Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Molecules ; 29(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202614

RESUMO

A new fermentation method for kiwi wine was explored by developing the well-known medicinal and edible plant Cyclocarya paliurus (C. paliurus) to create more value with undersized kiwifruits. In this study, the changes in bioactive substances during the C. paliurus-kiwi winemaking process were analyzed on the basis of response surface optimization results, and the antioxidant capacity, aromatic compounds, and sensory quality of the C. paliurus-kiwi composite wine with kiwi wine and two commercial kiwi wines were compared. The results showed that DPPH radical, OH- radical, and ABTS+ scavenging rates remained at over 60.0%, 90.0%, and 70.0% in C. paliurus-kiwi wine, respectively. The total flavonoid content (TFC) and total polyphenol content (TPC) of C. paliurus-kiwi wine were significantly higher than those of the other three kiwi wines. C. paliurus-kiwi wine received the highest score and detected 43 volatile compounds. Ethyl hexanoate, which showed stronger fruity and sweet aromas, was one of the main aroma components of C. paliurus-kiwi wine and different from commercial wines. This wine has a good flavor with a natural and quality feeling of C. paliurus-kiwifruit extract, low-cost processing, and great market potential.


Assuntos
Actinidia , Juglandaceae , Struthioniformes , Vinho , Animais , Antioxidantes , Doces , Emoções
2.
Food Microbiol ; 103: 103867, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35082058

RESUMO

To improve the functional property and flavor quality of kiwi wine, the performance of 11 strains of non-Saccharomyces yeasts from 5 species were comprehensively characterized in kiwi wine. Chemical compositions and sensorial profiles of all kiwi wines were assessed. The results indicated that most non-Saccharomyces cerevisiae produced more polyphenols than Saccharomyces cerevisiae WLS21 (Sc21). A total of 130 volatiles were observed in the kiwi wines. Zygosaccharomyces rouxii IFO30 (Zr30), Zygosaccharomyces bailii IFO37 (Zb37) and Schizosaccharomyces pombe 1757 (Sp57) were found to produce more concentration of volatile compounds than the other strains including Sc21. 25 volatiles with a rOAV ≥0.1 were identified. Principal component analysis (PCA) revealed that Zr30 and Zb37 specifically increased the concentrations of ethyl esters, 2-methylbutan-1-ol and phenethyl acetate, while Sp57 primarily enhanced the contents of phenylacetaldehyde, 2-methylbutan-1-ol and phenethyl acetate. The sensory analysis demonstrated that Zr30 and Zb37 strains were more optimal than S. cerevisiae in aroma generation. In addition, the partial least-squares regression (PLSR) analysis revealed that tropical fruits, red fruits, dried fruits, flowers and floral odors showed an intensely positive impact on the overall acceptability of the kiwi wine.


Assuntos
Vinho , Fermentação , Odorantes/análise , Polifenóis , Saccharomyces cerevisiae/genética , Vinho/análise , Leveduras
3.
J Sci Food Agric ; 102(1): 175-184, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34061382

RESUMO

BACKGROUND: To improve the aroma of kiwi wine through the utilization of Wickerhamomyces anomalus, kiwi juice was fermented using a selected W. anomalus strain in pure culture and mixed fermentations with Saccharomyces cerevisiae, which was inoculated simultaneously and sequentially. The physicochemical indices, volatile compounds and aroma properties of the kiwi wines were assessed. RESULTS: The study suggested that the ethanol, color indices and organic acids of the wines were closely related to the method of inoculation. Compared with the pure S. cerevisiae fermentation, the mixed fermentations produced more varieties and concentrations of volatiles. The sequential fermentations increased the concentrations of esters and terpenes, improving the flower and sweet fruit notes of the wines. The simultaneous inoculation enhanced the contents of esters and aldehydes, intensifying the flower, sweet and sour fruit of the wines. Partial least-squares regression analysis showed that esters and terpenes contributed greatly to the flower and sweet fruit aroma, whereas aldehydes were the major contributors to the sour note. CONCLUSION: Based on our results, the mixed fermentations not only enriched the types and concentrations of volatiles, but also had better sensory properties. © 2021 Society of Chemical Industry.


Assuntos
Actinidia/microbiologia , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Vinho/análise , Actinidia/metabolismo , Etanol/análise , Etanol/metabolismo , Fermentação , Frutas/metabolismo , Frutas/microbiologia , Humanos , Odorantes/análise , Paladar , Vinho/microbiologia
4.
Foods ; 13(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38890957

RESUMO

Kiwi wine (KW) is tipically made by fermenting juice from peeled kiwifruit, resulting in the disposal of peel and pomace as by-products. However, the peel contains various beneficial compounds, like phenols and flavonoids. Since the peel is edible and rich in these compounds, incorporating it into the fermentation process of KW presents a potential solution to minimize by-product waste. This study compared the aroma and taste profiles of KW from peeled (PKW) and unpeeled (UKW) kiwifruits by combining intelligent sensory technology, GC-MS, and 1H-NMR. Focusing on aroma profiles, 75 volatile organic compounds (VOCs) were identified in KW fermented with peel, and 73 VOCs in KW without peel, with 62 VOCs common to both. Among these compounds, rose oxide, D-citronellol, and bornylene were more abundant in UKW, while hexyl acetate, isoamyl acetate, and 2,4,5-trichlorobenzene were significantly higher in PKW. For taste profiles, E-tongue analysis revealed differences in the taste profiles of KW from the two sources. A total of 74 molecules were characterized using 1H-NMR. UKW exhibited significantly higher levels of tartrate, galactarate, N-acetylserotonin, 4-hydroxy-3-methoxymandelate, fumarate, and N-acetylglycine, along with a significantly lower level of oxypurinol compared to PKW. This study seeks to develop the theoretical understanding of the fermentation of kiwifruit with peel in sight of the utilization of the whole fruit for KW production, to increase the economic value of kiwifruit production.

5.
Foods ; 13(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39200526

RESUMO

With the increasing awareness of health, more people have shown a preference for low-alcohol beverages. Seeking various methods to improve the quality of kiwi wine is now a major research interest in the wine industry. In this study, kiwi wine was fermented by Saccharomyces cerevisiae and different non-Saccharomyces strains (Torulaspora delbrueckii, Kluyveromyces thermotolerans, Pichia fermentans) in three methods (pure fermentation, simultaneous, and sequential co-fermentation). The physicochemical characteristics, color parameters, phenolic profiles, total phenolic content (TPC), antioxidant activities, organic acids, and taste sense of the different wines were evaluated to determine the effects of different yeasts and fermentation methods on the quality of the kiwi wine. Results indicated that co-fermentation reduced the contents of alcohol while enhancing the lightness of the kiwi wine. The TPC of sequential co-fermentation with K. thermotolerans/S. cerevisiae was significantly higher than that of their simultaneous co-fermentation. Compared to K. thermotolerans/S. cerevisiae, the antioxidant activities were increased by co-fermentation of T. delbrueckii/S. cerevisiae and P. fermentans/S. cerevisiae. Principal component analysis showed that kiwi wines fermented by different yeasts and inoculation methods could be separated and grouped. Correlation analysis presented positive correlations of phenolic composition, antioxidant activities, and color intensity. This study provided theoretical guidance for co-fermentation of non-Saccharomyces/S. cerevisiae and accelerated the industrialization process of kiwi wine.

6.
Food Chem X ; 18: 100691, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37179979

RESUMO

Antioxidant activity and volatiles of kiwifruit wine with different flesh colors were investigated in this study. Green (Guichang and Xuxiang), red (Donghong and Hongyang), and yellow (Jinyan) kiwifruits were analyzed to determine their alcohol content, phenolic profiles, antioxidant activity, and aroma composition. The results showed that Hongyang and Donghong wines had higher antioxidant activity and content of antioxidant substances. Hongyang wine possessed the most abundance of polyphenolic compounds, chlorogenic acid and catechins were the main polyphenols of kiwi wines. The 101 aromatic components were detected, Xuxiang wine possessed 64 aromatic compounds, Donghong and Hongyang wines had the higher esters compositions, 79.87%, and 78.0% respectively. From PCA (Principal Component Analysis), the volatile substances of kiwi wine with the same flesh color were similar. Five kinds of kiwi wines shared 32 kinds of volatile compounds, these compounds may be the core volatiles in kiwi wine. Therefore, the color of kiwi flesh can impact wine flavor, with Hongyang and Donghong kiwis owning red flesh being the most suitable for producing kiwi wine which would be a new milestone to the wine manufactures.

7.
Food Chem X ; 15: 100427, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36211771

RESUMO

As a deeply processing product of kiwifruit, kiwifruit wine (KW) has also shown promising commercial development prospects. In this study, the color and aroma characteristics of 14 commercially available KW were evaluated using intelligent sensory technologies (electronic nose (E-nose) and colorimeter) and gas chromatography-mass spectrometry (GC-MS). Different types of KW had similar color trends, namely, yellow-green or yellow; however, individual samples showed a bright green color and had a high transparency. E-nose and GC-MS reached a relatively consistent conclusion that fermented wine and Lu Jiu were closer and significantly differed from those of distilled wine and beer. A total of 215 volatile organic compounds were identified in all KW. 50 key odor-active compounds were identified, of which ethyl caprylate, which had high OAVs in all samples (30-565.17), was considered the key odor-active compound of KW; likewise, damascenone also made a prominent aroma contribution in the different types of KW. Moreover, ß-ionone, ethyl undecanoate, ethyl 2-methylvalerate were outstanding in different fermented wines. Acids and terpenoids were prominent in beer. The study could provide a data support and market information for the quality control, research, production and development of KW.

8.
Food Chem ; 329: 127086, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32516706

RESUMO

Principal component analysis (PCA) and partial least squares (PLS) regression were applied to investigate the effect of glutathione-enriched inactive dry yeast (g-IDY) on the amino acids and volatile components of kiwi wine. Results indicated that the addition of g-IDY had positive effect on most amino acids of kiwi wine, especially glutamine and glycine. In case of pure juice fermentation, the concentrations of ethyl decanoate, 2-methylbutyric acid, trans-2-nonenal and hexyl butyrate had notably positive correlation with the addition of g-IDY. PLS regression indicated that the amino acids were highly interrelated to the volatile compositions, and glycine had the strongest positive impact on the concentrations of esters and total volatile components. This might explain the similar effect of g-IDY on the amino acids and volatile components of kiwi wine. Besides, PLS regression showed that E-nose was a good method to predict volatile compositions of kiwi wine, especially esters.


Assuntos
Actinidia/química , Aminoácidos/análise , Glutationa/metabolismo , Saccharomyces cerevisiae/química , Compostos Orgânicos Voláteis/análise , Vinho/análise , Actinidia/metabolismo , Nariz Eletrônico , Ésteres/análise , Fermentação , Análise Multivariada , Saccharomyces cerevisiae/metabolismo
9.
J Food Sci ; 82(2): 358-363, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28103396

RESUMO

This work aims to investigate the potential of fiber-optic Fourier transform-near-infrared (FT-NIR) spectrometry associated with chemometric analysis, which will be applied to monitor time-related changes in residual sugar and alcohol strength during kiwi wine fermentation. NIR calibration models for residual sugar and alcohol strength during kiwi wine fermentation were established on the FT-NIR spectra of 98 samples scanned in a fiber-optic FT-NIR spectrometer, and partial least squares regression method. The results showed that R2 and root mean square error of cross-validation could achieve 0.982 and 3.81 g/L for residual sugar, and 0.984 and 0.34% for alcohol strength, respectively. Furthermore, crucial process information on kiwi must and wine fermentations provided by fiber-optic FT-NIR spectrometry was found to agree with those obtained from traditional chemical methods, and therefore this fiber-optic FT-NIR spectrometry can be applied as an effective and suitable alternative for analyses and monitoring of those processes. The overall results suggested that fiber-optic FT-NIR spectrometry is a promising tool for monitoring and controlling the kiwi wine fermentation process.


Assuntos
Actinidia/química , Carboidratos/análise , Etanol/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Vinho/análise , Estudos de Viabilidade , Fermentação , Frutas/química , Análise dos Mínimos Quadrados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA