Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Can J Microbiol ; 69(9): 362-368, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37235883

RESUMO

Anaerobic microorganisms in Canada Natural Upgrading Limited (CNUL) fluid fine tailings (FFT) are sustained by residual solvent hydrocarbons. Although FFT are methanogenic in nature, sulfate-reducing microorganisms represent a significant portion of FFT bacterial community. In this study, we examined biodegradation of three iso-alkanes (2-methylbutane, 2-methylpentane, and 3-methylpentane), representing major iso-alkanes in paraffinic solvent, in CNUL FFT under sulfate-reducing conditions. During ∼1100 days of incubation, only 2-methylpentane was degraded partially, whereas 2-methylbutane and 3-methylpentane were not degraded. During active degradation of 2-methylpentane, the bacterial community was dominated by Anaerolineaceae followed by Syntrophaceae, Peptococcaceae, Desulfobacteraceae, and Desulfobulbaceae. The archaeal community was co-dominated by acetoclastic (Methanosaetaceae) and hydrogenotrophic (Methanobacteriaceae) methanogens. This study underlines the limited capability of the microbial community indigenous to CNUL FFT in degrading recalcitrant iso-alkanes under sulfate-reducing conditions.


Assuntos
Euryarchaeota , Petróleo , Alcanos/metabolismo , Metano/metabolismo , Sulfatos/metabolismo , Campos de Petróleo e Gás , Petróleo/metabolismo , Solventes/metabolismo , Biodegradação Ambiental
2.
Appl Microbiol Biotechnol ; 103(5): 2391-2401, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30610291

RESUMO

Branched alkanes are important constituents of crude oil and are usually regarded as resistant to microbial degradation, resulting in little knowledge of biochemical processes involved in anaerobic branched alkanes biodegradation. Here, we initiated an incubation study by amendment of iso-C9 (2-methyl, 3-methyl, and 4-methyloctane) as substrates for methanogenic degradation in production water from a high-temperature petroleum reservoir. Over an incubation period of 367 days, significant methanogenesis was observed in samples amended with these branched alkanes. The strong methanogenic activity only observed in iso-C9 amendments suggested the presence of microbial transformation from iso-alkanes into methane. GC-MS-based examination of the original production water identified an intermediate tentatively to be iso-C9-like alkylsuccinate, but was not detected in the enrichment cultures, combined with the successful amplification of assA functional gene in inoculating samples, revealing the ability of anaerobic biodegradation of iso-C9 via fumarate addition pathway. Microorganisms affiliated with members of the Firmicutes, Synergistetes, and methanogens of genus Methanothermobacter spp. were highly enriched in samples amended with iso-C9. The co-occurrence of known syntrophic acetate oxidizers Thermoacetogenium spp. and Methanothermobacter spp. (known hydrogenotrophic methanogens) indicates a potential syntrophic acetate oxidation associated with the methanogenic biodegradation of iso-C9. These results provide some useful information on the potential biodegradation of branched alkanes via methanogenesis and also suggest that branched alkanes are likely activated via fumarate addition in high-temperature petroleum reservoirs.


Assuntos
Alcanos/metabolismo , Biodegradação Ambiental , Firmicutes/metabolismo , Metano/biossíntese , Methanobacteriaceae/metabolismo , Petróleo/metabolismo , Crescimento Quimioautotrófico , Temperatura Alta , Campos de Petróleo e Gás , Água/química
3.
Microorganisms ; 9(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34442648

RESUMO

iso-Alkanes, a major fraction of the solvents used in bitumen extraction from oil sand ores, are slow to biodegrade in anaerobic tailings ponds. We investigated methanogenic biodegradation of iso-alkane mixtures comprising either three (2-methylbutane, 2-methylpentane, 3-methylpentane) or five (2-methylbutane, 2-methylpentane, 2-methylhexane, 2-methylheptane, 2-methyloctane) iso-alkanes representing paraffinic and naphtha solvents, respectively. Mature fine tailings (MFT) collected from two tailings ponds, having different residual solvents (paraffinic solvent in Canadian Natural Upgrading Limited (CNUL) and naphtha in Canadian Natural Resources Limited (CNRL)), were amended separately with the two mixtures and incubated in microcosms for ~1600 d. The indigenous microbes in CNUL MFT produced methane from the three-iso-alkane mixture after a lag of ~200 d, completely depleting 2-methylpentane while partially depleting 2-methylbutane and 3-methylpentane. CNRL MFT exhibited a similar degradation pattern for the three iso-alkanes after a lag phase of ~700 d, but required 1200 d before beginning to produce methane from the five-iso-alkane mixture, preferentially depleting components in the order of decreasing carbon chain length. Peptococcaceae members were key iso-alkane-degraders in both CNUL and CNRL MFT but were associated with different archaeal partners. Co-dominance of acetoclastic (Methanosaeta) and hydrogenotrophic (Methanolinea and Methanoregula) methanogens was observed in CNUL MFT during biodegradation of three-iso-alkanes whereas CNRL MFT was enriched in Methanoregula during biodegradation of three-iso-alkanes and in Methanosaeta with five-iso-alkanes. This study highlights the different responses of indigenous methanogenic microbial communities in different oil sands tailings ponds to iso-alkanes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA