Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Angew Chem Int Ed Engl ; : e202412896, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363695

RESUMO

The development of high-voltage lithium metal batteries (LMBs) encounters significant challenges due to aggressive electrode chemistry. Recently, locally concentrated ionic liquid electrolytes (LCILEs) have garnered attention for their exceptional stability with both Li anodes and high-voltage cathodes. However, there remains a limited understanding of how diluents in LCILEs affect the thermodynamic stability of the solvation structure and transportation dynamics of Li+ ions. Herein, we propose a wide-temperature LCILEs with 1,3-dichloropropane (DCP13) diluent to construct a non-equilibrium solvation structure under external electric field, wherein the DCP13 diluent enters the Li+ ion solvation sheath to enhance Li+ ion transport and suppress oxidative side reactions at high-nickel cathode (LiNi0.9Co0.05Mn0.05O2, NCM90).Consequently, a Li/NCM90 cell utilizing this LCILE achieves a high capacity retention of 94% after 240 cycles at 4.3 V, also operates stably at high cut-off voltages from 4.4 to 4.6 V and over a wide temperature range from -20 to 60 °C. Additionally, an Ah-level pouch cell with this LCILE simultaneously achieves high-energy-density and stable cycling, manifesting the practical feasibility. This work redefines the role of diluents in LCILEs, providing inspiration for electrolyte design in developing high-energy-density batteries.

2.
Nanotechnology ; 34(36)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37307801

RESUMO

Electrochemical double layer capacitors (EDLCs) are known for their high power density but hampered by low energy density. Herein, N-doped hollow carbon nanorods (NHCRs) have been constructed by a hard templating method using MnO2nanorods as the hard templates andm-phenylenediamine-formaldehyde resin as the carbon precursor. The NHCRs after activation (NHCRs-A) manifest abundant micropores/mesopores and an ultrahigh surface area (2166 m2g-1). When employed in ionic liquid (IL) electrolyte-based EDLCs, the NHCRs-A delivers a high specific capacitance (220 F g-1at 1 A g-1), an impressive energy density (110 Wh kg-1), and decent cyclability (97% retention over 15 000 cycles). The impressive energy density is derived from the abundant ion-available micropores, while the decent power density is originated from the hollow ion-diffusion channels as well as excellent wettability in ILs.In situinfrared spectroscopy together within situRaman unveil that both counter-ion adsorption and ion exchange are involved in the charge storage of NHCRs-A. This study provides insight into the construction of porous carbon materials for EDLCs.

3.
Proc Natl Acad Sci U S A ; 117(45): 27847-27853, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106405

RESUMO

Potassium secondary batteries are contenders of next-generation energy storage devices owing to the much higher abundance of potassium than lithium. However, safety issues and poor cycle life of K metal battery have been key bottlenecks. Here we report an ionic liquid electrolyte comprising 1-ethyl-3-methylimidazolium chloride/AlCl3/KCl/potassium bis(fluorosulfonyl) imide for safe and high-performance batteries. The electrolyte is nonflammable and exhibits a high ionic conductivity of 13.1 mS cm-1 at room temperature. A 3.6-V battery with K anode and Prussian blue/reduced graphene oxide cathode delivers a high energy and power density of 381 and 1,350 W kg-1, respectively. The battery shows an excellent cycling stability over 820 cycles, retaining ∼89% of the original capacity with high Coulombic efficiencies of ∼99.9%. High cyclability is also achieved at elevated temperatures up to 60 °C. Uniquely, robust K, Al, F, and Cl-containing passivating interphases are afforded with this electrolyte, which is key to superior battery cycling performances.

4.
Nano Lett ; 21(12): 5345-5352, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34097829

RESUMO

The quest for safe and high-performance Li ion batteries (LIBs) motivates intense efforts seeking a high-energy but reliable anode, cathode, and nonflammable electrolyte. For any of these, exploring new electrochemistry methods that enhance safety and performance by employing well-designed electrodes and electrolytes are required. Electrolyte wetting, governed by thermodynamics, is another critical issue in increasing Li ion transport through the separator. Herein, we report an approach to enhancing LIB performance by applying mechanical resonant vibration to increase electrolyte wettability on the separator. Wetting is activated at a resonant frequency with a capillary wave along the surface of the electrolyte, allowing the electrolyte to infiltrate into the porous separator by inertia force. This mechanical resonance, rather than electrochemistry, leads to the high specific capacity, rate capability, and cycling stability of LIBs. The concept of the mechanical approach is a promising yet simple strategy for the development of safer LIBs using liquid electrolytes.

5.
Magn Reson Chem ; 56(2): 86-94, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28499327

RESUMO

We conduct a comparative study of conductivity and diffusion coefficient of two dicationic ionic liquids (3,3'-(octane-1,8-diyl)bis(1-ethyl-3-imidazolium) bis(trifluoromethylsulfonyl)amide ([IMCI][TFSI], S1) and 3,3'-(2,2'-(ethane-1,2-diylbis(oxy))bis(ethane-2,1-diyl))bis(1-ethyl-3-imidazolium) bis(trifluoromethylsulfonyl)amide ([IMOI][TFSI], S2)) at various temperatures. The diffusion coefficients of cation and anion in ionic liquids are determined by using pulse gradient spin-echo nuclear magnetic resonance method. S2 shows lower viscosity, higher conductivity, and higher diffusion coefficient than those of S1. Moreover, the influence of polyethyleneglycol (PEG200, Mw  = 200) addition in PEG200/IL binary solutions is investigated. PEG200/S1 binary solutions show lower viscosity, higher conductivity, and higher diffusion coefficient than those of neat S1. The experimental molar conductivity (Λ) of neat IL and PEG200/IL binary solutions is lower than that of the calculated molar conductivity (ΛNMR ) from pulse gradient spin-echo nuclear magnetic resonance method at various temperatures, indicating that not all the diffusion species belong to the ionic conduction. In other words, NMR diffusion measurements comprise charged and paired (without charge) ions. Copyright © 2017 John Wiley & Sons, Ltd.

6.
ACS Appl Mater Interfaces ; 16(40): 53963-53971, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39340421

RESUMO

LiNiO2 (LNO) is a promising positive material for next-generation vehicle batteries because of its high theoretical capacity and lower cost compared to the Co analogues. However, its unstable performance such as Ni dissolution results in capacity fade and poor cycle life, impeding its practical application. Since hydrogen fluoride (HF), the hydrolysis product of LiPF6, is highly reactive with LNO positive electrodes, exploring LiPF6-free electrolytes is attractive to improve cycle stability and eliminate parasitic reactions. Herein, a series of ionic liquids (ILs) with Li[FSA] ([FSA]- = bis(fluorosulfonyl)amide) salts are investigated as electrolytes compatible with the LNO positive electrode. The use of IL electrolytes enhances cycle performance, achieving a high capacity retention of 73.1% in Li/LNO cells after 500 cycles with a high Li salt concentration. Further characterizations confirm that the cathode electrolyte interphase formed on the LNO positive electrode in the highly Li-salt concentrated ILs suppresses Ni dissolution, structural degradation, and side reactions. Meanwhile, the above electrolyte is capable of effectively alleviating Al corrosion at high potentials. This work highlights the role of electrolytes and contributes to addressing the stability concerns of positive electrode components at high voltages.

7.
Adv Mater ; 36(23): e2400177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38346222

RESUMO

As next-generation energy storage devices, lithium metal batteries (LMBs) must offer high safety, high-voltage resistance, and a long life span. Electrolyte engineering is a facile strategy to tailor the interfacial chemistry of LMBs. In particular, the solvation structure and derived solid electrolyte interphase (SEI) are crucial for a satisfactory battery performance. Herein, a novel middle-concentrated ionic liquid electrolyte (MCILE) with an anion-rich solvation structure tuned by difluorinated cations is demonstrated to achieve ultrahigh safety, high-voltage stability, and excellent ternary-cathode compatibility. Novel gem-difluorinated cations first synthesized for prestoring fluorine on positively charged species, not only preferentially adsorb in the inner-Helmholtz layers, but also participate in regulating the Li+ solvation structure, resulting in a robust interphase. Moreover, these weak interactions in the Li+ solvation structure including anion-solvent and ionic liquid (IL) cation-solvent pairs are first revealed, which are beneficial for promoting an anion-dominated solvation structure and the desolvation process. Benefiting from the unique anion-rich solvation structure, a stable hetero-SEI structure is obtained. The designed MCILE exhibits compatibility with Li metal anode and the high-voltage ternary cathode at high temperatures (60 °C). This work provides a new approach for regulating the solvation structure and electrode interphase chemistry of LMBs via difluorinated IL cations.

8.
ACS Appl Mater Interfaces ; 16(26): 34266-34280, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904375

RESUMO

Two different types of electrolytes (co-solvent and multi-salt) are tested for use in high voltage LiNi0.5Mn1.5O4||Si/graphite full cells and compared against a carbonate-based standard LiPF6 containing electrolyte (baseline). Ex situ postmortem XPS analysis on both anodes and cathodes over the life span of the cells reveals a continuously growing SEI and CEI for the baseline electrolyte. The cells cycled in the co-solvent electrolyte exhibited a relatively thick and long-term stable CEI (on LNMO), while a slowly growing SEI was determined to form on the Si/graphite. The multi-salt electrolyte offers more inorganic-rich SEI/CEI while also forming the thinnest SEI/CEI observed in this study. Cross-talk is identified in the baseline electrolyte cell, where Si is detected on the cathode, and Mn is detected on the anode. Both the multi-salt and co-solvent electrolytes are observed to substantially reduce this cross-talk, where the co-solvent is found to be the most effective. In addition, Al corrosion is detected for the multi-salt electrolyte mainly at its end-of-life stage, where Al can be found on both the anode and cathode. Although the co-solvent electrolyte offers superior interface properties in terms of the limitation of cross-talk, the multi-salt electrolyte offers the best overall performance, suggesting that interface thickness plays a superior role compared to cross-talk. Together with their electrochemical cycling performance, the results suggest that multi-salt electrolyte provides a better long-term passivation of the electrodes for high-voltage cells.

9.
Materials (Basel) ; 16(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37445113

RESUMO

To make supercapattery devices feasible, there is an urgent need to find electrode materials that exhibit a hybrid mechanism of energy storage. Herein, we provide a first report on the capability of lithium manganese sulfates to be used as supercapattery materials at elevated temperatures. Two compositions are studied: monoclinic Li2Mn(SO4)2 and orthorhombic Li2Mn2(SO4)3, which are prepared by a freeze-drying method followed by heat treatment at 500 °C. The electrochemical performance of sulfate electrodes is evaluated in lithium-ion cells using two types of electrolytes: conventional carbonate-based electrolytes and ionic liquid IL ones. The electrochemical measurements are carried out in the temperature range of 20-60 °C. The stability of sulfate electrodes after cycling is monitored by in-situ Raman spectroscopy and ex-situ XRD and TEM analysis. It is found that sulfate salts store Li+ by a hybrid mechanism that depends on the kind of electrolyte used and the recording temperature. Li2Mn(SO4)2 outperforms Li2Mn2(SO4)3 and displays excellent electrochemical properties at elevated temperatures: at 60 °C, the energy density reaches 280 Wh/kg at a power density of 11,000 W/kg. During cell cycling, there is a transformation of the Li-rich salt, Li2Mn(SO4)2, into a defective Li-poor one, Li2Mn2(SO4)3, which appears to be responsible for the improved storage properties. The data reveals that Li2Mn(SO4)2 is a prospective candidate for supercapacitor electrode materials at elevated temperatures.

10.
ACS Appl Mater Interfaces ; 15(21): 25462-25472, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37204404

RESUMO

Rechargeable lithium-metal batteries (LMBs) are anticipated to enable enhanced energy densities, which can be maximized when minimizing the amount of excess lithium in the cell down to zero, also referred to as "zero excess" LMBs. In this case, the only source of lithium is the positive electrode active material─just like in lithium-ion batteries. However, this requires the fully reversible deposition of metallic lithium, i.e., the Coulombic efficiency (CE) approaching 100%. Herein, the lithium plating from ionic liquid-based electrolytes, composed of N-butyl-N-methyl pyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as the conducting salt, on nickel current collectors is investigated via a comprehensive set of electrochemical techniques coupled with operando and in situ atomic force microscopy and ex situ X-ray photoelectron spectroscopy. The investigation involves the use of fluoroethylene carbonate (FEC) as an electrolyte additive. The results show that an elevated LiTFSI concentration leads to a lower overpotential for the lithium nucleation and a more homogeneous deposition. The incorporation of FEC results in a further lowered overpotential and a stabilized solid electrolyte interphase, enabling a substantially enhanced CE.

11.
ACS Appl Mater Interfaces ; 15(29): 35062-35071, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37440356

RESUMO

The development of sodium-ion batteries utilizing sulfonylamide-based electrolytes is significantly encumbered by the corrosion of the Al current collector, resulting in capacity loss and poor cycling stability. While ionic liquid electrolytes have been reported to suppress Al corrosion, a recent study found that pitting corrosion occurs even when ionic liquids are employed. This study investigates the effects of temperature and Na salt concentration on the Al corrosion behavior in different sulfonylamide-based ionic liquid electrolytes for sodium-ion batteries. In the present work, cyclic voltammetry measurements and scanning electron microscopy showed that severe Al corrosion occurred in ionic liquids at high temperatures and low salt concentrations. X-ray photoelectron spectroscopy was employed to identify the different elemental components and verify the thickness of the passivation layer formed under varied salt concentrations and temperatures. The differences in the corrosion behaviors observed under the various conditions are ascribed to the ratio of free [FSA]- to Na+-coordinating [FSA]- in the electrolyte and the stability of the newly formed passivation layer. This work aims at augmenting the understanding of Al corrosion behavior in ionic liquid electrolytes to develop advanced batteries.

12.
Sci Bull (Beijing) ; 68(16): 1819-1842, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37516661

RESUMO

Magnesium-ion batteries (MIBs) are considered strong candidates for next-generation energy-storage systems owing to their high theoretical capacity, divalent nature and the natural abundancy of magnesium (Mg) resources on Earth. However, the development of MIBs has been mainly limited by the incompatibility of Mg anodes with several Mg salts and conventional organic-liquid electrolytes. Therefore, one major challenge faced by MIBs technology lies on developing safe electrolytes, which demonstrate appropriate electrochemical voltage window and compatibility with Mg anode. This review discusses the development of MIBs from the point-of-view of the electrolyte syntheses. A systematic assessment of promising electrolyte design strategies is proposed including liquid and solid-state electrolytes. Liquid-based electrolytes have been largely explored and can be categorized by solvent-type: organic solvent, aqueous solvent, and ionic-liquids. Organic-liquid electrolytes usually present high electrochemical and chemical stability but are rather dangerous, while aqueous electrolytes present high ionic conductivity and eco-friendliness but narrow electrochemical stability window. Some ionic-liquid electrolytes have proved outstanding performance but are fairly expensive. As alternative to liquid electrolytes, solid-state electrolytes are increasingly attractive to increase energy density and safety. However, improving the ionic conductivity of Mg ions in these types of electrolytes is extremely challenging. We believe that this comprehensive review will enable researchers to rapidly grasp the problems faced by electrolytes for MIBs and the electrolyte design strategies proposed to this date.

13.
ACS Appl Mater Interfaces ; 14(18): 20888-20895, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35482956

RESUMO

A novel fluorine-free ionic liquid electrolyte comprising lithium dicyanamide (LiDCA) and trimethyl(isobutyl)phosphonium tricyanomethanide (P111i4TCM) in a 1:9 molar ratio is studied as an electrolyte for lithium metal batteries. At room temperature, it demonstrates high ionic conductivity and viscosity of about 4.5 mS cm-1 and 64.9 mPa s, respectively, as well as a 4 V electrochemical stability window (ESW). Li stripping/plating tests prove the excellent electrolyte compatibility with Li metal, evidenced by the remarkable cycling stability over 800 cycles. The evolution of the Li-electrolyte interface upon cycling was investigated via electrochemical impedance spectroscopy, displaying a relatively low impedance increase after the initial formation cycles. Finally, the solid electrolyte interphase (SEI) formed on Li metal appeared to have a bilayer structure mostly consisting of DCA and TCM reduction products. Additionally, decomposition products of the phosphonium cation were also detected, despite prior studies reporting its stability against Li metal.

14.
ACS Appl Mater Interfaces ; 14(12): 14302-14312, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35302758

RESUMO

Potassium-ion batteries (PIBs) have been lauded as the next-generation energy storage systems on account of their high voltage capabilities and low costs and the high abundance of potassium resources. However, the practical utility of PIBs has been heavily encumbered by severe K metal dendrite formation, safety issues, and insufficient electrochemical performance during operations─indeed critical issues that underpin the need for functional electrolytes with high thermal stability, robust solid-electrolyte interphase (SEI)-forming capabilities, and high electrochemical performance. In a bid to establish a knowledge framework for harnessing high rate capabilities and long cycle life from graphite negative electrodes, this study presents the physical properties and electrochemical behavior of a high K+ concentration inorganic ionic liquid (IL) electrolyte, K[FSA]-Cs[FSA] (FSA- = bis(fluorosulfonyl)amide) (54:46 in mol), at an intermediate temperature of 70 °C. This IL electrolyte demonstrates an ionic conductivity of 2.54 mS cm-1 and a wide electrochemical window of 5.82 V. Charge-discharge tests performed on a graphite negative electrode manifest a high discharge capacity of 278 mAh g-1 (0.5 C) at 70 °C, a high rate capability (106 mAh g-1 at 100 C), and a long cyclability (98.7% after 450 cycles). Stable interfacial properties observed by electrochemical impedance spectroscopy during cycling are attributed to the formation of sulfide-rich all-inorganic SEI, which was examined through X-ray photoelectron spectroscopy. The performance of the IL is collated with that of an N-methyl-N-propylpyrrolidinium-based organic IL to provide insight into the synergism between the highly concentrated K+ electrolyte at intermediate temperatures and the all-inorganic SEI during electrochemical operations of the graphite negative electrode.

15.
ACS Appl Mater Interfaces ; 14(13): 15784-15798, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35315660

RESUMO

We have investigated the sodium electrochemistry and the evolution and chemistry of the solid-electrolyte interphase (SEI) upon cycling Na metal electrodes in two ionic liquid (IL) electrolytes. The effect of the IL cation chemistry was determined by examining the behavior of a phosphonium IL (P111i4FSI) in comparison to its pyrrolidinium-based counterpart (C3mpyrFSI) at near-saturated NaFSI salt concentrations (superconcentrated ILs) in their dry state and with water additive. The differences in their physical properties are reported, with the P111i4FSI system having a lower viscosity, higher conductivity, and higher ionicity in comparison to the C3mpyrFSI-based electrolyte, although the addition of 1000 ppm (0.1 wt %) of water had a more dramatic effect on these properties in the latter case. Despite these differences, there was little effect in the ability to sustain stable cycling at moderate current densities and capacities (being nearly identical at 1 mA cm-2 and 1 mAh cm-2). However, the IL based on the phosphonium cation is shown to support more demanding cycling with high stability (up to 4 mAh cm-2 at 1, 2, and 4 mA cm-2 current density), whereas C3mpyrFSI rapidly failed (at 1 mA cm-2 /4 mAh cm-2). The SEI was characterized ex situ using solid-state 23Na NMR, XPS, and SEM and showed that the presence of a Na complex, identified in our previous work on C3mpyrFSI to correlate with stable, dendrite-free Na metal cycling, was also more prominent and coexisted with a NaF-rich surface. The results here represent a significant breakthrough in the development of high-capacity Na metal anodes, clearly demonstrating the superior performance and stability of the P111i4FSI electrolyte, even after the addition of water (up to 1000 ppm (0.1 wt %)), and show great promise to enable future higher-temperature (50 °C) Na-metal-based batteries.

16.
ACS Appl Mater Interfaces ; 13(45): 54069-54078, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34748308

RESUMO

Rechargeable lithium-ion batteries using high-capacity anodes and high-voltage cathodes can deliver the highest possible energy densities among all electrochemical devices. However, there is no single electrolyte with a wide and stable electrochemical window that can accommodate both a high-voltage cathode and a low-voltage anode so far. Here, we propose that a strategy of using a hybrid electrolyte should be applied to realize the full potential of a Ni-rich LiNi0.8Co0.1Mn0.1O2 (NCM811)-silicon/carbon (Si/C) full cell by simultaneously achieving optimal redox chemistry at both the NCM811 cathode and the Si/C anode. The hybrid-electrolyte design spatially separates the cathodic electrolytes from anodic electrolytes by a Nafion-based separator. The ionic liquid electrolyte (LiTFSI-Pyr13TFSI) on the cathode side can stand high work potentials and form a stable cathodic electrolyte intermediate (CEI) on NCM811. Meanwhile, a stable solid electrolyte intermediate (SEI) and high cycling stability can also be achieved on the anode side, enabled by a localized high concentration of ether-based electrolytes (LiTFSI-DME/HFE). The decoupled NCM811-Si/C full cell exhibits excellent long-term cycling performance with ultrahigh capacity retention for over 1000 cycles, thanks to the synergy of the cathode-side and anode-side electrolytes. This hybrid-electrolyte strategy has been proven to be applicable for other high-performance battery systems such as dual-ion batteries (DIB).

17.
ACS Appl Mater Interfaces ; 13(4): 5706-5720, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33496175

RESUMO

We have previously reported that water addition (∼1000 ppm) to an N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide (C3mpyrFSI) superconcentrated ionic liquid electrolyte (50 mol % NaFSI) promoted the formation of a favorable solid electrolyte interphase (SEI) and resulted in enhanced cycling stability. This study reports the characterization of Na-metal anode surfaces cycled with these electrolytes containing different water concentrations (up to 5000 ppm). Morphological and spectroscopic characterization showed that water addition greatly influences the formation of the SEI and that ∼1000 ppm of water promoted the formation of an active and more uniform deposit, with larger quantities of SEI species (S, O, F, and N) present. Water addition to the electrolyte system is also proposed to promote the formation of a new complex between the FSI anions, water molecules, and sodium cations as components of the SEI. For both dry and wet (∼1000 ppm) electrolytes, the SEIs were mainly composed of NaF, metal oxide (i.e., Na2O), and the complex, suggested to be Na2[SO3-N-SO2F]·nH2O (n = 0-2). Postcycling SEM analysis of the Na-metal electrodes after extensive cycling (500 cycles, 1.0 mA·cm-2, 1.0 mA·.cm-2) was used to estimate the minimal average cycling efficiency (ACE), which was enhanced by water addition: up to ∼99% for the 1000 ppm cell compared to ∼98% for the dry cell. Two distinct deposit morphologies, a microporous and a compact layer deposit, were evident after extended cycling in the wet and dry electrolytes. The presence of both the microporous and compact layer deposits on Na-metal surfaces cycled with the wet electrolyte, along with the distinct chemistry and morphology of the SEI, all contributed to a more stable symmetric cell voltage profile and lower cell polarization. In contrast, a higher fraction of microporous deposits and the absence of compact layer formation in the dry electrolyte were associated with higher cell polarization potentials and the occurrence of dendrites.

18.
ACS Appl Mater Interfaces ; 13(37): 44254-44265, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34519196

RESUMO

Combining the advantages of dual-ion batteries (DIBs) and sodium-ion batteries (SIBs), we herein develop a superior sodium-based dual-ion battery (Na-DIB) based on the PTCDA organic anode and ionic liquid (IL) electrolyte. The system shows the highest specific discharge capacity of 177 mAh g-1 at 0.5C and excellent capacity retention over 100% at 2C after 200 cycles. Notably, even at an ultrahigh rate of 20C, the battery still maintains a considerable capacity of 60 mAh g-1 with a coulombic efficiency (CE) close to 100 and 94% capacity retention after 1000 cycles. Moreover, the self-discharge of the system has been investigated and shown to have an extremely low value of 0.18% h-1. Consequently, this work presents an excellent Na-DIB system, which could be a promising candidate for large-scale applications.

19.
ACS Appl Mater Interfaces ; 12(20): 23035-23045, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32338860

RESUMO

Nonaqueous electrolyte has become one of the technical barriers in enabling Li-ion battery comprising of a high voltage cathode and high capacity anode. In this work, we demonstrate a saturated piperidinum bis(fluorosulfonyl)imide ionic liquid (IL) with a LiFSI salt not only supports the redox reaction on the cathode at high voltages, but also shows exceptional kinetic stability on the lithiated anode as evidenced by its improved cycling performance in a NMC532/Si-graphite full cells cycled between 4.6 and 3.0 V. On the basis of the spectroscopic/microscopic analysis and molecular dynamics (MD) simulations, the superior performance of the cells is attributed to the formation of solid-electrolyte-interphase on both electrode as well as unique solvation structure where a deadlocked coordination network is established at the saturated state, which prevents transition metal dissolution into the electrolyte via a solvation process.

20.
Front Chem ; 8: 600140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330392

RESUMO

Hybrid metal ion batteries are perceived as competitive alternatives to lithium ion batteries because they provide better balance between energy/power density, battery cost, and environmental requirements. However, their cycling stability and high-temperature storage performance are still far from the desired. Herein, we first examine the temperature-induced reactivity of three-layered oxide, P3-Na2/3Ni1/3Mg1/6Mn1/2O2, toward lithium ionic liquid electrolyte upon cycling in hybrid Li/Na ion cells. Through ex situ X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses, the structural and surface changes in P3-Na2/3Ni1/3Mg1/6Mn1/2O2 are monitored and discussed. Understanding the relevant changes occurring during dual Li+ and Na+ intercalation into P3-Na2/3Ni1/3Mg1/6Mn1/2O2 is of crucial importance to enhance the overall performance of hybrid Li/Na ion batteries at elevated temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA