Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 615
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proteomics ; : e2400036, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004851

RESUMO

Liquid chromatography-mass spectrometry (LC-MS) intact mass analysis and LC-MS/MS peptide mapping are decisional assays for developing biological drugs and other commercial protein products. Certain PTM types, such as truncation and oxidation, increase the difficulty of precise proteoform characterization owing to inherent limitations in peptide and intact protein analyses. Top-down MS (TDMS) can resolve this ambiguity via fragmentation of specific proteoforms. We leveraged the strengths of flow-programmed (fp) denaturing online buffer exchange (dOBE) chromatography, including robust automation, relatively high ESI sensitivity, and long MS/MS window time, to support a TDMS platform for industrial protein characterization. We tested data-dependent (DDA) and targeted strategies using 14 different MS/MS scan types featuring combinations of collisional- and electron-based fragmentation as well as proton transfer charge reduction. This large, focused dataset was processed using a new software platform, named TDAcquireX, that improves proteoform characterization through TDMS data aggregation. A DDA-based workflow provided objective identification of αLac truncation proteoforms with a two-termini clipping search. A targeted TDMS workflow facilitated the characterization of αLac oxidation positional isomers. This strategy relied on using sliding window-based fragment ion deconvolution to generate composite proteoform spectral match (cPrSM) results amenable to fragment noise filtering, which is a fundamental enhancement relevant to TDMS applications generally.

2.
Cancer Sci ; 115(4): 1241-1249, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38321872

RESUMO

Pancreatic cancer (PC) is a challenging malignancy to treat. Mac-2-binding protein glycan isomer (M2BPGi) is a novel serum marker of liver fibrosis and hepatocellular carcinoma and is secreted by hepatic stellate and stroma cells. Serum M2BPGi levels are upregulated in PC patients. We measured the expression of M2BPGi in the serum of 27 PC patients and determined whether M2BPGi affects the malignant potential of PC cells in vitro. We also examined the effect of M2BP on PC tumor growth and gemcitabine sensitivity in vivo. Serum M2BPGi levels in PC patients were higher compared with those of healthy subjects. M2BPGi extraction in cancer-associated fibroblasts (CAFs) was higher compared with that of PC cells. M2BPGi treatment promoted the proliferation and invasion of PC cells. The suppression of galectin-3, which binds to M2BPGi, did not affect the proliferation-promoting effect of M2BPGi in PC cells. The suppression of M2BP reduced tumor growth and enhanced gemcitabine sensitivity in PC-bearing xenograft mice. CAF-derived M2BPGi promotes the proliferation and invasion of PC cells. Targeting M2BPGi may represent a new therapeutic strategy to circumvent refractory PC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Antígenos de Neoplasias/metabolismo , Biomarcadores , Carcinoma Hepatocelular/tratamento farmacológico , Gencitabina , Cirrose Hepática , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico
3.
Small ; 20(29): e2400085, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38329164

RESUMO

Modulating the solvation structure of hydrated zinc ions using organic additives stands as a pragmatic approach to suppress dendrite formation and corrosion on zinc metal anodes (ZMAs), thereby enhancing the rechargeability of aqueous Zn-ion batteries. However, fundamental screening principles for organic additives with diverse molecular structures remain elusive, especially for isomers with the same molecular formula. This study delves into the impact of three isomeric hexagonal alcohols (mannitol, sorbitol, and galactitol) as additives in adjusting Zn2+ solvation structural behaviors within ZnSO4 baseline electrolytes. Electrical measurements and molecular simulations reveal the specific molecular structure of mannitol, which features interweaving electron clouds between adjacent hydroxyl groups, achieving a high local electron cloud density. This phenomenon significantly enhances desolvation abilities, thus establishing a more stable anode/electrolyte interface chemistry. Even at 5 mA cm-2 for 2.5 mAh cm-2 capacity, Zn||Zn symmetric cells with mannitol-regulated electrolyte display an impressive 1170 h lifespan, far exceeding those with other isomer additives and is nearly tenfold longer than that with a pure ZnSO4 electrolyte (120 h). Rather than strictly adhering to focusing on chemical composition, this study with emphasis on optimizing molecular structure offers a promising untapped dimension to screen more efficient additives to enhance the reversibility of ZMAs.

4.
J Mol Recognit ; : e3098, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924170

RESUMO

Doxepin is an antihistamine and tricyclic antidepressant that binds to the histamine H1 receptor (H1R) with high affinity. Doxepin is an 85:15 mixture of the E- and Z-isomers. The Z-isomer is well known to be more effective than the E-isomer, whereas based on the crystal structure of the H1R/doxepin complex, the hydroxyl group of Thr1123.37 is close enough to form a hydrogen bond with the oxygen atom of the E-isomer. The detailed binding characteristics and reasons for the differences remain unclear. In this study, we analyzed doxepin isomers bound to the receptor following extraction from a purified H1R protein complexed with doxepin. The ratio of the E- and Z-isomers bound to wild-type (WT) H1R was 55:45, indicating that the Z-isomer was bound to WT H1R with an approximately 5.2-fold higher affinity than the E-isomer. For the T1123.37V mutant, the E/Z ratio was 89:11, indicating that both isomers have similar affinities. Free energy calculations using molecular dynamics (MD) simulations also reproduced the experimental results of the relative binding free energy differences between the isomers for WT and T1123.37V. Furthermore, MD simulations revealed that the hydroxyl group of T1123.37 did not form hydrogen bonds with the E-isomer, but with the adjacent residues in the binding pocket. Analysis of the receptor-bound doxepin and MD simulations suggested that the hydroxyl group of T1123.37 contributes to the formation of a chemical environment in the binding pocket, which is slightly more favorable for the Z-isomer without hydrogen bonding with doxepin.

5.
J Synchrotron Radiat ; 31(Pt 4): 841-850, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917019

RESUMO

The methanol-to-hydrocarbons (MTH) process involves the conversion of methanol, a C1 feedstock that can be produced from green sources, into hydrocarbons using shape-selective microporous acidic catalysts - zeolite and zeotypes. This reaction yields a complex mixture of species, some of which are highly reactive and/or present in several isomeric forms, posing significant challenges for effluent analysis. Conventional gas-phase chromatography (GC) is typically employed for the analysis of reaction products in laboratory flow reactors. However, GC is not suitable for the detection of highly reactive intermediates such as ketene or formaldehyde and is not suitable for kinetic studies under well defined low pressure conditions. Photoelectron-photoion coincidence (PEPICO) spectroscopy has emerged as a powerful analytical tool for unraveling complex compositions of catalytic effluents, but its availability is limited to a handful of facilities worldwide. Herein, PEPICO analysis of catalytic reactor effluents has been implemented at the FinEstBeAMS beamline of MAX IV Laboratory. The conversion of dimethyl ether (DME) on a zeolite catalyst (ZSM-5-MFI27) is used as a prototypical model reaction producing a wide distribution of hydrocarbon products. Since in zeolites methanol is quickly equilibrated with DME, this reaction can be used to probe vast sub-networks of the full MTH process, while eliminating or at least slowing down methanol-induced secondary reactions and catalyst deactivation. Quantitative discrimination of xylene isomers in the effluent stream is achieved by deconvoluting the coincidence photoelectron spectra.

6.
Planta ; 259(5): 102, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549005

RESUMO

MAIN CONCLUSION: Hydroxy(phenyl)pyruvic acid reductase from Actaea racemosa catalyzes dual reactions in reducing 4-hydroxyphenylpyruvic acid as well as ß-hydroxypyruvic acid. It thus qualifies to be part of fukinolic and cimicifugic acid biosynthesis and also photorespiration. The accumulation of fukinolic acid and cimicifugic acids is mainly restricted to Actaea racemosa (Ranunculaceae) and other species of the genus Actaea/Cimicifuga. Cimicifugic and fukinolic acids are composed of a hydroxycinnamic acid part esterified with a benzyltartaric acid moiety. The biosynthesis of the latter is unclear. We isolated cDNA encoding a hydroxy(phenyl)pyruvic acid reductase (GenBank OR393286) from suspension-cultured material of A. racemosa (ArH(P)PR) and expressed it in E. coli for protein production. The heterologously synthesized enzyme had a mass of 36.51 kDa and catalyzed the NAD(P)H-dependent reduction of 4-hydroxyphenylpyruvic acid to 4-hydroxyphenyllactic acid or ß-hydroxypyruvic acid to glyceric acid, respectively. The optimal temperature was at 38 °C and the pH optimum at pH 7.5. NADPH is the preferred cosubstrate (Km 23 ± 4 µM). Several substrates are accepted by ArH(P)PR with ß-hydroxypyruvic acid (Km 0.26 ± 0.12 mM) followed by 4-hydroxyphenylpyruvic acid (Km 1.13 ± 0.12 mM) as the best ones. Thus, ArH(P)PR has properties of ß-hydroxypyruvic acid reductase (involved in photorespiration) as well as hydroxyphenylpyruvic acid reductase (possibly involved in benzyltartaric acid formation).


Assuntos
Ácidos Cafeicos , Cimicifuga , Fenilacetatos , Ácidos Fenilpirúvicos , Piruvatos , Cimicifuga/química , Ácido Pirúvico , Oxirredutases , Escherichia coli/genética , Extratos Vegetais
7.
Mass Spectrom Rev ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37439762

RESUMO

The Earth's atmosphere is composed of an enormous variety of chemical species associated with trace gases and aerosol particles whose composition and chemistry have critical impacts on the Earth's climate, air quality, and human health. Mass spectrometry analysis as a powerful and popular analytical technique has been widely developed and applied in atmospheric chemistry for decades. Mass spectrometry allows for effective detection, identification, and quantification of a broad range of organic and inorganic chemical species with high sensitivity and resolution. In this review, we summarize recently developed mass spectrometry techniques, methods, and applications in atmospheric chemistry research in the past several years on molecular-level. Specifically, new developments of ion-molecule reactors, various soft ionization methods, and unique coupling with separation techniques are highlighted. The new mass spectrometry applications in laboratory studies and field measurements focused on improving the detection limits for traditional and emerging volatile organic compounds, characterizing multiphase highly oxygenated molecules, and monitoring particle bulk and surface compositions.

8.
Dig Dis ; 42(2): 166-177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38219719

RESUMO

INTRODUCTION: Mac-2-binding protein glycosylation isomer (M2BPGi) is a novel biomarker for liver fibrosis, but little is known about its role in cirrhosis-associated clinical outcomes. This study aimed to investigate the predictive role of M2BPGi in cirrhosis-associated complications. METHODS: One hundred and forty-nine cirrhotic patients were retrospectively enrolled. Patients were followed up for 1 year, and cirrhosis-associated clinical events were recorded. Receiver operating characteristic curve (ROC) analysis was used to establish the values of the predictive models for cirrhotic outcomes, and Cox proportional hazards regression models were used to identify predictors of clinical outcomes. RESULTS: Sixty (40.3%) patients experienced cirrhosis-associated clinical events and had higher M2BPGi levels compared to those without events (8.7 vs. 5.1 cutoff index, p < 0.001). The most common cirrhosis-associated complications were bacterial infections (24.2%). On ROC analysis, M2BPGi to albumin ratio (M2BPGi/albumin) had comparable discriminant abilities for all cirrhosis-associated events (area under the ROC curve [AUC] = 0.74) compared with M2BPGi, Child-Pugh, model for end-stage liver disease, albumin-bilirubin scores, and neutrophil-to-lymphocyte ratio and was superior to M2BPGi alone for all bacterial infectious events (AUC = 0.80). Cox regression analysis revealed that the M2BPGi/albumin, but not M2BPGi alone, independently predicted all cirrhosis-associated events (hazard ratio [HR] = 1.34, p = 0.038) and all bacterial infectious events (HR = 1.51, p = 0.011) within 1 year. However, M2BPGi/albumin did not predict other cirrhotic complications and transplant-free survival. DISCUSSION/CONCLUSION: M2BPGi/albumin might serve as a potential prognostic indicator for patients with cirrhosis, particularly for predicting bacterial infections.


Assuntos
Infecções Bacterianas , Doença Hepática Terminal , Humanos , Glicosilação , Estudos Retrospectivos , Glicoproteínas de Membrana/metabolismo , Índice de Gravidade de Doença , Cirrose Hepática , Biomarcadores/metabolismo , Infecções Bacterianas/complicações , Infecções Bacterianas/diagnóstico , Albuminas/metabolismo , Antígenos de Neoplasias/metabolismo
9.
Environ Sci Technol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995999

RESUMO

Per- and polyfluoroalkyl substances (PFAS) enter the marine food web, accumulate in organisms, and potentially have adverse effects on predators and consumers of seafood. However, evaluations of PFAS in meso-to-apex predators, like sharks, are scarce. This study investigated PFAS occurrence in five shark species from two marine ecosystems with contrasting relative human population densities, the New York Bight (NYB) and the coastal waters of The Bahamas archipelago. The total detected PFAS (∑PFAS) concentrations in muscle tissue ranged from 1.10 to 58.5 ng g-1 wet weight, and perfluorocarboxylic acids (PFCAs) were dominant. Fewer PFAS were detected in Caribbean reef sharks (Carcharhinus perezi) from The Bahamas, and concentrations of those detected were, on average, ∼79% lower than in the NYB sharks. In the NYB, ∑PFAS concentrations followed: common thresher (Alopias vulpinus) > shortfin mako (Isurus oxyrinchus) > sandbar (Carcharhinus plumbeus) > smooth dogfish (Mustelus canis). PFAS precursors/intermediates, such as 2H,2H,3H,3H-perfluorodecanoic acid and perfluorooctanesulfonamide, were only detected in the NYB sharks, suggesting higher ambient concentrations and diversity of PFAS sources in this region. Ultralong-chain PFAS (C ≥ 10) were positively correlated with nitrogen isotope values (δ15N) and total mercury in some species. Our results provide some of the first baseline information on PFAS concentrations in shark species from the northwest Atlantic Ocean, and correlations between PFAS, stable isotopes, and mercury further contextualize the drivers of PFAS occurrence.

10.
Anal Bioanal Chem ; 416(1): 125-139, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37872415

RESUMO

In situ separation and visualization of synthetic and naturally occurring isomers from heterogeneous plant tissues, especially when they share similar molecular structures, are a challenging task. In this study, we combined the ion mobility separation with desorption electrospray ionization mass spectrometry imaging (DESI-IM-MSI) to achieve a direct separation and visualization of two synthetic auxin derivatives, auxinole and its structural isomer 4pTb-MeIAA, as well as endogenous auxins from Arabidopsis samples. Distinct distribution of these synthetic isomers and endogenous auxins in Arabidopsis primary roots and hypocotyls was achieved in the same imaging analysis from both individually treated and cotreated samples. We also observed putative metabolites of synthetic auxin derivatives, i.e. auxinole amino acid conjugates and hydrolysed 4pTb-MeIAA product - 4pTb-IAA, based on their unique drifting ion intensity patterns. Furthermore, DESI-IM-MSI-revealed abundance of endogenous auxins and synthetic isomers was validated by liquid chromatography-mass spectrometry (LC-MS). Our results demonstrate that DESI-IM-MSI could be used as a robust technique for detecting endogenous and exogenous isomers and provide a spatiotemporal evaluation of hormonomics profiles in plants.


Assuntos
Arabidopsis , Espectrometria de Massas por Ionização por Electrospray/métodos , Ácidos Indolacéticos/análise , Isomerismo , Estrutura Molecular
11.
Hepatol Res ; 54(7): 615-626, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38323994

RESUMO

AIM: A recombinant monoclonal antibody against the hepatitis B surface antigen glycan isomer (HBsAgGi) was newly developed using the O-glycosylated PreS2 peptide in M-HBsAg of hepatitis B virus (HBV) genotype C. However, the association between HBsAgGi and the development of hepatocellular carcinoma (HCC) during nucleoside/nucleotide analog (NA) therapy remains unknown. METHODS: A total of 112 HBV genotype C-infected patients who were treated with NA were included in this study. We assessed the association between HBV markers, including HBsAgGi and other conventional markers, and the development of HCC during NA therapy. RESULTS: Ten patients developed HCC during the follow-up period. Of the HBV markers, HBsAg (≤3.53 log IU/mL; p = 0.047), HBsAgGi/HBsAg ratio (≥1.10; p = 0.035), and HBV DNA (≤6.3 log copies/mL; p = 0.012) at baseline and HBsAg (≤3.19 log IU/mL; p = 0.033) and HBsAgGi/HBsAg ratio (≥1.09; p = 0.003) at 48 weeks after NA therapy were significantly associated with the development of HCC according to the log rank test. In contrast, no significant association was observed between HBsAgGi and the development of HCC. Multivariate analysis revealed that a platelet count at baseline ≤88 × 103/mm3 (p = 0.026; hazard ratio [HR], 10.577) and an HBsAgGi/HBsAg ratio at 48 weeks after NA therapy ≥1.09 (p = 0.040; HR, 10.099) were independently and significantly associated with the development of HCC. CONCLUSIONS: Our findings suggest that a combination of on-treatment HBsAgGi and HBsAg predicts the development of HCC during NA therapy.

12.
Hepatol Res ; 54(1): 32-42, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37638483

RESUMO

AIM: It is desirable to identify predictors of regression of liver fibrosis after achieving sustained virological response by anti-hepatitis C virus (anti-HCV) therapy. We retrospectively investigated the serum interferon-γ inducible protein 10 kDa (IP-10) level as a predictive indicator of regression of liver fibrosis after successful hepatitis C virus eradication by direct-acting antiviral agents (DAAs) therapy. METHODS: The study participants were recruited from a historical cohort of 116 chronically hepatitis C virus-infected patients who had achieved sustained virological response by DAAs therapy and whose serum Mac-2 binding protein glycosylation isomer (M2BPGi) levels at baseline (before DAAs therapy) were ≥2.0 cut-off index. We defined patients with M2BPGi levels <1.76 and ≥1.76 cut-off index at 2 years after the end of treatment (EOT) as the regression (n = 71) and non-regression (n = 45) groups, respectively. RESULTS: Multivariate analyses revealed that the albumin-bilirubin score at baseline, and albumin-bilirubin score, Fibrosis-4 index at 24 weeks after the EOT, and serum IP-10 change from baseline to 24 weeks after the EOT (IP-10 change) were significantly associated with regression of M2BPGi-based liver fibrosis. In addition, IP-10 change was significantly associated with regression of M2BPGi-based liver fibrosis by a multivariate analysis, even when the serum M2BPGi levels were aligned by propensity score matching and in patients with advanced M2BPGi-based liver fibrosis: M2BPGi levels ≥3.3 cut-off index at baseline. CONCLUSIONS: Serum IP-10 change from baseline to 24 weeks after the EOT is a feasible predictor of regression of M2BPGi-based liver fibrosis after achieving sustained virological response with DAA therapy.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38987197

RESUMO

BACKGROUND AND AIM: Understanding the dynamics of serum Mac-2 binding protein glycosylation isomer (M2BPGi) remains pivotal for hepatitis C virus (HCV) patients' post-sustained virologic response (SVR12) through direct-acting antivirals (DAAs). METHODS: We compared areas under receiver operating characteristic curves (AUROCs) of M2BPGi, FIB-4, and APRI and assess M2BPGi cutoff levels in predicting fibrosis stages of ≥F3 and F4 utilizing transient elastography in 638 patients. Variations in M2BPGi levels from pretreatment to SVR12 and their association with pretreatment alanine transaminase (ALT) levels and fibrosis stage were investigated. RESULTS: The AUROCs of M2BPGi were comparable to FIB-4 in predicting ≥F3 (0.914 vs 0.902, P = 0.48) and F4 (0.947 vs 0.915, P = 0.05) but were superior to APRI in predicting ≥F3 (0.914 vs 0.851, P = 0.001) and F4 (0.947 vs 0.857, P < 0.001). Using M2BPGi cutoff values of 2.83 and 3.98, fibrosis stages of ≥F3 and F4 were confirmed with a positive likelihood ratio ≥10. The median M2BPGi change was -0.55. Patients with ALT levels ≥5 times ULN or ≥F3 demonstrated more pronounced median decreases in M2BPGi level compared to those with ALT levels 2-5 times ULN and <2 times ULN (-0.97 vs -0.68 and -0.44; P < 0.001) or with < F3 (-1.52 vs -0.44; P < 0.001). CONCLUSIONS: Serum M2BPGi is a reliable marker for advanced hepatic fibrosis. Following viral clearance, there is a notable M2BPGi decrease, with the extent of reduction influenced by ALT levels and fibrosis stage.

14.
Theor Chem Acc ; 143(4): 26, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495857

RESUMO

The anti (a) to syn (s) isomerization pathway of the deprotonated form of the dimer with two nickel(II) 15-membered octaazamacrocyclic units connected via a carbon-carbon (C-C) σ bond was investigated. For the initial anti (a) structure, a deprotonation of one of the bridging (sp3 hybridized) carbon atoms is suggested to allow for an a to s geometry twist. A 360° scan around the bridging C-C dihedral angle was performed first to find an intermediate geometry. Subsequently, the isomerization pathway was explored via individual steps using a series of mode redundant geometry optimizations (internal coordinates potential energy surface scans) and geometry relaxations leading to the s structure. The prominent geometries (intermediates) of the isomerization pathway are chosen and compared to the a and s structures, and geometry relaxations of the protonated forms of selected intermediates are considered. Supplementary Information: The online version contains supplementary material available at 10.1007/s00214-024-03100-5.

15.
Surg Today ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38937354

RESUMO

PURPOSE: Hepatocellular carcinoma (HCC) frequently recurs after radical resection, resulting in a poor prognosis. This study assessed the prognostic value of Mac-2 binding protein glycosylation isomer (M2BPGi) for early recurrence (ER) in patients with HCC. METHODS: Patients who underwent radical resection for HCC between 2015 and 2021. HCC recurrence within one year after curative resection was defined as ER. RESULTS: The 150 patients were divided into two groups: non-ER (116, 77.3%) and ER (34, 22.7%). The ER group had a lower overall survival rate (p < 0.0001) and significantly higher levels of M2BPGi (1.06 vs. 2.74 COI, p < 0.0001) than the non-ER group. High M2BPGi levels (odds ratio [OR] 1.78, 95% confidence interval [CI] 1.31-2.41, p < 0.0001) and a large tumor size (OR 1.31, 95% CI, 1.05-1.63; p = 0.0184) were identified as independent predictors of ER. M2BPGi was the best predictor of ER according to a receiver operating characteristic (ROC) analysis (area under the ROC curve 0.82, p < 0.0001). CONCLUSIONS: M2BPGi can predict ER after surgery and is useful for risk stratification in patients with HCC.

16.
Chem Pharm Bull (Tokyo) ; 72(7): 648-657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38972722

RESUMO

Butin and butein are significant bioactive flavanones derived from plants, existing as tautomers of each other. However, their physicochemical attributes, such as their spectral profiles under varying experimental conditions in aqueous solutions and established chromatographic methods for distinguishing between them, remain undetermined. In this study, we determined the basic properties of butin and butein using conventional spectroscopic, reversed-phase, and chiral HPLC analyses. The spectra of the synthesized butin and butein were analyzed using a UV-Vis spectrophotometer in several solvents with different polarities as well as in aqueous solutions at various pH values. Furthermore, the behavior of the measured spectra was reproduced by calculations to reveal the effects of the solvent and pH on the spectra of butin and butein in organic and aqueous solutions. Subsequently, we assessed the structural stability of butin and butein using reversed-phase HPLC, which revealed that butein is unstable compared with butin in a general culture medium. The synthesized butin was effectively separated into R- and S-isomers with positive and negative Cotton effects, respectively, via HPLC using a chiral column. These findings will aid in uncovering the individual properties of both butin and butein that may have been concealed by their tautomerism and enable the synthesis of S-butin, which is typically challenging and time-consuming to isolate.


Assuntos
Chalconas , Cromatografia Líquida de Alta Pressão , Chalconas/química , Chalconas/síntese química , Espectrofotometria Ultravioleta , Estrutura Molecular , Concentração de Íons de Hidrogênio , Flavanonas/química , Flavanonas/síntese química , Flavanonas/análise , Estereoisomerismo , Solventes/química
17.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731415

RESUMO

Investigations have shown that storage bugs seriously harm grains during storage. In the interim, essential oils (EOs) have been proven to be a good botanical pesticide. The anti-Lasioderma serricorne properties of Elsholtzia ciliata essential oil, which was obtained by steam distillation, were evaluated using DL-limonene, carvone, and their two optical isomer components using contact, repelling, and fumigation techniques. Simultaneously, the fumigation, contact, and repellent activities of carvone and its two optical isomers mixed with DL-limonene against L. serruricorne were evaluated. The results showed that E. ciliata, its main components (R-carvone, DL-limonene), and S-carvone exhibited both fumigations (LC50 = 14.47, 4.42, 20.9 and 3.78 mg/L) and contact (LD50 = 7.31, 4.03, 28.62 and 5.63 µg/adult) activity against L.serricorne. A binary mixture (1:1) of R-carvone and DL-limonene displayed an obvious synergistic effect. A binary mixture (1:1) of carvone and its two optical isomers exhibited an obvious synergistic effect, too. Furthermore, the repellent activity of the EO, carvone, and its two optical isomers, DL-limonene, and a combination of them varied. To stop insect damage during storage, E. ciliata and its components can be utilized as bio-insecticides.


Assuntos
Inseticidas , Lamiaceae , Óleos Voláteis , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Lamiaceae/química , Animais , Inseticidas/química , Inseticidas/farmacologia , Limoneno/química , Limoneno/farmacologia , Repelentes de Insetos/química , Repelentes de Insetos/farmacologia , Monoterpenos Cicloexânicos/química , Monoterpenos Cicloexânicos/farmacologia , Sinergismo Farmacológico , Fumigação
18.
Artigo em Inglês | MEDLINE | ID: mdl-39019616

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are global contaminants. Seafood consumption is a possible PFAS exposure route to humans while the isomer specific analysis has not been conducted. METHODS: Perfluorooctane sulfonate (PFOS), perfluoroheptane sulfonate (PFHpS) and perfluorohexane sulfonate (PFHxS) were investigated in residents of Kyoto, Japan (n = 51). The relationship between plasma PFAS and seafood consumption biomarker, the ratio of eicosapentaenoic acid to arachidonic acid (EPA/AA) was examined by multiple regression analysis. RESULTS: Linear PFOS concentrations showed a significant positive correlation with the EPA/AA ratio in plasma samples (ß = 6.80, p = 0.0014). Linear PFHpS was marginally associated with EPA/AA ratio (ß = 0.178, p = 0.0874). Branched PFOS isomers and PFHxS had no associations with EPA/AA ratios. CONCLUSION: Seafood intake may be a significant exposure pathway for PFAS, such as PFOS but the isomers differ.


Assuntos
Ácidos Alcanossulfônicos , Biomarcadores , Ácido Eicosapentaenoico , Fluorocarbonos , Alimentos Marinhos , Fluorocarbonos/sangue , Ácidos Alcanossulfônicos/sangue , Humanos , Ácido Eicosapentaenoico/sangue , Alimentos Marinhos/análise , Biomarcadores/sangue , Japão , Masculino , Feminino , Pessoa de Meia-Idade , Isomerismo , Idoso , Adulto , Poluentes Ambientais/sangue , Contaminação de Alimentos/análise
19.
Angew Chem Int Ed Engl ; 63(30): e202405818, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665012

RESUMO

Molecular solar thermal systems (MOST) represent an auspicious solution for the storage of solar energy. We report silver salts as a unique class of catalysts, capable of releasing the stored energy from the promising 1,2-dihydro-1,2-azaborinine based MOST system. Mechanistic investigations provided insights into the silver catalyzed thermal backreaction, concurrently unveiling the first crystal structure of a 2-aza-3-borabicyclo[2.2.0]hex-5-ene, the Dewar isomer of 1,2-dihydro-1,2-azaborinine. Quantification of activation energies by kinetic experiments has elucidated the advantageous energy change associated with Lewis acid catalysts, a phenomenon corroborated through computational analysis. By means of low temperature NMR spectroscopy, mechanistic insights into the coordination of Ag+ to the 1,2-dihydro-1,2-azaborinine were gained.

20.
Angew Chem Int Ed Engl ; 63(15): e202319894, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38265268

RESUMO

Membrane-based separation has the merit of low carbon footprint. In this study, the pore size of metal-organic framework (MOF) membranes is rationally designed for discriminating various pairs of hydrocarbon isomers. Specifically, Zr-MOF UiO-66 (UiO stands for University of Oslo) membranes are developed for separating p/o-xylene due to their proper pore size. For n-hexane/2-methylpentane separation, the functional groups and proportion of the ligands in UiO-66 are gradually adjusted to effectively regulate the pore size, and UiO-66-33Br membranes are constructed. In addition, relying on the utilization of ligands with shorter length, MOF-801 membranes with smaller pore size are fabricated for n/i-butane separation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA