Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(38): e2203385119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095174

RESUMO

Managing agricultural landscapes to support biodiversity conservation requires profound structural changes worldwide. Often, discussions are centered on management at the field level. However, a wide and growing body of evidence calls for zooming out and targeting agricultural policies, research, and interventions at the landscape level to halt and reverse the decline in biodiversity, increase biodiversity-mediated ecosystem services in agricultural landscapes, and improve the resilience and adaptability of these ecosystems. We conducted the most comprehensive assessment to date on landscape complexity effects on nondomesticated terrestrial biodiversity through a meta-analysis of 1,134 effect sizes from 157 peer-reviewed articles. Increasing landscape complexity through changes in composition, configuration, or heterogeneity significatively and positively affects biodiversity. More complex landscapes host more biodiversity (richness, abundance, and evenness) with potential benefits to sustainable agricultural production and conservation, and effects are likely underestimated. The few articles that assessed the combined contribution of linear (e.g., hedgerows) and areal (e.g., woodlots) elements resulted in a near-doubling of the effect sizes (i.e., biodiversity level) compared to the dominant number of studies measuring these elements separately. Similarly, positive effects on biodiversity are stronger in articles monitoring biodiversity for at least 2 y compared to the dominant 1-y monitoring efforts. Besides, positive and stronger effects exist when monitoring occurs in nonoverlapping landscapes, highlighting the need for long-term and robustly designed monitoring efforts. Living in harmony with nature will require shifting paradigms toward valuing and promoting multifunctional agriculture at the farm and landscape levels with a research agenda that untangles complex agricultural landscapes' contributions to people and nature under current and future conditions.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Fazendas , Conservação dos Recursos Naturais/métodos
2.
Glob Chang Biol ; 30(6): e17380, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38925582

RESUMO

Bumble bees are integral pollinators of native and cultivated plant communities, but species are undergoing significant changes in range and abundance on a global scale. Climate change and land cover alteration are key drivers in pollinator declines; however, limited research has evaluated the cumulative effects of these factors on bumble bee assemblages. This study tests bumble bee assemblage (calculated as richness and abundance) responses to climate and land use by modeling species-specific habitat requirements, and assemblage-level responses across geographic regions. We integrated species richness, abundance, and distribution data for 18 bumble bee species with site-specific bioclimatic, landscape composition, and landscape configuration data to evaluate the effects of multiple environmental stressors on bumble bee assemblages throughout 433 agricultural fields in Florida, Indiana, Kansas, Kentucky, Maryland, South Carolina, Utah, Virginia, and West Virginia from 2018 to 2020. Distinct east versus west groupings emerged when evaluating species-specific habitat associations, prompting a detailed evaluation of bumble bee assemblages by geographic region. Maximum temperature of warmest month and precipitation of driest month had a positive impact on bumble bee assemblages in the Corn Belt/Appalachian/northeast, southeast, and northern plains regions, but a negative impact on the mountain region. Further, forest land cover surrounding agricultural fields was highlighted as supporting more rich and abundant bumble bee assemblages. Overall, climate and land use combine to drive bumble bee assemblages, but how those processes operate is idiosyncratic and spatially contingent across regions. From these findings, we suggested regionally specific management practices to best support rich and abundant bumble bee assemblages in agroecosystems. Results from this study contribute to a better understanding of climate and landscape factors affecting bumble bees and their habitats throughout the United States.


Assuntos
Mudança Climática , Ecossistema , Animais , Abelhas/fisiologia , Estados Unidos , Biodiversidade , Agricultura , Polinização
3.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33731476

RESUMO

Agricultural systems have been continuously intensified to meet rising demand for agricultural products. However, there are increasing concerns that larger, more connected crop fields and loss of seminatural areas exacerbate pest pressure, but findings to date have been inconclusive. Even less is known about whether increased pest pressure results in measurable effects for farmers, such as increased insecticide use and decreased crop yield. Using extensive spatiotemporal data sampled every 2 to 3 d throughout five growing seasons in 373 cotton fields, we show that pests immigrated earlier and were more likely to occur in larger cotton fields embedded in landscapes with little seminatural area (<10%). Earlier pest immigration resulted in earlier spraying that was further linked to more sprays per season. Importantly, crop yield was the lowest in these intensified landscapes. Our results demonstrate that both environmental conservation and production objectives can be achieved in conventional agriculture by decreasing field sizes and maintaining seminatural vegetation in the surrounding landscapes.


Assuntos
Agricultura , Produtos Agrícolas , Inseticidas , Controle de Pragas , Recuperação e Remediação Ambiental , Fazendeiros , Inseticidas/administração & dosagem , Estações do Ano , Análise Espaço-Temporal
4.
Ecol Appl ; 33(2): e2801, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36546604

RESUMO

Agricultural expansion and intensification are major drivers of global change. Quantifying the importance of different processes governing the assembly of local communities in agroecosystems is essential to guide the conservation effort allocated to enhancing habitat connectivity, improving habitat quality or managing species interactions. We used multiple detection methods to record the occurrence of medium-sized and large-sized mammals in three managed landscapes of a heterogeneous Mediterranean region. Then we used a joint species distribution model to evaluate the relative influence of dispersal limitation, environmental filtering, and interspecific interactions on the local assembly of mammal communities in 4-km2 plots. The partitioning of the explained variation in species occurrence was attributed on average 99% to environmental filters and 1% to dispersal filters. No role was attributed to biotic filters, in agreement with the scarce support for strong competition or other negative interactions found after a literature review. Four principal environmental factors explained on average 63% of variance in species occurrence and operated mainly at the landscape scale. The amount of shrub cover in the neighboring landscape was the most influential factor favoring mammal occurrence and accounted for nearly one-third of the total variance. The proportion of intensively managed croplands and proxies of human activity within landscape samples limited mammal presence. At the microhabitat scale (~80 m2 plots) the mean percentage area deprived of woody vegetation also had a negative effect. Functional traits such as body mass or social behavior accounted for a substantial fraction of the variation attributed to environmental factors. We concluded that multiscale environmental filtering governed local community assembly, whereas the role of dispersal limitation and interspecific interactions was negligible. Our results suggest that further removal of shrubland, the expansion of intensive agriculture, and the increase of human activity are expected to result in species losses. The fact that community integrity responds to a single type of ecological process simplifies practical recommendations. Management strategies should focus on the conservation and restoration of shrubland, adopting alternatives to intensive schemes of agricultural production, and minimizing recreational and other human activities in remnant natural habitats within agroecosystems or mosaic landscapes.


Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Mamíferos , Agricultura/métodos , Região do Mediterrâneo
5.
Ecol Appl ; 33(3): e2820, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36792925

RESUMO

Rapid expansion of the human population poses a challenge for wildlife conservation in agricultural landscapes. One proposal for addressing this challenge is to increase biodiversity in such landscapes by increasing crop diversity. However, studies report both positive and negative effects of crop diversity on biodiversity. One possible explanation, derived from the "area-heterogeneity tradeoff hypothesis," is that the effect of crop diversity on biodiversity depends on a tradeoff between increasing the number of crop types in a landscape and decreasing the amount of each single crop type. This should cause positive effects of increasing crop diversity at low to intermediate crop diversity and negative effects at intermediate to high crop diversity. We also propose two factors that could change the point at which the effect of increasing crop diversity shifts from positive to negative. First, we predicted that this shift would occur at a lower crop diversity when the surrounding landscape contains less semi-natural habitat and at a higher crop diversity when the landscape contains more semi-natural habitat. This should increase the likelihood of detecting negative effects of crop diversity when semi-natural cover is low and positive effects when it is high. Second, we predicted that the shift from a positive to negative effect would occur at a lower crop diversity when it is measured locally than when it is measured at greater distances from the site, making detection of negative crop diversity effects more likely when measurements are at local extents. We tested these predictions using data on the biodiversity of herbaceous plants, butterflies, syrphid flies, woody plants, bees, carabid beetles, spiders, and birds at 221 crop field edges in Eastern Ontario, Canada. We found support for an area-crop diversity tradeoff. Semi-natural cover and measurement extent influenced the biodiversity-crop diversity relationship, with positive effects when semi-natural cover was high and negative effects when semi-natural cover was low and when crop diversity was measured at local extents. The results suggest that policies/guidelines designed to increase crop diversity will not benefit biodiversity in the landscapes where conservation action is most urgently needed, that is, in landscapes with high agricultural use and low semi-natural cover.


Assuntos
Borboletas , Animais , Abelhas , Humanos , Biodiversidade , Ecossistema , Produtos Agrícolas , Agricultura/métodos , Ontário
6.
Oecologia ; 202(3): 465-480, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37365409

RESUMO

Wild honeybees (Apis mellifera) are considered extinct in most parts of Europe. The likely causes of their decline include increased parasite burden, lack of high-quality nesting sites and associated depredation pressure, and food scarcity. In Germany, feral honeybees still colonize managed forests, but their survival rate is too low to maintain viable populations. Based on colony observations collected during a monitoring study, data on parasite prevalence, experiments on nest depredation, and analyses of land cover maps, we explored whether parasite pressure, depredation or expected landscape-level food availability explain feral colony winter mortality. Considering the colony-level occurrence of 18 microparasites in the previous summer, colonies that died did not have a higher parasite burden than colonies that survived. Camera traps installed at cavity trees revealed that four woodpecker species, great tits, and pine martens act as nest depredators. In a depredator exclusion experiment, the winter survival rate of colonies in cavities with protected entrances was 50% higher than that of colonies with unmanipulated entrances. Landscapes surrounding surviving colonies contained on average 6.4 percentage points more cropland than landscapes surrounding dying colonies, with cropland being known to disproportionately provide forage for bees in our study system. We conclude that the lack of spacious but well-protected nesting cavities and the shortage of food are currently more important than parasites in limiting populations of wild-living honeybees in German forests. Increasing the density and diversity of large tree cavities and promoting bee forage plants in forests will probably promote wild-living honeybees despite parasite pressure.


Assuntos
Parasitos , Animais , Abelhas , Florestas , Europa (Continente) , Árvores , Alemanha
7.
Environ Monit Assess ; 195(5): 581, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37069378

RESUMO

Base flow (BF) is harder to predict than other hydrological signatures. The lack of hydrologically relevant information or adequately broad spectrum of typically selected catchment attributes (particularly landscape and topography) hinders the explanatory power. Our goals were to identify the most influential controls on base flow spatially and temporally and to elucidate the response relationships. Base flow in 19 semi-arid sub-watersheds was separated by digital filtering. One hundred and fourteen sub-watershed attributes were related to base flow using random forest regression. The main results were as follows: (1) Annual BF significantly declined since 1999 due to decreased precipitation, increased air temperature, afforestation, urban expansion, and increasing water consumption. Annual base flow index (BFI), varying between 0.319 and 0.695, showed less noticeable temporal trends. (2) Precipitation (P) and underlying carbonate rocks primarily controlled the spatial variation of annual BF and total flow (TF), with the impacts being positive. Landscape was less influential. After the abrupt runoff decline, landscape composition rather than configuration exerted greater impacts on spatial BF and TF, and the importance of forest increased, whereas landscape configuration was decisive for BFI during the whole observation period. The absence of significant links between landscape configuration and water quantity may result from a scale issue. Concave profile curvatures were found to be topographic variables more important than slopes. The impact of soil was the least. This study would benefit the selection of catchment attributes and spatial extents to quantify these attributes in building BF predicting models in future studies.


Assuntos
Monitoramento Ambiental , Solo , Hidrologia
8.
Ecol Lett ; 25(11): 2422-2434, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36134709

RESUMO

To stop the ongoing decline of farmland biodiversity there are increasing claims for a paradigm shift in agriculture, namely from conserving and restoring farmland biodiversity at field scale (α-diversity) to doing it at landscape scale (γ-diversity). However, knowledge on factors driving farmland γ-diversity is currently limited. Here, we quantified farmland γ-diversity in 123 landscapes and analysed direct and indirect effects of abiotic and land-use factors shaping it using structural equation models. The direction and strength of effects of factors shaping γ-diversity were only partially consistent with what is known about factors shaping α-diversity, and indirect effects were often stronger than direct effects or even opposite. Thus, relationships between factors shaping α-diversity cannot simply be up-scaled to γ-diversity, and also indirect effects should no longer be neglected. Finally, we show that local mitigation measures benefit farmland γ-diversity at landscape scale and are therefore a useful tool for designing biodiversity-friendly landscapes.


Assuntos
Biodiversidade , Ecossistema , Fazendas , Agricultura
9.
J Environ Manage ; 317: 115358, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35636109

RESUMO

Natural habitats in rural and urban areas are increasingly fragmented and altered by human impacts that are limiting the animal and plant dispersal process. Fragmentation and isolation can be reversed by restoring landscape connectivity through effective Ecological Network (EN) planning. However, most of the studies analyzing the influence of connectivity and landscape structure on biodiversity are focused on animals, while the understanding of their interplaying role on plant diversity remains limited. We studied the relationships between α and ß diversity pattern and landscape structure and connectivity in the nodes of an EN developed in agricultural landscapes, as a part of regional landscape planning framework in Friuli Venezia Giulia region (North-East of Italy). As an innovation, the study aims at parsing the interacting effect of landscape structure, surrounding habitats and nodes, and structural connectivity on EN plant diversity at two specific scales of investigation i.e., the habitat and the node scale. The habitat was the basic ecological unit, while the node was the basic cartographical unit for the EN mapping (multi-habitat or mono-habitat nodes). A total of 443 plant species were collected across 219 sample plots, in 14 different habitats and 87 nodes of the EN. We found that high node connectivity leads to higher species richness (α-diversity) but also increases plant community similarity (i.e., low ß-diversity) at both scales. The effect of landscape structure showed differing trends depending on the habitat. In general, landscape composition of semi-natural land cover (i.e., hedgerows, watercourses) showed a positive effect on species diversity as opposed to that of the configuration of anthropogenic elements on both scales. Our results provided crucial information on the landscape processes useful to improving biodiversity conservation by EN. Our findings suggest that i) improving connectivity within ENs favors α plant diversity ii) different habitats have different sensibility to landscape structure iii) semi-natural land cover around nodes improve plant diversity; iv) planning both mono-habitat and multi-habitats nodes, increases the biodiversity conserved therein; v) nodes with more compact shapes are to be preferred.


Assuntos
Biodiversidade , Ecossistema , Agricultura , Animais , Itália , Plantas
10.
Ecol Appl ; 31(2): e02246, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33124091

RESUMO

Intraspecific plant diversity can significantly impact insect herbivore populations in natural systems. Yet, its role as an insect pest control strategy in agriculture has received less attention, and little is known about which crop traits are important to herbivores in different landscape contexts. Moreover, empirical economic analyses on the cost-effectiveness of varietal mixtures are lacking. We used varietal mixtures of Brassica oleracea crops on working farms to examine how two metrics of intraspecific crop diversity, varietal richness and number of plant colors (color richness), affect crop damage and the incidence and abundance of two insect pest species: Pieris rapae and Phyllotreta spp. We evaluated the context-dependency of varietal mixtures by sampling early- and late-season plantings of B. oleracea crops in farms across a gradient of landscape composition. We developed crop budgets and used a net present value analysis to assess the impact of varietal mixtures on input and labor costs, crop revenues, and profit. We found context-dependent effects of varietal mixtures on both pests. In early-season plantings, color richness did not affect Phyllotreta spp. populations. However, increasing varietal richness reduced Phyllotreta spp. incidence in simple landscapes dominated by cropland, but this trend was reversed in complex landscapes dominated by natural habitats. In late-season plantings, color richness reduced the incidence and abundance of P. rapae larvae, but only in complex landscapes where their populations were highest. Varietal richness had the same effect on P. rapae larvae as color richness. Unexpectedly, we consistently found lower pest pressure and reduced crop damage in simple landscapes. Although varietal mixtures did not affect crop damage, increasing color richness corresponded with increased profits, due to increased revenue and a marginal reduction in labor and input costs. We demonstrate varietal mixtures can significantly impact pest populations, and this effect can be mediated by intraspecific variation in crop color. However, the strength and direction of these effects vary by season, landscape composition, and pest species. The association between varietal color richness and profitability indicates farmers could design mixtures to enhance economic returns. We recommend additional research on the benefits of intraspecific trait variation for farmers.


Assuntos
Fazendeiros , Insetos , Animais , Produtos Agrícolas , Ecossistema , Herbivoria , Humanos
11.
J Anim Ecol ; 90(8): 1891-1905, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33901299

RESUMO

Arthropod communities dwelling in adjacent habitats are able to impact one another via shared natural enemies. In agricultural landscapes, drastic differences in resource availability between crop and non-crop habitats cause variation in insect herbivore densities over short distances, potentially driving inter-habitat effects. Moreover, the composition of the landscape in which the habitats are embedded likely affects realised attack rates from natural enemies via impacts on local arthropod community structure. Here, we examine indirect effects between herbivore species within and between habitat types by calculating the potential for apparent competition between multiple populations. Firstly, we aim to determine how disparities in resource availability impact the strength of the potential for apparent competition occurring between habitats, secondly to examine the impact of landscape composition upon these effects, and finally to couch these observations in reality by investigating the link between the potential for apparent competition and realised attack rates. We used DNA metabarcoding to characterise host-parasitoid interactions within two habitat types (with divergent nutrient inputs) at 11 locations with variable landscape composition within an agroecosystem context. We then used these interaction networks to estimate the potential for apparent competition between each host pair and to compare expected versus realised attack rates across the system. Shared natural enemies were found to structure host herbivore communities within and across habitat boundaries. The size of this effect was related to the resource availability of habitats, such that the habitat with high nutrient input exerted a stronger effect. The overall potential for apparent competition declined with increasing land-use intensity in the surrounding landscape and exhibited a discernible impact on realised attack rates upon herbivore species. Thus, our results suggest that increasing the proportion of perennial habitat in agroecosystems could increase the prevalence of indirect effects such as apparent competition among insect herbivore communities, potentially leading to enhanced population regulation via increased attack rates from natural enemies like parasitoid wasps.


Assuntos
Ecossistema , Vespas , Agricultura , Animais , Herbivoria , Insetos
12.
Oecologia ; 195(2): 539-546, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33367959

RESUMO

Strong declines of grassland species diversity in small and isolated grassland patches have been observed at local and landscape scales. Here, we study how plant-herbivore interaction webs and habitat specialisation of leafhopper communities change with the size of calcareous grassland fragments and landscape connectivity. We surveyed leafhoppers and plants on 14 small (0.1-0.6 ha) and 14 large (1.2-8.8 ha) semi-natural calcareous grassland fragments in Central Germany, differing in isolation from other calcareous grasslands and in the percentage of arable land in the surrounding landscape (from simple to complex landscapes). We quantified weighted trophic links between plants and their phytophagous leafhoppers for each grassland fragment. We found that large and well-connected grassland fragments harboured a high portion of specialist leafhopper species, which in turn yielded low interaction diversity and simple plant-leafhopper food webs. In contrast, small and well-connected fragments exhibited high levels of generalism, leading to higher interaction diversity. In conclusion, food web complexity appeared to be a poor indicator for the management of insect diversity, as it is driven by specialist species, which require high connectivity of large fragments in complex landscapes. We conclude that habitat specialists should be prioritized since generalist species associated with small fragments are also widespread in the surrounding landscape matrix.


Assuntos
Conservação dos Recursos Naturais , Cadeia Alimentar , Animais , Biodiversidade , Ecossistema , Alemanha , Pradaria , Insetos , Especialização
13.
J Environ Manage ; 280: 111646, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33213989

RESUMO

Artificial creation of dead wood in managed forests can be used to mitigate the negative effects of forestry on biodiversity. For this to be successful, it is essential to understand the conservation value that the created dead wood has in comparison to naturally occurring dead wood, and, furthermore, where in the landscape addition of dead wood is most beneficial, i.e. how landscape composition influences species occurrence on dead wood. We examined these questions by surveying epixylic lichens on artificially created high stumps of Scots pine (Pinus sylvestris) in 3-17 years old clear-cuts. We compared lichen assemblages on high stumps to those on other types of pine dead wood in mature forests, and examined how stump age, the amount of dead wood at the clear-cuts, and landscape composition at 500 m - 2.5 km scale influenced the assemblages. In comparison to other dead wood types, high stumps hosted lower lichen richness and less variable assemblages containing mainly common generalist species. Species richness increased with stump age, whereas dead wood amount and landscape composition were not important; only the total amount of forests in the landscape had a minor positive effect. We conclude that at the studied timescale high stumps of Scots pine are not particularly valuable for epixylic lichens and provide a poor substitute for naturally occurring dead wood in mature forests, although their value may increase with age. Furthermore, directing dead wood creation to specific stands or landscapes does not appear beneficial for lichen biodiversity, given the minor effect of landscape composition found at scales below 2.5 km.


Assuntos
Líquens , Biodiversidade , Agricultura Florestal , Florestas , Árvores , Madeira
14.
J Environ Manage ; 292: 112783, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015616

RESUMO

Monitoring landscape pattern change can provide spatial explicit basis for future landscape management. The future socioeconomic and climate change drivers should be systematically combined in landscape pattern monitoring, while they are often regarded as independent parameters in landscape monitoring models. This study sought to project the detailed landscape pattern change based on landscape composition and configuration in Tibet by 2030, and combined the shared socioeconomic pathways (SSPs) and representative concentration pathways (RCPs). The results showed area of the unused land and forest will reduce by a minimum standard of 11.42 × 104 and 9.04 × 104 km2 from 2010 to 2030, respectively. Other land use types will increase, and the highest increase in grassland will be 9.30 × 105 km2. Combined SSP1 and RCP2.6 scenario show high landscape aggregation and low edge density on cultivated land, urban land and grassland in Tibet as a whole. However, in typical cultivated and urban landscape, the abovementioned rule is appeared in the combined SSP4 and RCP6.0 scenario. These findings stress the importance of systematically modeling the socioeconomic demand and climate change in landscape pattern monitoring, and using both landscape composition and configuration indexes for scenario evaluation.


Assuntos
Mudança Climática , Florestas , Tibet
15.
Ecol Appl ; 30(5): e02099, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32086968

RESUMO

Habitat fragmentation threatens plant and pollinator communities, as well as their interactions. However, the effects of landscape fragmentation on the pollination of wild plant species are not well understood yet, partly because there are many correlated features in fragmented landscapes (e.g., decreased patch size, increased isolation, and patch complexity) whose influences are difficult to disentangle. Using a structural equation modeling approach, we assessed the direct and indirect effects of landscape fragmentation (patch size, isolation and complexity, percentage of surrounding land in forest) on the abundance, functional-group richness, and evenness of pollinators of 24 habitat fragments within an agricultural landscape in Southern Norway. In addition, we studied how these variables affected visitation rates (visits per flower) and seed production (seed set, seed mass) in the four most abundant plant species in the area. Flower abundance was higher in larger and complex patches and decreased with the percentage of forest in the surroundings, while flower richness increased with patch complexity. We found a direct negative relationship between patch complexity and the overall number of pollinator visits that the habitat fragments received. Apart from this direct landscape effect, pollinator visits were mostly affected by the floral communities, with overall flower abundance and richness increasing both total number of pollinator visits and pollinator-group richness, and flower richness having an additional negative influence on pollinator-group evenness. Interestingly, we did not find any direct link between visitation rates and reproductive success for any of the study plant species. Instead, several landscape variables directly affected species seed production, although the effects of landscape on seed production were highly species specific. Patch complexity had a negative effect on seed production in two of the four focal species, while other components of the landscape had species-specific effects. Increasing fragmentation of agricultural landscapes affects pollination interactions at the community level and the reproduction of wild plants. However, understanding the effects of fragmentation on seed production requires going beyond estimating visitation rates, since landscape effects on plant reproduction are not always related to overall interaction frequencies.


Assuntos
Ecossistema , Polinização , Flores , Noruega , Sementes
16.
Ecol Modell ; 4162020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31798202

RESUMO

Efficient management of agricultural management should consider multiple services and stakeholders. Yet, it remains unclear how to guarantee ecosystem services for multiple stakeholders' demands, especially considering the observed biodiversity decline following reductions in semi-natural habitat (SNH), and global change. Here, we use an ecosystem service model of intensively-managed agricultural landscapes to derive the best landscape compositions for different stakeholders' demands, and how they vary with stochasticity and the degree of pollination dependence of crops. We analyse three groups of stakeholders assumed to value different ecosystem services most - individual farmers (crop yield per area), agricultural unions (landscape production) and conservationists (biodiversity). Additionally, we consider a social average scenario that aims at maximizing multifunctionality. Trade-offs among stakeholders' demands strongly depend on the degree of pollination dependence of crops, the strength of environmental and demographic stochasticity, and the relative amount of an ecosystem service demanded by each stakeholder. Intermediate amounts of SNH deliver relatively high levels of the three services (social average). Our analysis further suggests that the current levels of SNH protection lie below these intermediate amounts of SNH in intensively-managed agricultural landscapes. Given the worldwide trends in agriculture and global change, current policies should start to consider factors such as crop type and stochasticity, as they can strongly influence best landscape compositions for different stakeholders. Our results suggest ways of managing landscapes to reconcile several actors' demands and ensure for biodiversity conservation and food production.

17.
Proc Biol Sci ; 286(1899): 20190442, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30890094

RESUMO

With climate change, the effect of global warming on snow cover is expected to cause range expansion and enhance habitat suitability for species at their northern distribution limits. However, how this depends on landscape topography and sex in size-dimorphic species remains uncertain, and is further complicated for migratory animals following climate-driven seasonal resource fluctuations across vast landscapes. Using 11 years of data from a partially migratory ungulate at their northern distribution ranges, the red deer ( Cervus elaphus), we predicted sex-specific summer and winter habitat suitability in diverse landscapes under medium and severe global warming. We found large increases in future winter habitat suitability, resulting in expansion of winter ranges as currently unsuitable habitat became suitable. Even moderate warming decreased snow cover substantially, with no suitability difference between warming scenarios. Winter ranges will hence not expand linearly with warming, even for species at their northern distribution limits. Although less pronounced than in winter, summer ranges also expanded and more so under severe warming. Summer habitat suitability was positively correlated with landscape topography and ranges expanded more for females than males. Our study highlights the complexity of predicting future habitat suitability for conservation and management of size-dimorphic, migratory species under global warming.


Assuntos
Migração Animal , Mudança Climática , Cervos/fisiologia , Ecossistema , Distribuição Animal , Animais , Conservação dos Recursos Naturais , Feminino , Comportamento de Retorno ao Território Vital , Masculino , Noruega , Estações do Ano
18.
J Insect Sci ; 19(3)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31175836

RESUMO

Intensively managed flowering crops like canola (Brassicales: Brassicaceae) (oilseed rape, OSR) provide significant short-term nectar resources for pollen consumers. They may also play important roles as annual "service strips" in temporarily promoting predatory invertebrates. We set out to test this assumption by comparing overall and functional group-specific species richness, activity density, and assemblage composition of carabids (Coleoptera: Carabidae) and spiders (Araneae), in three types of service strips-OSR, woody, and grassy strips established in direct vicinity to cropland. OSR strips were found to harbor the highest carabid species richness and activity density of small carabids. The activity density of carabids overall and of omnivorous species, the species richness and activity density of spiders across size classes and feeding strategies were all significantly reduced in woody strips. The percentage of seminatural habitat in the wider landscape was positively linked to the activity density of spiders overall, ground hunting and large spiders, whereas in carabids, positive effects were limited to large species occurring in grassy strips. Habitat type was the main predictor of both carabid and spider assemblage composition. Our results indicate that carabid and spider activity density across functional groups responded more strongly to changes in the landscape composition than the diversity of individual taxonomic groups. For agricultural landscape management, the establishment of habitat mosaics that include regular OSR could promote abundant, species-rich predatory invertebrates particularly in early spring. In contrast, structurally homogenous woody strips represent limited value in promoting the investigated biological pest control agents.


Assuntos
Agricultura/métodos , Brassicaceae , Besouros , Ecossistema , Aranhas , Animais , Controle Biológico de Vetores , Densidade Demográfica
19.
Ecol Appl ; 28(6): 1546-1553, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29727519

RESUMO

Understanding the patterns and processes driving biodiversity maintenance in fragmented tropical forests is urgently needed for conservation planning, especially in species-rich forest reserves. Of particular concern are the effects that habitat modifications at the landscape scale may have on forest regeneration and ecosystem functioning: a topic that has received limited attention. Here, we assessed the effects of landscape structure (i.e., forest cover, open area matrices, forest fragmentation, and mean inter-patch isolation distance) on understory plant assemblages in the Los Tuxtlas Biosphere Reserve, Mexico. Previous studies suggest that the demographic burst of the strong competitor palm Astrocaryum mexicanum in the core area of this reserve limits plant recruitment and imperils biodiversity conservation within this protected area. Yet, the local and landscape predictors of this palm, and its impact on tree recruitment at a regional scale are unknown. Thus, we used structural equation modeling to assess the direct and cascading effects of landscape structure on stem and species density in the understory of 20 forest sites distributed across this biodiversity hotspot. Indirect paths included the effect of landscape structure on tree basal area (a proxy of local disturbance), and the effects of these variables on A. mexicanum. Density of A. mexicanum mainly increased with decreasing both fragmentation and open areas in the matrix (matrix contrast, hereafter), and such an increase in palm density negatively affected stem and species density in the understory. The negative direct effect of matrix contrast on stem density was overridden by the indirect positive effects (i.e., through negative cascading effects on A. mexicanum), resulting in a weak effect of matrix contrast on stem density. These findings suggest that dispersal limitation and negative edge effects in more fragmented landscapes dominated by open areas prevent the proliferation of this palm species, enhancing the diversity and abundance of understory trees. This "positive" news adds to an increasing line of evidence suggesting that fragmentation may have some positive effects on biodiversity, in this case by preventing the proliferation of species that can jeopardize biodiversity conservation within tropical reserves.


Assuntos
Arecaceae , Floresta Úmida , Conservação dos Recursos Naturais , México , Modelos Teóricos
20.
Ecol Appl ; 28(3): 842-853, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29617038

RESUMO

Landscape composition not only affects a variety of arthropod-mediated ecosystem services, but also disservices, such as herbivory by insect pests that may have negative effects on crop yield. Yet, little is known about how different habitats influence the dynamics of multiple herbivore species, and ultimately their collective impact on crop production. Using cabbage as a model system, we examined how landscape composition influenced the incidence of three specialist cruciferous pests (aphids, flea beetles, and leaf-feeding Lepidoptera), lepidopteran parasitoids, and crop yield across a gradient of landscape composition in New York, USA. We expected that landscapes with a higher proportion of cropland and lower habitat diversity would lead to an increase in pest pressure of the specialist herbivores and a reduction in crop yield. However, results indicated that neither greater cropland area nor lower landscape diversity influenced pest pressure or yield. Rather, pest pressure and yield were best explained by the presence of non-crop habitats (i.e., meadows) in the landscape. Specifically, cabbage was infested with fewer Lepidoptera in landscapes with a higher proportion of meadows likely resulting from increased parasitism. Conversely, cabbage was infested with more flea beetles and aphids as the proportion of meadows in the landscape increased, suggesting that these pests benefit from non-crop habitats. Furthermore, path analysis confirmed that these landscape-mediated effects on pest populations can have either positive or negative cascading effects on crop yield. Our findings illustrate how different pest species within the same cropping system show contrasting responses to landscape composition with respect to both the direction and spatial scale of the relationship. Such tradeoffs resulting from the complex interaction between multiple-pests, natural enemies, and landscape composition must be considered, if we are to manage landscapes for pest suppression benefits.


Assuntos
Biomassa , Brassicaceae , Herbivoria , Interações Hospedeiro-Parasita , Insetos/parasitologia , Animais , Larva/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA