ribossomos/metabolismo , RNA de Transferência/metabolismo , Conformação de Ácido Nucleico , Fator G para Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas
2.
RNA Biol ; 13(5): 524-30, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-26786136

RESUMO

Structural centers of motion (pivot points) in the ribosome have recently been identified by measurement of conformational changes in rRNA resulting from EF-G GTP hydrolysis. This series of measurements is extended here to the ribosome's interactions with the cofactor EF-Tu. Four recent EF-Tu bound ribosome structures were compared to unbound structures. A total of 16 pivots were identified, of which 4 are unique to the EF-Tu interaction. Pivots in the GTPase associated center and the sarcin-ricin loop omitted previously, are found to be mobile in response to both EF-Tu and EF-G binding. Pivots in the intersubunit bridge rRNAs are found to be cofactor specific. Head swiveling motions in the small subunit are observed in the EF-Tu bound structures that were trapped post GTP hydrolysis. As in the case of pivots associated with EF-G, the additional pivots described here are associated with weak points in the rRNA structures such as non-canonical pairs and bulge loops. The combined set of pivots should be regarded as a minimal set. Only several states available to the ribosome have been presented in this work. Future, precise crystal structures in conjunction with experimental data will likely show additional functional pivoting elements in the rRNA.


Assuntos
Fator Tu de Elongação de Peptídeos/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , RNA Ribossômico/química , RNA Ribossômico/metabolismo
3.
J Mol Biol ; 435(15): 168185, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348753

RESUMO

Mediated by elongation factor G (EF-G), ribosome translocation along mRNA is accompanied by rotational movement between ribosomal subunits. Here, we reassess whether the intersubunit rotation requires GTP hydrolysis by EF-G or can occur spontaneously. To that end, we employ two independent FRET assays, which are based on labeling either ribosomal proteins (bS6 and bL9) or rRNAs (h44 of 16S and H101 of 23S rRNA). Both FRET pairs reveal three FRET states, corresponding to the non-rotated, rotated and semi-rotated conformations of the ribosome. Both FRET assays show that in the absence of EF-G, pre-translocation ribosomes containing deacylated P-site tRNA undergo spontaneous intersubunit rotations between non-rotated and rotated conformations. While the two FRET pairs exhibit largely similar behavior, they substantially differ in the fraction of ribosomes showing spontaneous fluctuations. Nevertheless, instead of being an invariable intrinsic property of each FRET pair, the fraction of spontaneously fluctuating molecules changes in both FRET assays depending on experimental conditions. Our results underscore importance of using multiple FRET pairs in studies of ribosome dynamics and highlight the role of thermally-driven large-scale ribosome rearrangements in translation.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Fator G para Elongação de Peptídeos , Ribossomos , Guanosina Trifosfato/metabolismo , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Ribossomos/química , Ribossomos/metabolismo , RNA Ribossômico 23S/metabolismo , RNA de Transferência/metabolismo
4.
Elife ; 82019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31513010

RESUMO

Protein synthesis ends when a ribosome reaches an mRNA stop codon. Release factors (RFs) decode the stop codon, hydrolyze peptidyl-tRNA to release the nascent protein, and then dissociate to allow ribosome recycling. To visualize termination by RF2, we resolved a cryo-EM ensemble of E. coli 70S•RF2 structures at up to 3.3 Å in a single sample. Five structures suggest a highly dynamic termination pathway. Upon peptidyl-tRNA hydrolysis, the CCA end of deacyl-tRNA departs from the peptidyl transferase center. The catalytic GGQ loop of RF2 is rearranged into a long ß-hairpin that plugs the peptide tunnel, biasing a nascent protein toward the ribosome exit. Ribosomal intersubunit rotation destabilizes the catalytic RF2 domain on the 50S subunit and disassembles the central intersubunit bridge B2a, resulting in RF2 departure. Our structures visualize how local rearrangements and spontaneous inter-subunit rotation poise the newly-made protein and RF2 to dissociate in preparation for ribosome recycling.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos/metabolismo , Ribossomos/metabolismo , Microscopia Crioeletrônica , Proteínas de Escherichia coli/química , Fatores de Terminação de Peptídeos/química , Ribossomos/química
5.
Biochem Biophys Rep ; 2: 87-93, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29124148

RESUMO

The ribosomal translocation involves both intersubunit rotations between the small 30S and large 50S subunits and the intrasubunit rotations of the 30S head relative to the 30S body. However, the detailed molecular mechanism on how the intersubunit and intrasubunit rotations are related to the translocation remains unclear. Here, based on available structural data a model is proposed for the ribosomal translocation, into which both the intersubunit and intrasubunit rotations are incorporated. With the model, we provide quantitative explanations of in vitro experimental data showing the biphasic character in the fluorescence change associated with the mRNA translocation and the character of a rapid increase that is followed by a slow single-exponential decrease in the fluorescence change associated with the 30S head rotation. The calculated translation rate is also consistent with the in vitro single-molecule experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA