Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; 54(6): e2350761, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38566526

RESUMO

In multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), early pathological features include immune cell infiltration into the central nervous system (CNS) and blood-brain barrier (BBB) disruption. We investigated the role of junctional adhesion molecule-A (JAM-A), a tight junction protein, in active EAE (aEAE) pathogenesis. Our study confirms JAM-A expression at the blood-brain barrier and its luminal redistribution during aEAE. JAM-A deficient (JAM-A-/-) C57BL/6J mice exhibited milder aEAE, unrelated to myelin oligodendrocyte glycoprotein-specific CD4+ T-cell priming. While JAM-A absence influenced macrophage behavior on primary mouse brain microvascular endothelial cells (pMBMECs) under flow in vitro, it did not impact T-cell extravasation across primary mouse brain microvascular endothelial cells. At aEAE onset, we observed reduced lymphocyte and CCR2+ macrophage infiltration into the spinal cord of JAM-A-/- mice compared to control littermates. This correlated with increased CD3+ T-cell accumulation in spinal cord perivascular spaces and brain leptomeninges, suggesting JAM-A absence leads to T-cell trapping in central nervous system border compartments. In summary, JAM-A plays a role in immune cell infiltration and clinical disease progression in aEAE.


Assuntos
Barreira Hematoencefálica , Encefalomielite Autoimune Experimental , Células Endoteliais , Macrófagos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Animais , Encefalomielite Autoimune Experimental/imunologia , Camundongos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/imunologia , Medula Espinal/patologia , Medula Espinal/imunologia , Medula Espinal/metabolismo , Linfócitos T CD4-Positivos/imunologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças
2.
Cancer Sci ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38943512

RESUMO

Recent studies have shown that transmembrane-type tight junction proteins are upregulated in various cancers compared with their levels in normal tissues and are involved in cancer progression, suggesting that they are potential therapeutic targets. Here, we demonstrated the expression profile and a novel role of junctional adhesion molecule-A (JAM-A) in breast cancer. Immunohistochemistry of surgical specimens showed that JAM-A was highly expressed from carcinoma in situ lesions, as in other adenocarcinomas, with higher expression in invasive carcinomas. High expression of JAM-A contributed to malignant aspects such as lymph node metastasis and lymphatic involvement positivity. In breast cancer cells, JAM-A expression status affects malignant potentials including proliferation and migration. Multilayered proteomics revealed that JAM-A interacts with the amino acid transporter LAT1 in breast cancer cells. JAM-A regulates the expression of LAT1 and interacts with it on the whole cell membrane, leading to enhanced amino acid uptake to promote tumor growth. Double high expression of JAM-A and LAT1 predicts poor prognosis in patients with breast cancer. Of note, an antibody against an extracellular domain of JAM-A suppressed the proliferation of breast cancer cells. Our findings indicate the possibility of JAM-A-targeted therapy ideally combined with LAT1-targeted therapy as a new therapeutic strategy against breast cancer.

3.
J Gene Med ; 26(2): e3679, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38404047

RESUMO

BACKGROUND: Junctional adhesion molecule 2 (JAM2) plays a pivotal role in various biological processes, including proliferation, metastasis and angiogenesis, contributing to tumor progression. While previous studies have highlighted the polarizing functions of JAM2 in different cancer types, its specific role in lung adenocarcinoma (LUAD) remains unclear. METHODS: In this study, we harnessed multiple public databases to analyze the expression and prognostic significance of JAM2 in LUAD. Using the Linkedomics database, Matescape database and R package, we explored the associated genes, the potential biological functions and the impact of JAM2 on the tumor microenvironment. Our findings from public databases were further validated using real-time quantitative PCR, western blot and immunohistochemistry. Additionally, in vitro experiments were conducted to assess the influence of JAM2 on LUAD cell proliferation, invasion, migration, apoptosis and epithelial-mesenchymal transition. Furthermore, we established a xenograft model to investigate the in vivo effects of JAM2 on tumorigenesis. RESULTS: Our results revealed a significant downregulation of JAM2 in LUAD, and patients with low JAM2 expression exhibited unfavorable overall survival outcomes. Functional enrichment analysis indicated that JAM2 may be associated with processes such as cell adhesion, extracellular matrix, cell junctions and regulation of proliferation. Notably, increased JAM2 expression correlated with higher tumor microenvironment scores and reduced immune cell abundance. Furthermore, overexpression of JAM2 induced apoptosis, suppressed tumor proliferation and exhibited potential inhibitory effects on tumor invasion and migration through the modulation of epithelial-mesenchymal transition. Additionally, in vivo experiments confirmed that JAM2 overexpression led to a reduction in tumor growth. CONCLUSION: Overall, our study highlights the clinical significance of low JAM2 expression as a predictor of poor prognosis in LUAD patients. Moreover, JAM2 was found to exert inhibitory effects on various aspects of tumor progression. Consequently, JAM2 emerges as a promising prognostic biomarker and a potential therapeutic target for LUAD patients.


Assuntos
Adenocarcinoma de Pulmão , Molécula B de Adesão Juncional , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Biomarcadores , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Molécula B de Adesão Juncional/genética , Neoplasias Pulmonares/genética , Prognóstico , Microambiente Tumoral/genética
4.
Exp Cell Res ; 426(2): 113570, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36990421

RESUMO

There are few effective therapies for small cell lung carcinoma (SCLC); thus, we need to develop novel and efficacious treatments. We hypothesized that an antibody-drug conjugate (ADC) could be a promising option for SCLC. Several publicly available databases were used to demonstrate the extent to which junctional adhesion molecule 3 (JAM3) mRNA was expressed in SCLC and lung adenocarcinoma cell lines and tissues. Three SCLC cell lines, Lu-135, SBC-5, and Lu-134 A, were selected and examined for JAM3 protein expression by flow cytometry. Finally, we examined the response of the three SCLC cell lines to a conjugate between an anti-JAM3 monoclonal antibody HSL156 (developed in-house) and the recombinant protein DT3C, which consists of diphtheria toxin lacking the receptor-binding domain but containing the C1, C2, and C3 domains of streptococcal protein G. In silico analyses revealed that JAM3 mRNA was expressed higher in SCLC cell lines and tissues than in those of lung adenocarcinoma. As expected, all the three SCLC cell lines examined were positive for JAM3 at the mRNA and protein levels. Consequently, control SCLC cells, but not JAM3-silenced ones, were highly sensitive to HSL156-DT3C conjugates, resulting in dose- and time-dependent decreased viability. Finally, silencing JAM3 alone suppressed the growth of all SCLC cell lines examined. Taken together, these findings suggest that an ADC targeting JAM3 could represent a new approach to treating SCLC patients.


Assuntos
Adenocarcinoma de Pulmão , Molécula C de Adesão Juncional , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , RNA Mensageiro/genética
5.
Development ; 147(1)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31852685

RESUMO

In order to efficiently derive hematopoietic stem cells (HSCs) from pluripotent precursors, it is crucial to understand how mesodermal cells acquire hematopoietic and endothelial identities: two divergent, but closely related, cell fates. Although Npas4 has been recently identified as a conserved master regulator of hemato-vascular development, the molecular mechanisms underlying cell fate divergence between hematopoietic and vascular endothelial cells are still unclear. Here, we show in zebrafish that mesodermal cell differentiation into hematopoietic and vascular endothelial cells is regulated by Junctional adhesion molecule 3b (Jam3b) via two independent signaling pathways. Mutation of jam3b led to a reduction in npas4l expression in the posterior lateral plate mesoderm and defects in both hematopoietic and vascular development. Mechanistically, we show that Jam3b promotes endothelial specification by regulating npas4l expression through repression of the Rap1a-Erk signaling cascade. Jam3b subsequently promotes hematopoietic development, including HSCs, by regulating lrrc15 expression in endothelial precursors through the activation of an integrin-dependent signaling cascade. Our data provide insight into the divergent mechanisms for instructing hematopoietic or vascular fates from mesodermal cells.


Assuntos
Sistema Cardiovascular/embriologia , Hematopoese , Receptores de Superfície Celular/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistema Cardiovascular/citologia , Células Endoteliais/fisiologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas , Sistema de Sinalização das MAP Quinases , Mesoderma/embriologia , Receptores de Superfície Celular/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Brain Behav Immun ; 107: 330-344, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36371010

RESUMO

BACKGROUND: Stroke is a major cause of morbidity and mortality worldwide. After cerebral ischemia, peripheral immune cells infiltrate the brain and elicit an inflammatory response. However, it is not clear when and how these peripheral immune cells affect the central inflammatory response, and whether interventions that target these processes can alleviate ischemia-reperfusion (I/R) injury. METHODS: Single-cell transcriptomic sequencing and bioinformatics analysis were performed on peripheral blood of mice at different times after I/R to analyze the key molecule of cell subsets. Then, the expression pattern of this molecule was determined through various biological experiments, including quantitative RT-PCR, western blot, ELISA, and in situ hybridization. Next, the function of this molecule was assessed using knockout mice and the corresponding inhibitor. RESULTS: Single-cell transcriptomic sequencing revealed that peripheral monocyte subpopulations increased significantly after I/R. Cathepsin S (Ctss)was identified as a key molecule regulating monocyte activation by pseudotime trajectory analysis and gene function analysis. Next, Cathepsin S was confirmed to be expressed in monocytes with the highest expression level 3 days after I/R. Infarct size (p < 0.05), neurological function scores (p < 0.05), and apoptosis and vascular leakage rates were significantly reduced after Ctss knockout. In addition, CTSS destroyed the blood-brain barrier (BBB) by binding to junctional adhesion molecule (JAM) family proteins to cause their degradation. CONCLUSIONS: Cathepsin S inhibition attenuated cerebral I/R injury; therefore, cathepsin S can be used as a novel target for drug intervention after stroke.


Assuntos
Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Camundongos , Monócitos , Catepsinas , Traumatismo por Reperfusão/genética , Análise de Sequência de RNA
7.
Pathol Int ; 73(8): 331-340, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37449777

RESUMO

Tight junctions (TJs) are the most apical components of the cell-cell adhesion machinery in epithelial and endothelial cells and they play essential roles in homeostasis. Recent studies have revealed that aberrant expression of tight junction proteins (TJPs) is frequently observed in various type of cancers. Here we review cancer-associated aberrant expression of TJPs with focus on transmembrane-type TJPs including claudins, junctional adhesion molecule-A (JAM-A), and occludin. Some transmembrane-type TJPs are upregulated at the early neoplastic stage and their expression persists during dedifferentiation. Aberrant expression of TJPs contributes to proliferation, invasion, and dysregulated signaling of cancer cells. In addition to an increase in their expression level, their localization is altered from a TJ-restricted pattern to distribution throughout the whole cell membrane, making them suitable as therapeutic targets. Extracellular domains of transmembrane-type TJPs can be approached by target drugs not only from the lumen side (apical side) but also from the extracellular matrix side (basal side), including blood vessels. Aberrantly expressed TJPs are potential useful diagnostic markers as well as therapeutic targets for cancers.


Assuntos
Neoplasias , Proteínas de Junções Íntimas , Humanos , Proteínas de Junções Íntimas/metabolismo , Células Endoteliais , Claudinas , Junções Íntimas/metabolismo , Neoplasias/metabolismo , Ocludina/metabolismo
8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(12): 1820-1829, 2023 Dec 28.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-38448375

RESUMO

OBJECTIVES: Currently, traditional cervical cancer screening methods, such as high-risk human papillomavirus testing and liquid based cytology (LBC), still possess limitations. This study aims to identify new diagnostic biomarkers to achieve the goal of "precision screening" via exploring the clinical value of DNA methylation [ΔCtP: paired box gene 1 (PAX1)and ΔCtJ: junctional adhesion molecule 3 (JAM3)] detection in cervical exfoliated cells for the diagnosis of high-grade cervical lesions. METHODS: A total of 136 patients who underwent gynecological examinations in the vaginal room of the Department of Gynecology at the Third Xiangya Hospital of Central South University from June 2021 to June 2022 were retrospectively studied. Among them, 122 patients had non-high-grade cervical lesions, and 14 patients had high-grade cervical lesions. The variables included general information (age, body mass index, and menopause status), LBC, high-risk human papillomavirus, cervical tissue pathology, vaginal examination results, and the ΔCt values of JAM3 and PAX1 gene methylation. Logistic regression analysis was used to identify the factors affecting the diagnosis of high-grade cervical lesions, followed by correlation analysis and construction of a conditional inference tree model. RESULTS: Logistic regression analysis showed that the methylation ΔCt values of PAX1 and JAM3 genes and LBC detection results were statistically significant between the high-grade cervical lesions group and the non-high-grade cervical lesions group (all P<0.05). Correlation analysis revealed a negative correlation between cervical pathological changes and ΔCtP (r=-0.36, P<0.001), ΔCtJ (r=-0.448, P<0.001), LBC (r=-0.305, P<0.001), or bacterial diversity (r=-0.183, P=0.037). The conditional inference tree showed that when ΔCtJ>10.13, all of patients had non-high-grade cervical lesions, while ΔCtP>6.22, the number of non-high-grade lesions accounted for 97.5% (117/120), and high-grade lesions accounted for only 2.5% (3/120). When ΔCtJ>8.61 and LBC were atypical squamous cell of undetermined significance or negative for intraepithelial lesions or malignancy (NILM), 105 (99.1%) patients were non-high-grade cervical lesions, only 1 (0.9%) patient was high-grade lesion. When the results of LBC were high-grade lesions, only 9 patients' histopathological examination was the high-grade lesions and 3 non-high-grade lesions. When LBC indicated low-grade lesions, atypical squamous cell of undetermined significance, no intraepithelial lesions, and ΔCtP>6.22, 117 (97.5%) of patients' histopathological examination was the non-high-grade lesions. CONCLUSIONS: The JAM3/PAX1 gene methylation test can be used independently for the stratified diagnosis of high-grade/non-high-grade cervical lesions in women with high-risk human papillomavirus infection, independent of the cytological results of cervical excision. The JAM3/PAX1 gene methylation test can also be used in combination with LBC to make up for the shortcomings of low sensitivity of LBC. In addition, the application of methylation kit in large-scale cervical cancer screening in the future will be good to the detection of more patients with high-grade cervical lesions, and achieve early screening and early treatment for cervical lesions/cancer.


Assuntos
Células Escamosas Atípicas do Colo do Útero , Molécula C de Adesão Juncional , Neoplasias do Colo do Útero , Feminino , Humanos , Moléculas de Adesão Celular , Metilação de DNA , Detecção Precoce de Câncer , Papillomavirus Humano , Estudos Retrospectivos , Neoplasias do Colo do Útero/diagnóstico
9.
Biol Reprod ; 107(5): 1264-1278, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-35871541

RESUMO

Junctional adhesion molecule 3 (JAM3) is involved in epithelial cell junction, cell polarity, and motility. The molecular mechanisms underlying the role of JAM3 in placental dysfunction remain unclear. We hypothesized that JAM3 expression regulates trophoblast fusion, differentiation, proliferation, and apoptosis. Our results revealed that JAM3 was expressed in the cytotrophoblasts and syncytiotrophoblasts of first-trimester and term placental villi. JAM3 expression in cell-cell junctions decreased with the formation of syncytiotrophoblasts. Using trophoblasts as an in vitro model, we observed that forskolin and JAM3 knockdown significantly reduced JAM3 expression and increased syncytium formation. JAM3 knockdown additionally inhibited trophoblast proliferation and increased the number of trophoblasts in the sub-G1 and G2/M phases, indicating cell-cycle disturbance and apoptosis. Cell-cycle arrest was associated with the engagement of checkpoint kinase 2-cell division cycle 25C-cyclin-dependent kinase 1/cyclin B1 signaling. Increased expression of BIM, NOXA, XAF1, cytochrome c, and cleaved caspase-3 further indicated trophoblast apoptosis. Overexpression of JAM3 or recombinant JAM3 protein enhanced trophoblast adhesion and migration, which were inhibited by JAM3 knockdown. JAM3 knockdown induced reactive oxygen species and syncytin 2 expression in trophoblasts. Furthermore, H2O2-induced oxidative stress reduced JAM3 expression in trophoblasts and cell culture supernatants. H2O2 simultaneously induced trophoblast apoptosis. JAM3 expression was significantly decreased in the plasmas and placentas of patients with early-onset severe preeclampsia. Thus, our results show that JAM3 may not only be a structural component of trophoblast cell junctions but also regulates trophoblast fusion, differentiation, proliferation, apoptosis, and motility. Dysregulated trophoblast JAM3 expression is crucial in preeclampsia development.


Assuntos
Molécula C de Adesão Juncional , Pré-Eclâmpsia , Humanos , Feminino , Gravidez , Trofoblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Molécula C de Adesão Juncional/metabolismo , Peróxido de Hidrogênio , Apoptose
10.
J Transl Med ; 20(1): 260, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672776

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is a heavy social burden worldwide. Because the mechanisms involved in LUAD remain unclear, the prognosis of LUAD remains poor. Consequently, it is urgent to investigate the potential mechanisms of LUAD. Junctional adhesion molecule-like protein (JAML), is recognized as a tumorigenesis molecule in gastric cancer. However, the role of JAML in LUAD is still unclear. Here we aimed to evaluate the role of JAML in LUAD. METHODS: qRT-PCR, Western blotting and immunohistochemistry were conducted to investigate the expression of JAML in LUAD tissues. JAML was knocked down and overexpressed in LUAD cells using transient transfection by siRNA and plasmids or stable transfection by lentivirus. Proliferation potential of LUAD cells were detected by Cell Counting Kit-8, EdU incorporation and Colony formation assay. Migration and invasion abilities of LUAD cells were determined by wound healing, transwell migration and invasion assays. Cell cycle and cell apoptosis were detected by flow cytometry. The effects of JAML in vivo were studied in xenograft tumor models. Western blotting was used to explore the molecular mechanisms of JAML function. In addition, rescue experiments were performed to verify the possible mechanisms. RESULTS: JAML expression was elevated in LUAD tissues compared with peritumor tissues, and this upregulation was positively related to pT and pTNM. Furthermore, both in vitro and in vivo, JAML silencing markedly repressed malignant behaviors of LUAD cells and vice versa. Knockdown of JAML also mediated cell cycle arrest at G0/G1 phase and promoted apoptosis in LUAD cells. Mechanistically, silencing JAML repressed the process of epithelial-mesenchymal transition by inactivating the Wnt/ß-catenin pathway in LUAD cells. Effects of JAML can be rescued by Wnt/ß-catenin pathway activator in A549 cells. CONCLUSIONS: Our data reveal the oncogenic role of JAML in LUAD, indicating that JAML may be a predictive biomarker and novel therapeutic target for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Moléculas de Adesão Celular/metabolismo , Neoplasias Pulmonares , Adenocarcinoma/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Moléculas de Adesão Juncional/genética , Moléculas de Adesão Juncional/metabolismo , Neoplasias Pulmonares/patologia , Via de Sinalização Wnt , beta Catenina/metabolismo
11.
Mol Cell Biochem ; 477(1): 79-98, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34533648

RESUMO

The F11 Receptor (F11R), also called Junctional Adhesion Molecule-A (JAM-A) (F11R/JAM-A), is a transmembrane glycoprotein of the immunoglobulin superfamily, which is mainly located in epithelial and endothelial cell tight junctions and also expressed on circulating platelets and leukocytes. It participates in the regulation of various biological processes, as diverse as paracellular permeability, tight junction formation and maintenance, leukocyte transendothelial migration, epithelial-to-mesenchymal transition, angiogenesis, reovirus binding, and platelet activation. Dysregulation of F11R/JAM-A may result in pathological consequences and disorders in normal cell function. A growing body of evidence points to its role in carcinogenesis and invasiveness, but its tissue-specific pro- or anti-tumorigenic role remains a debated issue. The following review focuses on the F11R/JAM-A tissue-dependent manner in tumorigenesis and metastasis and also discusses the correlation between poor patient clinical outcomes and its aberrant expression. In the future, it will be required to clarify the signaling pathways that are activated or suppressed via the F11R/JAM-A protein in various cancer types to understand its multiple roles in cancer progression and further use it as a novel direct target for cancer treatment.


Assuntos
Moléculas de Adesão Celular/metabolismo , Movimento Celular , Transição Epitelial-Mesenquimal , Proteínas de Neoplasias/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Receptores de Superfície Celular/metabolismo , Moléculas de Adesão Celular/genética , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética , Neovascularização Patológica/genética , Receptores de Superfície Celular/genética
12.
Circ Res ; 127(8): 1056-1073, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32673519

RESUMO

RATIONALE: Intercellular tight junctions are crucial for correct regulation of the endothelial barrier. Their composition and integrity are affected in pathological contexts, such as inflammation and tumor growth. JAM-A (junctional adhesion molecule A) is a transmembrane component of tight junctions with a role in maintenance of endothelial barrier function, although how this is accomplished remains elusive. OBJECTIVE: We aimed to understand the molecular mechanisms through which JAM-A expression regulates tight junction organization to control endothelial permeability, with potential implications under pathological conditions. METHODS AND RESULTS: Genetic deletion of JAM-A in mice significantly increased vascular permeability. This was associated with significantly decreased expression of claudin-5 in the vasculature of various tissues, including brain and lung. We observed that C/EBP-α (CCAAT/enhancer-binding protein-α) can act as a transcription factor to trigger the expression of claudin-5 downstream of JAM-A, to thus enhance vascular barrier function. Accordingly, gain-of-function for C/EBP-α increased claudin-5 expression and decreased endothelial permeability, as measured by the passage of fluorescein isothiocyanate (FITC)-dextran through endothelial monolayers. Conversely, C/EBP-α loss-of-function showed the opposite effects of decreased claudin-5 levels and increased endothelial permeability. Mechanistically, JAM-A promoted C/EBP-α expression through suppression of ß-catenin transcriptional activity, and also through activation of EPAC (exchange protein directly activated by cAMP). C/EBP-α then directly binds the promoter of claudin-5 to thereby promote its transcription. Finally, JAM-A-C/EBP-α-mediated regulation of claudin-5 was lost in blood vessels from tissue biopsies from patients with glioblastoma and ovarian cancer. CONCLUSIONS: We describe here a novel role for the transcription factor C/EBP-α that is positively modulated by JAM-A, a component of tight junctions that acts through EPAC to up-regulate the expression of claudin-5, to thus decrease endothelial permeability. Overall, these data unravel a regulatory molecular pathway through which tight junctions limit vascular permeability. This will help in the identification of further therapeutic targets for diseases associated with endothelial barrier dysfunction. Graphic Abstract: An graphic abstract is available for this article.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Permeabilidade Capilar , Moléculas de Adesão Celular/metabolismo , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Receptores de Superfície Celular/metabolismo , Junções Íntimas/metabolismo , Adulto , Idoso , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Moléculas de Adesão Celular/genética , Linhagem Celular , Claudina-5/genética , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neovascularização Patológica , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Receptores de Superfície Celular/genética , Transdução de Sinais , Junções Íntimas/genética , Regulação para Cima
13.
Cancer Sci ; 112(2): 906-917, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33185939

RESUMO

Recent studies have shown that aberrant expression of tight junction proteins (TJP) contributes to malignant potential of various cancers. In the present study, we investigated the expression of junctional adhesion molecule-A (JAM-A), one of the transmembrane TJP, in uterine cervical adenocarcinoma and the significance of its expression for malignancy. Immunohistochemistry on human surgical specimens showed that JAM-A was aberrantly expressed in neoplastic regions including adenocarcinoma in situ (AIS). Knockout of JAM-A significantly suppressed cell proliferation and colony-forming and migration abilities. We also showed that an antibody specific to an extracellular region of JAM-A reduced cell proliferation ability and that loss of JAM-A increased drug sensitivity of cervical adenocarcinoma cells. Based on a comprehensive proteome analysis, we found that poliovirus receptor (PVR/CD155) was regulated by JAM-A and formed a physical interaction with JAM-A. In human surgical specimens, PVR/CD155 expression was significantly correlated with some clinicopathological features and prognosis of cervical adenocarcinoma. Interestingly, most of the PVR/CD155-positive cases expressed a high level of JAM-A, and patients with the expression pattern of PVR/CD155 positive/JAM-A high had significantly shorter periods of relapse-free survival (P = .00964) and overall survival (P = .0204) than those for the other patients. Our observations suggest that aberrant expression of JAM-A promotes malignancy of uterine cervical adenocarcinoma by regulation of PVR/CD155, and JAM-A is therefore a potential therapeutic target for this malignancy.


Assuntos
Adenocarcinoma/patologia , Moléculas de Adesão Celular/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Neoplasias do Colo do Útero/patologia , Adenocarcinoma/metabolismo , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias do Colo do Útero/metabolismo
14.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32938765

RESUMO

Reovirus attachment protein σ1 is a trimeric molecule containing tail, body, and head domains. During infection, σ1 engages sialylated glycans and junctional adhesion molecule-A (JAM-A), triggering uptake into the endocytic compartment, where virions are proteolytically converted to infectious subvirion particles (ISVPs). Further disassembly allows σ1 release and escape of transcriptionally active reovirus cores into the cytosol. Electron microscopy has revealed a distinct conformational change in σ1 from a compact form on virions to an extended form on ISVPs. To determine the importance of σ1 conformational mobility, we used reverse genetics to introduce cysteine mutations that can cross-link σ1 by establishing disulfide bonds between structurally adjacent sites in the tail, body, and head domains. We detected phenotypic differences among the engineered viruses. A mutant with a cysteine pair in the head domain replicates with enhanced kinetics, forms large plaques, and displays increased avidity for JAM-A relative to the parental virus, mimicking properties of ISVPs. However, unlike ISVPs, particles containing cysteine mutations that cross-link the head domain uncoat and transcribe viral positive-sense RNA with kinetics similar to the parental virus and are sensitive to ammonium chloride, which blocks virion-to-ISVP conversion. Together, these data suggest that σ1 conformational flexibility modulates the efficiency of reovirus host cell attachment.IMPORTANCE Nonenveloped virus entry is an incompletely understood process. For reovirus, the functional significance of conformational rearrangements in the attachment protein, σ1, that occur during entry and particle uncoating are unknown. We engineered and characterized reoviruses containing cysteine mutations that cross-link σ1 monomers in nonreducing conditions. We found that the introduction of a cysteine pair in the receptor-binding domain of σ1 yielded a virus that replicates with faster kinetics than the parental virus and forms larger plaques. Using functional assays, we found that cross-linking the σ1 receptor-binding domain modulates reovirus attachment but not uncoating or transcription. These data suggest that σ1 conformational rearrangements mediate the efficiency of reovirus host cell binding.


Assuntos
Reoviridae/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Ligação Viral , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Células L , Camundongos , Mutação , Ligação Proteica , Conformação Proteica , Receptores de Superfície Celular/metabolismo , Reoviridae/genética , Proteínas Virais/genética , Vírion/metabolismo , Internalização do Vírus
15.
Semin Cell Dev Biol ; 81: 2-12, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28739340

RESUMO

The ability of cells to polarize is an intrinsic property of almost all cells and is required for the devlopment of most multicellular organisms. To develop cell polarity, cells integrate various signals derived from intrinsic as well as extrinsic sources. In the recent years, cell-cell adhesion receptors have turned out as important regulators of cellular polarization. By interacting with conserved cell polarity proteins, they regulate the recruitment of polarity complexes to specific sites of cell-cell adhesion. By initiating intracellular signaling cascades at those sites, they trigger their specific subcellular activation. Not surprisingly, cell-cell adhesion receptors regulate diverse aspects of cell polarity, including apico-basal polarity in epithelial and endothelial cells, front-to-rear polarity in collectively migrating cells, and planar cell polarity during organ development. Here, we review the recent developments highlighting the central roles of cell-cell adhesion molecules in the development of cell polarity.


Assuntos
Moléculas de Adesão Celular/metabolismo , Polaridade Celular/fisiologia , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Animais , Adesão Celular/fisiologia , Células Endoteliais/metabolismo , Humanos , Ligação Proteica
16.
J Cell Mol Med ; 24(17): 9533-9544, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32681617

RESUMO

Cancer stem cells (CSCs) are a source of tumour recurrence in patients with nasopharyngeal carcinoma (NPC); however, the function of microRNA-124 (miR-124) in NPC CSCs has not been clearly defined. In this study, we investigated the role of miR-124 in NPC CSCs. qRT-PCR was performed to measure miR-124 expression in NPC tissues and cell lines and the effects of miR-124 on stem-like properties and radiosensitivity of NPC cells measured. Luciferase reporter assays and rescue experiments were used to investigate the interaction of miR-124 with the 3'UTR of junctional adhesion molecule A (JAMA). Finally, we examined the effects of miR-124 in an animal model and clinical samples. Down-regulation of miR-124 was detected in cancer tissues and was inversely associated with tumour stage and lymph node metastasis. Overexpression of miR-124 inhibited stemness properties and enhanced radiosensitivity of NPC cells in vitro and in vivo via targeting JAMA. Up-regulation of miR-124 was correlated with superior overall survival of patients with NPC. Our study demonstrates that miR-124 can inhibit stem-like properties and enhance radiosensitivity by directly targeting JAMA in NPC. These findings provide novel insights into the molecular mechanisms underlying therapy failure in NPC.


Assuntos
Molécula A de Adesão Juncional/genética , MicroRNAs/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Tolerância a Radiação/genética , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular Tumoral , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Metástase Linfática/genética , Camundongos , Camundongos Endogâmicos BALB C , Recidiva Local de Neoplasia/genética , Células-Tronco Neoplásicas/metabolismo , Regulação para Cima/genética
17.
J Cell Biochem ; 120(10): 18117-18127, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31161679

RESUMO

Abnormal expression of claudin-1 (CLDN-1) and junctional adhesion molecule-A (JAM-A) has been described in certain malignancies but their clinical relevance is poorly understood. The present study aims to elucidate the role of CLDN-1 and JAM-A in oral epithelial dysplasia (OED) and oral squamous cell carcinoma (OSCC). Changes in the expression of these proteins were identified immunohistochemically on tissue sections from patients with OED and OSCC and compared with control. A correlation between the expression level of proteins and clinicopathological features was analyzed by Pearson's correlation χ2 test. The survival curve of the follow-up data was estimated by the Kaplan-Meier method followed by the log-rank test. CLDN-1 and JAM-A were highly expressed in OED and OSCC tissues when compared to control. Also, delocalization of CLDN-1 from the membrane to the cytoplasm to the nucleus was observed as the cell proceeds from normal to malignancy. Increased expression of CLDN-1 and JAM-A in both OED and OSCC were concomitant with histological grades. In addition, increased JAM-A was associated with perineural invasion of cancer cells. A positive correlation between the expression level of proteins was observed in OED (r = 0.733) and OSCC (r = 0.577). Kaplan-Meier analysis in patients with OSCC showed that the survival rate was lower in patients with high CLDN-1 and high JAM-A expression compared to low expressed patients. To conclude, the elevated level and delocalization of CLDN-1 and JAM-A suggest their use as tumor markers. A positive correlation between CLDN-1 and JAM-A suggests joint detection of these proteins as a future diagnostic tool in oral precancerous and cancerous conditions.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Moléculas de Adesão Celular/biossíntese , Claudina-1/biossíntese , Mucosa Bucal/metabolismo , Neoplasias Bucais/metabolismo , Lesões Pré-Cancerosas/metabolismo , Receptores de Superfície Celular/biossíntese , Adulto , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/mortalidade , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/patologia , Neoplasias Bucais/diagnóstico , Neoplasias Bucais/mortalidade , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/mortalidade , Taxa de Sobrevida
18.
Mol Carcinog ; 58(7): 1181-1193, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30834573

RESUMO

Junctional adhesion molecule A (JAM-A) is a transmembrane protein that contributes to different biological process, including the epithelial to mesenchymal transition (EMT). Through an EMT profiler array, we explored the molecular players associated with human thyroid cancer progression and identified JAM-A as one of the genes mostly deregulated. The quantitative real-time polymerase chain reaction and immunohistochemistry analyses showed that downregulation of JAM-A occurred in anaplastic thyroid carcinoma (ATC) compared with normal thyroid (NT) and papillary thyroid carcinoma (PTC) tissues and correlated with extrathyroid infiltration, tumor size, and ATC histotype. In ATC cell lines, JAM-A restoration suppressed malignant hallmarks of transformation including cell proliferation, motility, and transendothelial migration. Accordingly, knockdown of JAM-A enhanced thyroid cancer cell proliferation and motility in PTC cells. Through the proteome profiler human phospho-kinase array, we demonstrated that higher expression of JAM-A was associated with a significant increased level of phosphorylation of p53 and GSK3 α/ß proteins. In conclusion, our findings highlight a novel role of JAM-A in thyroid cancer progression and suggest that JAM-A restoration could have potential clinical relevance in thyroid cancer treatment.


Assuntos
Moléculas de Adesão Celular/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Receptores de Superfície Celular/metabolismo , Câncer Papilífero da Tireoide/patologia , Carcinoma Anaplásico da Tireoide/patologia , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Interferência de RNA , RNA Interferente Pequeno/genética , Neoplasias da Glândula Tireoide/patologia
19.
J Virol ; 92(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29386293

RESUMO

Host cell surface receptors are required for attachment, binding, entry, and infection by nonenveloped viruses. Receptor binding can induce conformational changes in the viral capsid and/or the receptor that couple binding with downstream events in the virus life cycle (intracellular signaling, endocytosis and trafficking, and membrane penetration). Virus-receptor interactions also influence viral spread and pathogenicity. The interaction between feline calicivirus (FCV) and its receptor, feline junctional adhesion molecule A (fJAM-A), on host cells is required for infection and induces irreversible, inactivating conformational changes in the capsid of some viral strains. Cryoelectron microscopy (cryo-EM) structures of FCV bound to fJAM-A showed several possible virus-receptor interactions. However, the specific residues on the viral capsid required for binding are not known. Capsid residues that may be involved in postbinding events have been implicated by isolation of soluble receptor-resistant (srr) mutants in which changes in the capsid protein sequence change the capacity of such srr mutants to be inactivated upon incubation with soluble fJAM-A. To clarify which residues on the surface of FCV are required for its interaction with fJAM-A and to potentially identify residues required for postreceptor binding events, we used the existing atomic-resolution structures of FCV and the FCV-fJAM-A cryo-EM structures to select 14 capsid residues for mutation and preparation of recombinant viral capsids. Using this approach, we identified residues on the FCV capsid that are required for fJAM-A binding and other residues that are not required for binding but are required for infection that are likely important for subsequent postbinding events.IMPORTANCE Feline calicivirus (FCV) is a common cause of mild upper respiratory disease in cats. Some FCV isolates can cause virulent systemic disease. The genetic determinants of virulence for FCV are unknown. We previously found that virulent FCV isolates have faster in vitro growth kinetics than less virulent isolates. Differences in viral growth in vitro may correlate with differences in virulence. Here, we investigated the roles of specific FCV capsid residues on the receptor-virus interaction and viral growth in vitro We show that the capsid protein genes of the virulent FCV-5 isolate determine its faster in vitro growth kinetics compared to those of the nonvirulent FCV-Urbana infectious clone. We also identified residues on the capsid VP1 protein that are important for receptor binding or for steps subsequent to receptor binding. Our data provide further insight into the specific molecular interactions between fJAM-A and the FCV capsid that regulate binding and infectious entry.


Assuntos
Calicivirus Felino/metabolismo , Capsídeo/metabolismo , Moléculas de Adesão Celular/metabolismo , Mutação , Ligação Viral , Internalização do Vírus , Animais , Calicivirus Felino/genética , Calicivirus Felino/ultraestrutura , Capsídeo/ultraestrutura , Gatos , Moléculas de Adesão Celular/genética , Linhagem Celular , Microscopia Crioeletrônica
20.
Clin Sci (Lond) ; 133(11): 1215-1228, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31101724

RESUMO

Background: Although junctional adhesion molecule-like protein (JAML) has recently been implicated in leukocyte recruitment during inflammation and wound repair, its role in atherosclerosis remains to be elucidated. Methods and results: First, we showed that JAML was strongly expressed in atherosclerotic plaques of cardiovascular patients. Similar results were obtained with atherosclerotic plaques of ApoE-/- mice. Co-immunofluorescence staining showed that JAML was mainly expressed in macrophages. Enhanced expression of JAML in cultured macrophages was observed following exposure of the cells to oxLDL. The functional role of JAML in atherosclerosis and macrophages function was assessed by interference of JAML with shRNA in vivo and siRNA in vitro Silencing of JAML in mice significantly attenuated atherosclerotic lesion formation, reduced necrotic core area, increased plaque fibrous cap thickness, decreased macrophages content and inflammation. In addition, histological staining showed that JAML deficiency promoted plaques to stable phenotype. In vitro, JAML siRNA treatment lowered the expression of inflammatory cytokines in macrophages treated with oxLDL. The mechanism by which JAML mediated the inflammatory responses may be related to the ERK/NF-κB activation. Conclusions: Our results demonstrated that therapeutic drugs which antagonize the function of JAML may be a potentially effective approach to attenuate atherogenesis and enhance plaque stability.


Assuntos
Aterosclerose/metabolismo , Moléculas de Adesão Celular/metabolismo , Camundongos Knockout para ApoE/metabolismo , Placa Aterosclerótica/metabolismo , Animais , Apolipoproteínas E/metabolismo , Apolipoproteínas E/fisiologia , Aterosclerose/etiologia , Western Blotting , Moléculas de Adesão Celular/fisiologia , Imunofluorescência , Inativação Gênica , Humanos , Moléculas de Adesão Juncional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA